期刊文献+
共找到495篇文章
< 1 2 25 >
每页显示 20 50 100
BiCLIP-nnFormer:A Virtual Multimodal Instrument for Efficient and Accurate Medical Image Segmentation 被引量:1
1
作者 Wang Bo Yue Yan +5 位作者 Mengyuan Xu Yuqun Yang Xu Tang Kechen Shu Jingyang Ai Zheng You 《Instrumentation》 2025年第2期1-13,共13页
Image segmentation is attracting increasing attention in the field of medical image analysis.Since widespread utilization across various medical applications,ensuring and improving segmentation accuracy has become a c... Image segmentation is attracting increasing attention in the field of medical image analysis.Since widespread utilization across various medical applications,ensuring and improving segmentation accuracy has become a crucial topic of research.With advances in deep learning,researchers have developed numerous methods that combine Transformers and convolutional neural networks(CNNs)to create highly accurate models for medical image segmentation.However,efforts to further enhance accuracy by developing larger and more complex models or training with more extensive datasets,significantly increase computational resource consumption.To address this problem,we propose BiCLIP-nnFormer(the prefix"Bi"refers to the use of two distinct CLIP models),a virtual multimodal instrument that leverages CLIP models to enhance the segmentation performance of a medical segmentation model nnFormer.Since two CLIP models(PMC-CLIP and CoCa-CLIP)are pre-trained on large datasets,they do not require additional training,thus conserving computation resources.These models are used offline to extract image and text embeddings from medical images.These embeddings are then processed by the proposed 3D CLIP adapter,which adapts the CLIP knowledge for segmentation tasks by fine-tuning.Finally,the adapted embeddings are fused with feature maps extracted from the nnFormer encoder for generating predicted masks.This process enriches the representation capabilities of the feature maps by integrating global multimodal information,leading to more precise segmentation predictions.We demonstrate the superiority of BiCLIP-nnFormer and the effectiveness of using CLIP models to enhance nnFormer through experiments on two public datasets,namely the Synapse multi-organ segmentation dataset(Synapse)and the Automatic Cardiac Diagnosis Challenge dataset(ACDC),as well as a self-annotated lung multi-category segmentation dataset(LMCS). 展开更多
关键词 medical image analysis image segmentation CLIP feature fusion deep learning
原文传递
M2ANet:Multi-branch and multi-scale attention network for medical image segmentation 被引量:1
2
作者 Wei Xue Chuanghui Chen +3 位作者 Xuan Qi Jian Qin Zhen Tang Yongsheng He 《Chinese Physics B》 2025年第8期547-559,共13页
Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to ... Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to the inability to effectively capture global information from images,CNNs can easily lead to loss of contours and textures in segmentation results.Notice that the transformer model can effectively capture the properties of long-range dependencies in the image,and furthermore,combining the CNN and the transformer can effectively extract local details and global contextual features of the image.Motivated by this,we propose a multi-branch and multi-scale attention network(M2ANet)for medical image segmentation,whose architecture consists of three components.Specifically,in the first component,we construct an adaptive multi-branch patch module for parallel extraction of image features to reduce information loss caused by downsampling.In the second component,we apply residual block to the well-known convolutional block attention module to enhance the network’s ability to recognize important features of images and alleviate the phenomenon of gradient vanishing.In the third component,we design a multi-scale feature fusion module,in which we adopt adaptive average pooling and position encoding to enhance contextual features,and then multi-head attention is introduced to further enrich feature representation.Finally,we validate the effectiveness and feasibility of the proposed M2ANet method through comparative experiments on four benchmark medical image segmentation datasets,particularly in the context of preserving contours and textures. 展开更多
关键词 medical image segmentation convolutional neural network multi-branch attention multi-scale feature fusion
原文传递
Stochastic Augmented-Based Dual-Teaching for Semi-Supervised Medical Image Segmentation
3
作者 Hengyang Liu Yang Yuan +2 位作者 Pengcheng Ren Chengyun Song Fen Luo 《Computers, Materials & Continua》 SCIE EI 2025年第1期543-560,共18页
Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)t... Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)training the model solely with copy-paste mixed pictures from labeled and unlabeled input loses a lot of labeled information;(2)low-quality pseudo-labels can cause confirmation bias in pseudo-supervised learning on unlabeled data;(3)the segmentation performance in low-contrast and local regions is less than optimal.We design a Stochastic Augmentation-Based Dual-Teaching Auxiliary Training Strategy(SADT),which enhances feature diversity and learns high-quality features to overcome these problems.To be more precise,SADT trains the Student Network by using pseudo-label-based training from Teacher Network 1 and supervised learning with labeled data,which prevents the loss of rare labeled data.We introduce a bi-directional copy-pastemask with progressive high-entropy filtering to reduce data distribution disparities and mitigate confirmation bias in pseudo-supervision.For the mixed images,Deep-Shallow Spatial Contrastive Learning(DSSCL)is proposed in the feature spaces of Teacher Network 2 and the Student Network to improve the segmentation capabilities in low-contrast and local areas.In this procedure,the features retrieved by the Student Network are subjected to a random feature perturbation technique.On two openly available datasets,extensive trials show that our proposed SADT performs much better than the state-ofthe-art semi-supervised medical segmentation techniques.Using only 10%of the labeled data for training,SADT was able to acquire a Dice score of 90.10%on the ACDC(Automatic Cardiac Diagnosis Challenge)dataset. 展开更多
关键词 SEMI-SUPERVISED medical image segmentation contrastive learning stochastic augmented
在线阅读 下载PDF
U-Net-Based Medical Image Segmentation:A Comprehensive Analysis and Performance Review
4
作者 Aliyu Abdulfatah Zhang Sheng Yirga Eyasu Tenawerk 《Journal of Electronic Research and Application》 2025年第1期202-208,共7页
Medical image segmentation has become a cornerstone for many healthcare applications,allowing for the automated extraction of critical information from images such as Computed Tomography(CT)scans,Magnetic Resonance Im... Medical image segmentation has become a cornerstone for many healthcare applications,allowing for the automated extraction of critical information from images such as Computed Tomography(CT)scans,Magnetic Resonance Imaging(MRIs),and X-rays.The introduction of U-Net in 2015 has significantly advanced segmentation capabilities,especially for small datasets commonly found in medical imaging.Since then,various modifications to the original U-Net architecture have been proposed to enhance segmentation accuracy and tackle challenges like class imbalance,data scarcity,and multi-modal image processing.This paper provides a detailed review and comparison of several U-Net-based architectures,focusing on their effectiveness in medical image segmentation tasks.We evaluate performance metrics such as Dice Similarity Coefficient(DSC)and Intersection over Union(IoU)across different U-Net variants including HmsU-Net,CrossU-Net,mResU-Net,and others.Our results indicate that architectural enhancements such as transformers,attention mechanisms,and residual connections improve segmentation performance across diverse medical imaging applications,including tumor detection,organ segmentation,and lesion identification.The study also identifies current challenges in the field,including data variability,limited dataset sizes,and issues with class imbalance.Based on these findings,the paper suggests potential future directions for improving the robustness and clinical applicability of U-Net-based models in medical image segmentation. 展开更多
关键词 U-Net architecture Medical image segmentation DSC IOU Transformer-based segmentation
在线阅读 下载PDF
DMHFR:Decoder with Multi-Head Feature Receptors for Tract Image Segmentation
5
作者 Jianuo Huang Bohan Lai +2 位作者 Weiye Qiu Caixu Xu Jie He 《Computers, Materials & Continua》 2025年第3期4841-4862,共22页
The self-attention mechanism of Transformers,which captures long-range contextual information,has demonstrated significant potential in image segmentation.However,their ability to learn local,contextual relationships ... The self-attention mechanism of Transformers,which captures long-range contextual information,has demonstrated significant potential in image segmentation.However,their ability to learn local,contextual relationships between pixels requires further improvement.Previous methods face challenges in efficiently managing multi-scale fea-tures of different granularities from the encoder backbone,leaving room for improvement in their global representation and feature extraction capabilities.To address these challenges,we propose a novel Decoder with Multi-Head Feature Receptors(DMHFR),which receives multi-scale features from the encoder backbone and organizes them into three feature groups with different granularities:coarse,fine-grained,and full set.These groups are subsequently processed by Multi-Head Feature Receptors(MHFRs)after feature capture and modeling operations.MHFRs include two Three-Head Feature Receptors(THFRs)and one Four-Head Feature Receptor(FHFR).Each group of features is passed through these MHFRs and then fed into axial transformers,which help the model capture long-range dependencies within the features.The three MHFRs produce three distinct feature outputs.The output from the FHFR serves as auxiliary auxiliary features in the prediction head,and the prediction output and their losses will eventually be aggregated.Experimental results show that the Transformer using DMHFR outperforms 15 state of the arts(SOTA)methods on five public datasets.Specifically,it achieved significant improvements in mean DICE scores over the classic Parallel Reverse Attention Network(PraNet)method,with gains of 4.1%,2.2%,1.4%,8.9%,and 16.3%on the CVC-ClinicDB,Kvasir-SEG,CVC-T,CVC-ColonDB,and ETIS-LaribPolypDB datasets,respectively. 展开更多
关键词 Medical image segmentation feature exploration feature aggregation deep learning multi-head feature receptor
在线阅读 下载PDF
A medical image segmentation model based on SAM with an integrated local multi-scale feature encoder
6
作者 DI Jing ZHU Yunlong LIANG Chan 《Journal of Measurement Science and Instrumentation》 2025年第3期359-370,共12页
Despite its remarkable performance on natural images,the segment anything model(SAM)lacks domain-specific information in medical imaging.and faces the challenge of losing local multi-scale information in the encoding ... Despite its remarkable performance on natural images,the segment anything model(SAM)lacks domain-specific information in medical imaging.and faces the challenge of losing local multi-scale information in the encoding phase.This paper presents a medical image segmentation model based on SAM with a local multi-scale feature encoder(LMSFE-SAM)to address the issues above.Firstly,based on the SAM,a local multi-scale feature encoder is introduced to improve the representation of features within local receptive field,thereby supplying the Vision Transformer(ViT)branch in SAM with enriched local multi-scale contextual information.At the same time,a multiaxial Hadamard product module(MHPM)is incorporated into the local multi-scale feature encoder in a lightweight manner to reduce the quadratic complexity and noise interference.Subsequently,a cross-branch balancing adapter is designed to balance the local and global information between the local multi-scale feature encoder and the ViT encoder in SAM.Finally,to obtain smaller input image size and to mitigate overlapping in patch embeddings,the size of the input image is reduced from 1024×1024 pixels to 256×256 pixels,and a multidimensional information adaptation component is developed,which includes feature adapters,position adapters,and channel-spatial adapters.This component effectively integrates the information from small-sized medical images into SAM,enhancing its suitability for clinical deployment.The proposed model demonstrates an average enhancement ranging from 0.0387 to 0.3191 across six objective evaluation metrics on BUSI,DDTI,and TN3K datasets compared to eight other representative image segmentation models.This significantly enhances the performance of the SAM on medical images,providing clinicians with a powerful tool in clinical diagnosis. 展开更多
关键词 segment anything model(SAM) medical image segmentation ENCODER decoder multiaxial Hadamard product module(MHPM) cross-branch balancing adapter
在线阅读 下载PDF
DGFE-Mamba:Mamba-Based 2D Image Segmentation Network
7
作者 Junding Sun Kaixin Chen +4 位作者 Shuihua Wang Yudong Zhang Zhaozhao Xu Xiaosheng Wu Chaosheng Tang 《Journal of Bionic Engineering》 2025年第4期2135-2150,共16页
In the field of medical image processing,combining global and local relationship modeling constitutes an effective strategy for precise segmentation.Prior research has established the validity of Convolutional Neural ... In the field of medical image processing,combining global and local relationship modeling constitutes an effective strategy for precise segmentation.Prior research has established the validity of Convolutional Neural Networks(CNN)in modeling local relationships.Conversely,Transformers have demonstrated their capability to effectively capture global contextual information.However,when utilized to address CNNs’limitations in modeling global relationships,Transformers are hindered by substantial computational complexity.To address this issue,we introduce Mamba,a State-Space Model(SSM)that exhibits exceptional proficiency in modeling long-range dependencies in sequential data.Given Mamba’s demonstrated potential in 2D medical image segmentation in previous studies,we have designed a Dual-encoder Global-local Feature Extraction Network based on Mamba,termed DGFE-Mamba,to accurately capture and fuse long-range dependencies and local dependencies within multi-scale features.Compared to Transformer-based methods,the DGFE-Mamba model excels in comprehensive feature modeling and demonstrates significantly improved segmentation accuracy.To validate the effectiveness and practicality of DGFE-Mamba,we conducted tests on the Automatic Cardiac Diagnosis Challenge(ACDC)dataset,the Synapse multi-organ CT abdominal segmentation dataset,and the Colorectal Cancer Clinic(CVC-ClinicDB)dataset.The results showed that DGFE-Mamba achieved Dice coefficients of 92.20,83.67,and 94.13,respectively.These findings comprehensively validate the effectiveness and practicality of the proposed DGFE-Mamba architecture. 展开更多
关键词 Medical image segmentation Mamba CNN Attention Mechanism
在线阅读 下载PDF
A quantitative evaluation method of laser treatment efficacy for pigmentary dermatosis based on image segmentation technology
8
作者 Haopu Jian Qi Chen +3 位作者 Youjun Yu Cheng Wang Peiru Wang Xiuli Wang 《Journal of Innovative Optical Health Sciences》 2025年第4期89-99,共11页
A growing number of skin laser treatments have rapidly evolved and increased their role in the field of dermatology,laser treatment is considered to be used for a variety of pigmentary dermatosis as well as aesthetic ... A growing number of skin laser treatments have rapidly evolved and increased their role in the field of dermatology,laser treatment is considered to be used for a variety of pigmentary dermatosis as well as aesthetic problems.The standardized assessment of laser treatment efficacy is crucial for the interpretation and comparison of studies related to laser treatment of skin disorders.In this study,we propose an evaluation method to quantitatively assess laser treatment efficacy based on the image segmentation technology.A tattoo model of Sprague Dawley(SD)rats was established and treated by picosecond laser treatments at varying energy levels.Images of the tattoo models were captured before and after laser treatment,and feature extraction was conducted to quantify the tattooed area and pigment gradation.Subsequently,the clearance rate,which has been a standardized parameter,was calculated.The results indicate that the clearance rates obtained through this quantitative algorithm are comparable and exhibit smaller standard deviations compared with scale scores(4.59%versus 7.93%in the low-energy group,4.01%versus 9.05%in the medium-energy group,and 4.29%versus 10.23%in the high-energy group).This underscores the greater accuracy,objectivity,and reproducibility in assessing treatment responses.The quantitative evaluation of pigment removal holds promise for facilitating faster and more robust assessments in research and development.Additionally,it may enable the optimization of treatments tailored to individual patients,thereby contributing to more effective and personalized dermatological care. 展开更多
关键词 Pigmentary dermatosis picosecond laser image segmentation quantitative evaluation
原文传递
Pre-trained SAM as data augmentation for image segmentation
9
作者 Junjun Wu Yunbo Rao +1 位作者 Shaoning Zeng Bob Zhang 《CAAI Transactions on Intelligence Technology》 2025年第1期268-282,共15页
Data augmentation plays an important role in training deep neural model by expanding the size and diversity of the dataset.Initially,data augmentation mainly involved some simple transformations of images.Later,in ord... Data augmentation plays an important role in training deep neural model by expanding the size and diversity of the dataset.Initially,data augmentation mainly involved some simple transformations of images.Later,in order to increase the diversity and complexity of data,more advanced methods appeared and evolved to sophisticated generative models.However,these methods required a mass of computation of training or searching.In this paper,a novel training-free method that utilises the Pre-Trained Segment Anything Model(SAM)model as a data augmentation tool(PTSAM-DA)is proposed to generate the augmented annotations for images.Without the need for training,it obtains prompt boxes from the original annotations and then feeds the boxes to the pre-trained SAM to generate diverse and improved annotations.In this way,annotations are augmented more ingenious than simple manipulations without incurring huge computation for training a data augmentation model.Multiple comparative experiments on three datasets are conducted,including an in-house dataset,ADE20K and COCO2017.On this in-house dataset,namely Agricultural Plot Segmentation Dataset,maximum improvements of 3.77%and 8.92%are gained in two mainstream metrics,mIoU and mAcc,respectively.Consequently,large vision models like SAM are proven to be promising not only in image segmentation but also in data augmentation. 展开更多
关键词 data augmentation image segmentation large model segment anything model
在线阅读 下载PDF
Med-ReLU: A Parameter-Free Hybrid Activation Function for Deep Artificial Neural Network Used in Medical Image Segmentation
10
作者 Nawaf Waqas Muhammad Islam +3 位作者 Muhammad Yahya Shabana Habib Mohammed Aloraini Sheroz Khan 《Computers, Materials & Continua》 2025年第8期3029-3051,共23页
Deep learning(DL),derived from the domain of Artificial Neural Networks(ANN),forms one of the most essential components of modern deep learning algorithms.DL segmentation models rely on layer-by-layer convolution-base... Deep learning(DL),derived from the domain of Artificial Neural Networks(ANN),forms one of the most essential components of modern deep learning algorithms.DL segmentation models rely on layer-by-layer convolution-based feature representation,guided by forward and backward propagation.Acritical aspect of this process is the selection of an appropriate activation function(AF)to ensure robustmodel learning.However,existing activation functions often fail to effectively address the vanishing gradient problem or are complicated by the need for manual parameter tuning.Most current research on activation function design focuses on classification tasks using natural image datasets such asMNIST,CIFAR-10,and CIFAR-100.To address this gap,this study proposesMed-ReLU,a novel activation function specifically designed for medical image segmentation.Med-ReLU prevents deep learning models fromsuffering dead neurons or vanishing gradient issues.It is a hybrid activation function that combines the properties of ReLU and Softsign.For positive inputs,Med-ReLU adopts the linear behavior of ReLU to avoid vanishing gradients,while for negative inputs,it exhibits the Softsign’s polynomial convergence,ensuring robust training and avoiding inactive neurons across the training set.The training performance and segmentation accuracy ofMed-ReLU have been thoroughly evaluated,demonstrating stable learning behavior and resistance to overfitting.It consistently outperforms state-of-the-art activation functions inmedical image segmentation tasks.Designed as a parameter-free function,Med-ReLU is simple to implement in complex deep learning architectures,and its effectiveness spans various neural network models and anomaly detection scenarios. 展开更多
关键词 Medical image segmentation U-Net deep learning models activation function
暂未订购
Semi-supervised cardiac magnetic resonance image segmentation based on domain generalization
11
作者 SHAO Hong HOU Jinyang CUI Wencheng 《High Technology Letters》 2025年第1期41-52,共12页
In the realm of medical image segmentation,particularly in cardiac magnetic resonance imaging(MRI),achieving robust performance with limited annotated data is a significant challenge.Performance often degrades when fa... In the realm of medical image segmentation,particularly in cardiac magnetic resonance imaging(MRI),achieving robust performance with limited annotated data is a significant challenge.Performance often degrades when faced with testing scenarios from unknown domains.To address this problem,this paper proposes a novel semi-supervised approach for cardiac magnetic resonance image segmentation,aiming to enhance predictive capabilities and domain generalization(DG).This paper establishes an MT-like model utilizing pseudo-labeling and consistency regularization from semi-supervised learning,and integrates uncertainty estimation to improve the accuracy of pseudo-labels.Additionally,to tackle the challenge of domain generalization,a data manipulation strategy is introduced,extracting spatial and content-related information from images across different domains,enriching the dataset with a multi-domain perspective.This papers method is meticulously evaluated on the publicly available cardiac magnetic resonance imaging dataset M&Ms,validating its effectiveness.Comparative analyses against various methods highlight the out-standing performance of this papers approach,demonstrating its capability to segment cardiac magnetic resonance images in previously unseen domains even with limited annotated data. 展开更多
关键词 SEMI-SUPERVISED domain generalization(DG) cardiac magnetic resonance image segmentation
在线阅读 下载PDF
A Novel Data-Annotated Label Collection and Deep-Learning Based Medical Image Segmentation in Reversible Data Hiding Domain
12
作者 Lord Amoah Jinwei Wang Bernard-Marie Onzo 《Computer Modeling in Engineering & Sciences》 2025年第5期1635-1660,共26页
Medical image segmentation,i.e.,labeling structures of interest in medical images,is crucial for disease diagnosis and treatment in radiology.In reversible data hiding in medical images(RDHMI),segmentation consists of... Medical image segmentation,i.e.,labeling structures of interest in medical images,is crucial for disease diagnosis and treatment in radiology.In reversible data hiding in medical images(RDHMI),segmentation consists of only two regions:the focal and nonfocal regions.The focal region mainly contains information for diagnosis,while the nonfocal region serves as the monochrome background.The current traditional segmentation methods utilized in RDHMI are inaccurate for complex medical images,and manual segmentation is time-consuming,poorly reproducible,and operator-dependent.Implementing state-of-the-art deep learning(DL)models will facilitate key benefits,but the lack of domain-specific labels for existing medical datasets makes it impossible.To address this problem,this study provides labels of existing medical datasets based on a hybrid segmentation approach to facilitate the implementation of DL segmentation models in this domain.First,an initial segmentation based on a 33 kernel is performed to analyze×identified contour pixels before classifying pixels into focal and nonfocal regions.Then,several human expert raters evaluate and classify the generated labels into accurate and inaccurate labels.The inaccurate labels undergo manual segmentation by medical practitioners and are scored based on a hierarchical voting scheme before being assigned to the proposed dataset.To ensure reliability and integrity in the proposed dataset,we evaluate the accurate automated labels with manually segmented labels by medical practitioners using five assessment metrics:dice coefficient,Jaccard index,precision,recall,and accuracy.The experimental results show labels in the proposed dataset are consistent with the subjective judgment of human experts,with an average accuracy score of 94%and dice coefficient scores between 90%-99%.The study further proposes a ResNet-UNet with concatenated spatial and channel squeeze and excitation(scSE)architecture for semantic segmentation to validate and illustrate the usefulness of the proposed dataset.The results demonstrate the superior performance of the proposed architecture in accurately separating the focal and nonfocal regions compared to state-of-the-art architectures.Dataset information is released under the following URL:https://www.kaggle.com/lordamoah/datasets(accessed on 31 March 2025). 展开更多
关键词 Reversible data hiding medical image segmentation medical image dataset deep learning
在线阅读 下载PDF
3D medical image segmentation using the serial-parallel convolutional neural network and transformer based on crosswindow self-attention
13
作者 Bin Yu Quan Zhou +3 位作者 Li Yuan Huageng Liang Pavel Shcherbakov Xuming Zhang 《CAAI Transactions on Intelligence Technology》 2025年第2期337-348,共12页
Convolutional neural network(CNN)with the encoder-decoder structure is popular in medical image segmentation due to its excellent local feature extraction ability but it faces limitations in capturing the global featu... Convolutional neural network(CNN)with the encoder-decoder structure is popular in medical image segmentation due to its excellent local feature extraction ability but it faces limitations in capturing the global feature.The transformer can extract the global information well but adapting it to small medical datasets is challenging and its computational complexity can be heavy.In this work,a serial and parallel network is proposed for the accurate 3D medical image segmentation by combining CNN and transformer and promoting feature interactions across various semantic levels.The core components of the proposed method include the cross window self-attention based transformer(CWST)and multi-scale local enhanced(MLE)modules.The CWST module enhances the global context understanding by partitioning 3D images into non-overlapping windows and calculating sparse global attention between windows.The MLE module selectively fuses features by computing the voxel attention between different branch features,and uses convolution to strengthen the dense local information.The experiments on the prostate,atrium,and pancreas MR/CT image datasets consistently demonstrate the advantage of the proposed method over six popular segmentation models in both qualitative evaluation and quantitative indexes such as dice similarity coefficient,Intersection over Union,95%Hausdorff distance and average symmetric surface distance. 展开更多
关键词 convolution neural network cross window self‐attention medical image segmentation transformer
在线阅读 下载PDF
Multi-Consistency Training for Semi-Supervised Medical Image Segmentation
14
作者 WU Changxue ZHANG Wenxi +1 位作者 HAN Jiaozhi WANG Hongyu 《Journal of Shanghai Jiaotong university(Science)》 2025年第4期800-814,共15页
Medical image segmentation is a crucial task in clinical applications.However,obtaining labeled data for medical images is often challenging.This has led to the appeal of semi-supervised learning(SSL),a technique adep... Medical image segmentation is a crucial task in clinical applications.However,obtaining labeled data for medical images is often challenging.This has led to the appeal of semi-supervised learning(SSL),a technique adept at leveraging a modest amount of labeled data.Nonetheless,most prevailing SSL segmentation methods for medical images either rely on the single consistency training method or directly fine-tune SSL methods designed for natural images.In this paper,we propose an innovative semi-supervised method called multi-consistency training(MCT)for medical image segmentation.Our approach transcends the constraints of prior methodologies by considering consistency from a dual perspective:output consistency across different up-sampling methods and output consistency of the same data within the same network under various perturbations to the intermediate features.We design distinct semi-supervised loss regression methods for these two types of consistencies.To enhance the application of our MCT model,we also develop a dedicated decoder as the core of our neural network.Thorough experiments were conducted on the polyp dataset and the dental dataset,rigorously compared against other SSL methods.Experimental results demonstrate the superiority of our approach,achieving higher segmentation accuracy.Moreover,comprehensive ablation studies and insightful discussion substantiate the efficacy of our approach in navigating the intricacies of medical image segmentation. 展开更多
关键词 semi-supervised learning(SSL) multi-consistency training(MCT) medical image segmentation intermediate feature perturbation
原文传递
V-UNet:Medical Image Segmentation Based on Variational Attention Mechanism
15
作者 Yang Zhang Qiang Yang +4 位作者 Tian Li Fanghong Zhang Yu Ren Yinhao Li Chuanyun Xu 《CAAI Transactions on Intelligence Technology》 2025年第5期1350-1362,共13页
Accurate medical image segmentation plays a crucial role in improving the precision of computer-aided diagnosis.However,complex boundary shapes,low contrast and blurred anatomical structures make fine-grained segmenta... Accurate medical image segmentation plays a crucial role in improving the precision of computer-aided diagnosis.However,complex boundary shapes,low contrast and blurred anatomical structures make fine-grained segmentation a challenging task.Variational Bayesian inference quantifies uncertainty through probability distributions and can construct robust probabilistic models for the boundaries of ambiguous organs and tissues.In this paper,we apply variational Bayesian inference to medical image segmentation and propose variational attention to model the uncertainty of low-contrast and blurry tissue and organ boundaries.This enhances the model's ability to perceive segmentation boundaries,improving robustness and segmentation accuracy.Variational attention first estimates the parameters of the probability distribution of latent representations based on input features.Then,it samples latent representations from the learnt distribution to generate attention weights that optimise the interaction between global features and ambiguous boundaries.We integrate variational attention into the U-Net model by replacing its skip connections,constructing a multi-scale variational attention segmentation model(V-UNet).Experiments on the ISBI 2012 and MoNuSeg 2018 datasets show that our method achieves Dice scores of 95.89%and 82.18%,respectively.Moreover,we integrate V-UNet into the Mask R-CNN framework by replacing the FPN feature extraction head and propose a two-stage segmentation method.Compared to the original Mask R-CNN,our method improves the Dice score by 0.81%,mAP by 8.06%and F1 score by 0.51%. 展开更多
关键词 image segmentation medical image processing variational techniques
在线阅读 下载PDF
A New Adaptive Image Segmentation Method 被引量:2
16
作者 沈庭芝 方子文 +1 位作者 吴玲艳 王飞 《Journal of Beijing Institute of Technology》 EI CAS 1998年第3期316-321,共6页
Aim Researching the optimal thieshold of image segmentation. M^ethods An adaptiveimages segmentation method based on the entropy of histogram of gray-level picture and genetic. algorithm (GA) was presental. Results ... Aim Researching the optimal thieshold of image segmentation. M^ethods An adaptiveimages segmentation method based on the entropy of histogram of gray-level picture and genetic. algorithm (GA) was presental. Results In our approach, the segmentation problem was formulated as an optimization problem and the fitness of GA which can efficiently search the segmentation parameter space was regarded as the quality criterion. Conclusion The methodcan be adapted for optimal behold segmentation. 展开更多
关键词 genetic algorithm image segmentation entropy of histogram segmenting threshold
在线阅读 下载PDF
EFFECTIVE IMAGE SEGMENTATION FRAMEWORK FOR GAUSSIAN MIXTURE MODEL INCORPORATING LOCAL INFORMATION 被引量:3
17
作者 蔡维玲 丁军娣 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第4期266-274,共9页
A new two-step framework is proposed for image segmentation. In the first step, the gray-value distribution of the given image is reshaped to have larger inter-class variance and less intra-class variance. In the sec-... A new two-step framework is proposed for image segmentation. In the first step, the gray-value distribution of the given image is reshaped to have larger inter-class variance and less intra-class variance. In the sec- ond step, the discriminant-based methods or clustering-based methods are performed on the reformed distribution. It is focused on the typical clustering methods-Gaussian mixture model (GMM) and its variant to demonstrate the feasibility of the framework. Due to the independence of the first step in its second step, it can be integrated into the pixel-based and the histogram-based methods to improve their segmentation quality. The experiments on artificial and real images show that the framework can achieve effective and robust segmentation results. 展开更多
关键词 pattern recognition image processing image segmentation Gaussian mixture model (GMM) expectation maximization (EM)
在线阅读 下载PDF
EFFECTIVE FEATURE ANALYSIS FOR COLOR IMAGE SEGMENTATION 被引量:2
18
作者 黎宁 毛四新 李有福 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第2期206-212,共7页
An approach for color image segmentation is proposed based on the contributions of color features to segmentation rather than the choice of a particular color space. The determination of effective color features depen... An approach for color image segmentation is proposed based on the contributions of color features to segmentation rather than the choice of a particular color space. The determination of effective color features depends on the analysis of various color features from each tested color image via the designed feature encoding. It is different from the pervious methods where self organized feature map (SOFM) is used for constructing the feature encoding so that the feature encoding can self organize the effective features for different color images. Fuzzy clustering is applied for the final segmentation when the well suited color features and the initial parameter are available. The proposed method has been applied in segmenting different types of color images and the experimental results show that it outperforms the classical clustering method. The study shows that the feature encoding approach offers great promise in automating and optimizing the segmentation of color images. 展开更多
关键词 image segmentation color image neural networks fuzzy clustering feature encoding
在线阅读 下载PDF
Residual-driven Fuzzy C-Means Clustering for Image Segmentation 被引量:12
19
作者 Cong Wang Witold Pedrycz +1 位作者 ZhiWu Li MengChu Zhou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第4期876-889,共14页
In this paper,we elaborate on residual-driven Fuzzy C-Means(FCM)for image segmentation,which is the first approach that realizes accurate residual(noise/outliers)estimation and enables noise-free image to participate ... In this paper,we elaborate on residual-driven Fuzzy C-Means(FCM)for image segmentation,which is the first approach that realizes accurate residual(noise/outliers)estimation and enables noise-free image to participate in clustering.We propose a residual-driven FCM framework by integrating into FCM a residual-related regularization term derived from the distribution characteristic of different types of noise.Built on this framework,a weighted?2-norm regularization term is presented by weighting mixed noise distribution,thus resulting in a universal residual-driven FCM algorithm in presence of mixed or unknown noise.Besides,with the constraint of spatial information,the residual estimation becomes more reliable than that only considering an observed image itself.Supporting experiments on synthetic,medical,and real-world images are conducted.The results demonstrate the superior effectiveness and efficiency of the proposed algorithm over its peers. 展开更多
关键词 Fuzzy C-Means image segmentation mixed or unknown noise residual-driven weighted regularization
在线阅读 下载PDF
An enhanced artificial bee colony optimizer and its application to multi-level threshold image segmentation 被引量:13
20
作者 GAO Yang LI Xu +1 位作者 DONG Ming LI He-peng 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期107-120,共14页
A modified artificial bee colony optimizer(MABC)is proposed for image segmentation by using a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff.The main idea of MABC is to enrich... A modified artificial bee colony optimizer(MABC)is proposed for image segmentation by using a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff.The main idea of MABC is to enrichartificial bee foraging behaviors by combining local search and comprehensive learning using multi-dimensional PSO-based equation.With comprehensive learning,the bees incorporate the information of global best solution into the solution search equation to improve the exploration while the local search enables the bees deeply exploit around the promising area,which provides a proper balance between exploration and exploitation.The experimental results on comparing the MABC to several successful EA and SI algorithms on a set of benchmarks demonstrated the effectiveness of the proposed algorithm.Furthermore,we applied the MABC algorithm to image segmentation problem.Experimental results verify the effectiveness of the proposed algorithm. 展开更多
关键词 artificial bee colony local search swarm intelligence image segmentation
在线阅读 下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部