Achieving a good recognition rate for degraded document images is difficult as degraded document images suffer from low contrast,bleedthrough,and nonuniform illumination effects.Unlike the existing baseline thresholdi...Achieving a good recognition rate for degraded document images is difficult as degraded document images suffer from low contrast,bleedthrough,and nonuniform illumination effects.Unlike the existing baseline thresholding techniques that use fixed thresholds and windows,the proposed method introduces a concept for obtaining dynamic windows according to the image content to achieve better binarization.To enhance a low-contrast image,we proposed a new mean histogram stretching method for suppressing noisy pixels in the background and,simultaneously,increasing pixel contrast at edges or near edges,which results in an enhanced image.For the enhanced image,we propose a new method for deriving adaptive local thresholds for dynamic windows.The dynamic window is derived by exploiting the advantage of Otsu thresholding.To assess the performance of the proposed method,we have used standard databases,namely,document image binarization contest(DIBCO),for experimentation.The comparative study on well-known existing methods indicates that the proposed method outperforms the existing methods in terms of quality and recognition rate.展开更多
Robust, accurate, and fast monitoring of residual plastic film (RPF) pollution in farmlands has great significance. Based on CBAM-DBNet, this study proposed a threshold-adaptive joint framework for identifying the RPF...Robust, accurate, and fast monitoring of residual plastic film (RPF) pollution in farmlands has great significance. Based on CBAM-DBNet, this study proposed a threshold-adaptive joint framework for identifying the RPF on farmland surfaces and estimating its coverage rate. UAV imaging was used to gather images of the RPF from several locations with various soil backgrounds. RPFs were manually labeled, and the degree of RPF pollution was defined based on the RPF coverage rate. Combining differentiable binarization network (DBNet) with the convolutional block attention module (CBAM), whose feature extraction module was improved. A dynamic adaptive binarization threshold formula was defined for segmenting the RPF’s approximate binary map. Regarding the RPF image detection branch, the CBAM-DBNet exhibited a precision (P) value of 85.81%, a recall (R) value of 82.69%, and an F1-score (F1) value of 84.22%, which was 1.09 percentage points higher than the DBNet in the comprehensive index F1 value. For the RPF image segmentation branch, using CBAM-DBNet to segment the RPF image combined with an adaptive binarization threshold formula. Subsequently, the mean absolute percentage error (MAPE), root mean square error (RMSE), and mean absolute error (MAE) of the prediction of RPF’s coverage rate were 0.276, 0.366, and 0.605, respectively, outperforming the DBNet and the Iterative Threshold method. This study provides a theoretical reference for the further development of evaluation technology for RPF pollution based on UAV imaging.展开更多
This paper propose a computerized method of magnetic resonance imaging (MR/) of brain binarization for the uses of preprocessing of features extraction and brain ab- normality identification. One of the main problem...This paper propose a computerized method of magnetic resonance imaging (MR/) of brain binarization for the uses of preprocessing of features extraction and brain ab- normality identification. One of the main problems of MR/ binarization is that many pixels of brain part cannot be cor- rectly binarized due to extensive black background or large variation in contrast between background and foreground of MR/. We have proposed a binarization that uses mean, vari- ance, standard deviation and entropy to determine a thresh- old value followed by a non-gamut enhancement which can overcome the binarization problem of brain component. The proposed binarization technique is extensively tested with a variety of MR/and generates good binarization with im- proved accuracy and reduced error. A comparison is carried out among the obtained outcome with this innovative method with respect to other well-known methods.展开更多
针对低质量文档图像存在页面污渍、墨迹浸润、背景纹理等多种退化因素,提出一种融合背景估计与U型卷积神经网络(U-Net)的文档图像二值化算法。该算法首先进行图像对比度增强,然后通过形态学闭操作来估计文档图像背景,并利用全卷积网络,...针对低质量文档图像存在页面污渍、墨迹浸润、背景纹理等多种退化因素,提出一种融合背景估计与U型卷积神经网络(U-Net)的文档图像二值化算法。该算法首先进行图像对比度增强,然后通过形态学闭操作来估计文档图像背景,并利用全卷积网络,即U-Net对背景减除图像进行前景背景分割,最后采用全局最优阈值处理方法获得最终二值图像。实验结果表明,在2016和2017年国际文档图像二值化竞赛(DIBCO)中该算法的F值(F-measure,FM)、伪F值(pseudo F-measure,p-FM)、峰值信噪比(peak signal to noise ratio,PSNR)、距离倒数失真度量(distance reciprocal distortion,DRD)比性能次优的经典算法最高有5.58%、2.47%、0.86 dB、1.19%的性能提升。展开更多
基金funded by the Ministry of Higher Education,Malaysia for providing facilities and financial support under the Long Research Grant Scheme LRGS-1-2019-UKM-UKM-2-7.
文摘Achieving a good recognition rate for degraded document images is difficult as degraded document images suffer from low contrast,bleedthrough,and nonuniform illumination effects.Unlike the existing baseline thresholding techniques that use fixed thresholds and windows,the proposed method introduces a concept for obtaining dynamic windows according to the image content to achieve better binarization.To enhance a low-contrast image,we proposed a new mean histogram stretching method for suppressing noisy pixels in the background and,simultaneously,increasing pixel contrast at edges or near edges,which results in an enhanced image.For the enhanced image,we propose a new method for deriving adaptive local thresholds for dynamic windows.The dynamic window is derived by exploiting the advantage of Otsu thresholding.To assess the performance of the proposed method,we have used standard databases,namely,document image binarization contest(DIBCO),for experimentation.The comparative study on well-known existing methods indicates that the proposed method outperforms the existing methods in terms of quality and recognition rate.
基金supported by the National Natural Science Foundation of China(Grant No.32060288)the National Natural Science Foundation of China(Grant No.32160300)+1 种基金the Bingtuan Science and Technology Program(Grant No.2019AB007)the Science and Technology Planning Project of the first division of Alaer city(Grant No.2022XX06).
文摘Robust, accurate, and fast monitoring of residual plastic film (RPF) pollution in farmlands has great significance. Based on CBAM-DBNet, this study proposed a threshold-adaptive joint framework for identifying the RPF on farmland surfaces and estimating its coverage rate. UAV imaging was used to gather images of the RPF from several locations with various soil backgrounds. RPFs were manually labeled, and the degree of RPF pollution was defined based on the RPF coverage rate. Combining differentiable binarization network (DBNet) with the convolutional block attention module (CBAM), whose feature extraction module was improved. A dynamic adaptive binarization threshold formula was defined for segmenting the RPF’s approximate binary map. Regarding the RPF image detection branch, the CBAM-DBNet exhibited a precision (P) value of 85.81%, a recall (R) value of 82.69%, and an F1-score (F1) value of 84.22%, which was 1.09 percentage points higher than the DBNet in the comprehensive index F1 value. For the RPF image segmentation branch, using CBAM-DBNet to segment the RPF image combined with an adaptive binarization threshold formula. Subsequently, the mean absolute percentage error (MAPE), root mean square error (RMSE), and mean absolute error (MAE) of the prediction of RPF’s coverage rate were 0.276, 0.366, and 0.605, respectively, outperforming the DBNet and the Iterative Threshold method. This study provides a theoretical reference for the further development of evaluation technology for RPF pollution based on UAV imaging.
文摘This paper propose a computerized method of magnetic resonance imaging (MR/) of brain binarization for the uses of preprocessing of features extraction and brain ab- normality identification. One of the main problems of MR/ binarization is that many pixels of brain part cannot be cor- rectly binarized due to extensive black background or large variation in contrast between background and foreground of MR/. We have proposed a binarization that uses mean, vari- ance, standard deviation and entropy to determine a thresh- old value followed by a non-gamut enhancement which can overcome the binarization problem of brain component. The proposed binarization technique is extensively tested with a variety of MR/and generates good binarization with im- proved accuracy and reduced error. A comparison is carried out among the obtained outcome with this innovative method with respect to other well-known methods.
文摘针对低质量文档图像存在页面污渍、墨迹浸润、背景纹理等多种退化因素,提出一种融合背景估计与U型卷积神经网络(U-Net)的文档图像二值化算法。该算法首先进行图像对比度增强,然后通过形态学闭操作来估计文档图像背景,并利用全卷积网络,即U-Net对背景减除图像进行前景背景分割,最后采用全局最优阈值处理方法获得最终二值图像。实验结果表明,在2016和2017年国际文档图像二值化竞赛(DIBCO)中该算法的F值(F-measure,FM)、伪F值(pseudo F-measure,p-FM)、峰值信噪比(peak signal to noise ratio,PSNR)、距离倒数失真度量(distance reciprocal distortion,DRD)比性能次优的经典算法最高有5.58%、2.47%、0.86 dB、1.19%的性能提升。