In today’s digital era,the rapid evolution of image editing technologies has brought about a significant simplification of image manipulation.Unfortunately,this progress has also given rise to the misuse of manipulat...In today’s digital era,the rapid evolution of image editing technologies has brought about a significant simplification of image manipulation.Unfortunately,this progress has also given rise to the misuse of manipulated images across various domains.One of the pressing challenges stemming from this advancement is the increasing difficulty in discerning between unaltered and manipulated images.This paper offers a comprehensive survey of existing methodologies for detecting image tampering,shedding light on the diverse approaches employed in the field of contemporary image forensics.The methods used to identify image forgery can be broadly classified into two primary categories:classical machine learning techniques,heavily reliant on manually crafted features,and deep learning methods.Additionally,this paper explores recent developments in image forensics,placing particular emphasis on the detection of counterfeit colorization.Image colorization involves predicting colors for grayscale images,thereby enhancing their visual appeal.The advancements in colorization techniques have reached a level where distinguishing between authentic and forged images with the naked eye has become an exceptionally challenging task.This paper serves as an in-depth exploration of the intricacies of image forensics in the modern age,with a specific focus on the detection of colorization forgery,presenting a comprehensive overview of methodologies in this critical field.展开更多
Colorization of gray-scale images has attracted many attentions for a long time. An important role of image color is the conveyer of emotions (through color themes). The colorization with an undesired color theme is...Colorization of gray-scale images has attracted many attentions for a long time. An important role of image color is the conveyer of emotions (through color themes). The colorization with an undesired color theme is less useful, even it is semantically correct. However this has been rarely considered. Automatic colorization respecting both the semantics and the emotions is undoubtedly a challenge. In this paper~ we propose a complete system for affective image colorization. We only need the user to assist object segmentation along with text labels and an affective word. First, the text labels along with other object characters are jointly used to filter the internet images to give each object a set of semantically correct reference images. Second, we select a set of color themes according to the affective word based on art theories. With these themes, a generic algorithm is used to select the best reference for each object, balancing various requirements. Finally, we propose a hybrid texture synthesis approach for colorization. To the best of our knowledge, it is the first system which is able to efficiently colorize a gray-scale image semantically by an emotionally controllable fashion. Our experiments show the effectiveness of our system, especially the benefit compared with the previous Markov random field (MRF) based method.展开更多
In order to effectively restore color noisy images with the mixture of Gaussian noise and impulse noise,a new algorithm is proposed using the quaternion-based holistic processing idea for color images.First,a color im...In order to effectively restore color noisy images with the mixture of Gaussian noise and impulse noise,a new algorithm is proposed using the quaternion-based holistic processing idea for color images.First,a color image is represented by a pure quaternion matrix.Secondly,according to the different characteristics of the Gaussian noise and the impulse noise,an algorithm based on quaternion directional vector order statistics is used to detect the impulse noise. Finally,the quaternion optimal weights non-local means filter (QOWNLMF)for Gaussian noise removal is improved for the mixed noise removal.The detected impulse noise pixels are not considered in the calculation of weights.Experimental results on five standard images demonstrate that the proposed algorithm performs better than the commonly used robust outlyingness ratio-nonlocal means (ROR-NLM)algorithm and the optimal weights mixed filter (OWMF).展开更多
An approach for color image segmentation is proposed based on the contributions of color features to segmentation rather than the choice of a particular color space. The determination of effective color features depen...An approach for color image segmentation is proposed based on the contributions of color features to segmentation rather than the choice of a particular color space. The determination of effective color features depends on the analysis of various color features from each tested color image via the designed feature encoding. It is different from the pervious methods where self organized feature map (SOFM) is used for constructing the feature encoding so that the feature encoding can self organize the effective features for different color images. Fuzzy clustering is applied for the final segmentation when the well suited color features and the initial parameter are available. The proposed method has been applied in segmenting different types of color images and the experimental results show that it outperforms the classical clustering method. The study shows that the feature encoding approach offers great promise in automating and optimizing the segmentation of color images.展开更多
Abstract:Stephen Crane was an outstanding American novelist,poet,and journalist.He achieved great success in his literary works during his brief career.Crane’s most well-known work,The Red Badge of Courage,is commonl...Abstract:Stephen Crane was an outstanding American novelist,poet,and journalist.He achieved great success in his literary works during his brief career.Crane’s most well-known work,The Red Badge of Courage,is commonly believed to be the first great novel of the American Civil War,largely because of its vivid and detailed description of the experience of warfare.This paper analyzes the images of color,animal and machine,which convey Crane’s thoughts of war:war is full of chaos,brutality,and confusion,without any romantic elements or heroism.展开更多
A method to estimate the thickness of the sea ice of the Bohai Sea is proposed using geostationary ocean color imager (GOCI) data and then applied to the dynamic monitoring of the sea ice thickness in the Bohal Sea ...A method to estimate the thickness of the sea ice of the Bohai Sea is proposed using geostationary ocean color imager (GOCI) data and then applied to the dynamic monitoring of the sea ice thickness in the Bohal Sea during the winter of 2014 to 2015. First of all, a model is given between the GOCI shortwave broadband albedo and the reflectance of each band with high temporal resolution GOCI data. Then, the relationship model between the sea ice thickness and the GOCI shortwave broadband albedo is established and applied to the thickness extraction of the sea ice in the Bohai Sea. Finally, the sea ice thickness extraction method is tested by the results based on the MODIS data, thermodynamic empirical models (Lebedev and Zubov), and the in situ ice thickness data. The test results not only indicated that the sea ice thickness retrieval method based on the GOCI data was a good correlation (r2〉0.66) with the sea ice thickness retrieved by the MODIS and thermodynamic empirical models, but also that the RMS is only 6.82 cm different from the thickness of the sea ice based on the GOCI and in situ data.展开更多
Recently, many image encryption algorithms based on chaos have been proposed. Most of the previous algorithms encrypt components R, G, and B of color images independently and neglect the high correlation between them....Recently, many image encryption algorithms based on chaos have been proposed. Most of the previous algorithms encrypt components R, G, and B of color images independently and neglect the high correlation between them. In the paper, a novel color image encryption algorithm is introduced. The 24 bit planes of components R, G, and B of the color plain image are obtained and recombined into 4 compound bit planes, and this can make the three components affect each other. A four-dimensional(4D) memristive hyperchaotic system generates the pseudorandom key streams and its initial values come from the SHA 256 hash value of the color plain image. The compound bit planes and key streams are confused according to the principles of genetic recombination, then confusion and diffusion as a union are applied to the bit planes,and the color cipher image is obtained. Experimental results and security analyses demonstrate that the proposed algorithm is secure and effective so that it may be adopted for secure communication.展开更多
True color image city map is a sort of new-style map which combines the high resolution image and map symbols and shows both advantages in visualization. At the same time, the map unification and harmonization should ...True color image city map is a sort of new-style map which combines the high resolution image and map symbols and shows both advantages in visualization. At the same time, the map unification and harmonization should be taken into account dur-ing the design process, since some visual conflicts appear when map symbols overlaid on the true color image. The objective of this research is to explore the rules in the process of true color image city map design based on chromatic and aesthetic knowledge. At the end, taking the Image Atlas of Guangzhou as an example, image color adjustment, road network presentation, and symbol de-signing issues will be discussed in the application.展开更多
To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can ...To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can preserve the discontinuity characteristics of an image are segmented by MS algorithm,and then they are represented by a graph in which every region is represented by a node.In order to solve the graph partition problem,an improved ant clustering algorithm,called similarity carrying ant model(SCAM-ant),is proposed,in which a new similarity calculation method is given.Using SCAM-ant,the maximum number of items that each ant can carry will increase,the clustering time will be effectively reduced,and globally optimized clustering can also be realized.Because the graph is not based on the pixels of original image but on the segmentation result of MS algorithm,the computational complexity is greatly reduced.Experiments show that the proposed method can realize color image segmentation efficiently,and compared with the conventional methods based on the image pixels,it improves the image segmentation quality and the anti-interference ability.展开更多
In this paper, Adomian decomposition method (ADM) with high accuracy and fast convergence is introduced to solve the fractional-order piecewise-linear (PWL) hyperchaotic system. Based on the obtained hyperchaotic ...In this paper, Adomian decomposition method (ADM) with high accuracy and fast convergence is introduced to solve the fractional-order piecewise-linear (PWL) hyperchaotic system. Based on the obtained hyperchaotic sequences, a novel color image encryption algorithm is proposed by employing a hybrid model of bidirectional circular permutation and DNA masking. In this scheme, the pixel positions of image are scrambled by circular permutation, and the pixel values are substituted by DNA sequence operations. In the DNA sequence operations, addition and substraction operations are performed according to traditional addition and subtraction in the binary, and two rounds of addition rules are used to encrypt the pixel values. The simulation results and security analysis show that the hyperchaotic map is suitable for image encryption, and the proposed encryption algorithm has good encryption effect and strong key sensitivity. It can resist brute-force attack, statistical attack, differential attack, known-plaintext, and chosen-plaintext attacks.展开更多
A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected...A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected as the features. The four features are combined together as a parameter to detect the edges of color images. Experimental results show that the method can inhibit noisy edges and facilitate the detection for weak edges. It has a better performance than conventional methods in noisy environments.展开更多
This paper proposes a hybrid technique for color image segmentation. First an input image is converted to the image of CIE L*a*b* color space. The color features "a" and "b" of CIE L^*a^*b^* are then fed int...This paper proposes a hybrid technique for color image segmentation. First an input image is converted to the image of CIE L*a*b* color space. The color features "a" and "b" of CIE L^*a^*b^* are then fed into fuzzy C-means (FCM) clustering which is an unsupervised method. The labels obtained from the clustering method FCM are used as a target of the supervised feed forward neural network. The network is trained by the Levenberg-Marquardt back-propagation algorithm, and evaluates its performance using mean square error and regression analysis. The main issues of clustering methods are determining the number of clusters and cluster validity measures. This paper presents a method namely co-occurrence matrix based algorithm for finding the number of clusters and silhouette index values that are used for cluster validation. The proposed method is tested on various color images obtained from the Berkeley database. The segmentation results from the proposed method are validated and the classification accuracy is evaluated by the parameters sensitivity, specificity, and accuracy.展开更多
Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are genera...Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are generally used to get SIFT descriptors in order to reduce the complexity. The regions which have a similar grayscale level but different hues tend to produce wrong matching results in this case. Therefore, the loss of color information may result in decreasing of matching ratio. An image matching algorithm based on SIFT is proposed, which adds a color offset and an exposure offset when converting color images to grayscale images in order to enhance the matching ratio. Experimental results show that the proposed algorithm can effectively differentiate the regions with different colors but the similar grayscale level, and increase the matching ratio of image matching based on SIFT. Furthermore, it does not introduce much complexity than the traditional SIFT.展开更多
A support vector regression(SVR) based color image restoration algorithm is proposed.The test color images are firstly mapped into the YUV color space,and then SVR is applied to build up a theoretical model between th...A support vector regression(SVR) based color image restoration algorithm is proposed.The test color images are firstly mapped into the YUV color space,and then SVR is applied to build up a theoretical model between the degraded images and the original one.Performance comparisons of the proposed algorithm versus traditional filtering algorithms are given.Experimental results show that the proposed algorithm has better performance than traditional filtering algorithms and has less computation time than iterative blind deconvolution algorithm.展开更多
We devise a color image encryption scheme via combining hyperchaotic map,cross-plane operation and gene theory.First,the hyperchaotic map used in the encryption scheme is analyzed and studied.On the basis of the dynam...We devise a color image encryption scheme via combining hyperchaotic map,cross-plane operation and gene theory.First,the hyperchaotic map used in the encryption scheme is analyzed and studied.On the basis of the dynamics of hyperchaotic map,a color image encryption scheme is designed.At the end of the encryption process,a DNA mutation operation is used to increase the encoding images’randomness and to improve the encryption algorithm’s security.Finally,simulation experiments,performance analysis,and attack tests are performed to prove the effectiveness and security of the designed algorithm.This work provides the possibility of applying chaos theory and gene theory in image encryption.展开更多
It is well-known that classical quality measures,such as Mean Squared Error(MSE),Weighted Mean Squared Error(WMSE)or Peak Signal-to-Noise Ratio(PSNR),are not always corresponding with visual observations.Structural si...It is well-known that classical quality measures,such as Mean Squared Error(MSE),Weighted Mean Squared Error(WMSE)or Peak Signal-to-Noise Ratio(PSNR),are not always corresponding with visual observations.Structural similarity based image quality assessment was proposed under the assumption that the Human Visual System(HVS)is highly adapted for extracting structural information from an image.While the demand on high color quality increases in the media industry,color loss will make the visual quality different.In this paper,we proposed an improved quality assessment(QA)method by adding color comparison into the structural similarity(SSIM)measurement system for evaluating color image quality.Then we divided the task of similarity measurement into four comparisons:luminance,contrast,structure,and color.Experimental results show that the predicted quality scores of the proposed method are more effective and consistent with visual quality than the classical methods using five different distortion types of color image sets.展开更多
In the paper,a convolutional neural network based on quaternion transformation is proposed to detect median filtering for color images.Compared with conventional convolutional neural network,color images can be proces...In the paper,a convolutional neural network based on quaternion transformation is proposed to detect median filtering for color images.Compared with conventional convolutional neural network,color images can be processed in a holistic manner in the proposed scheme,which makes full use of the correlation between RGB channels.And due to the use of convolutional neural network,it can effectively avoid the one-sidedness of artificial features.Experimental results have shown the scheme’s improvement over the state-of-the-art scheme on the accuracy of color image median filtering detection.展开更多
The security of digital images transmitted via the Internet or other public media is of the utmost importance.Image encryption is a method of keeping an image secure while it travels across a non-secure communication ...The security of digital images transmitted via the Internet or other public media is of the utmost importance.Image encryption is a method of keeping an image secure while it travels across a non-secure communication medium where it could be intercepted by unauthorized entities.This study provides an approach to color image encryption that could find practical use in various contexts.The proposed method,which combines four chaotic systems,employs singular value decomposition and a chaotic sequence,making it both secure and compression-friendly.The unified average change intensity,the number of pixels’change rate,information entropy analysis,correlation coefficient analysis,compression friendliness,and security against brute force,statistical analysis and differential attacks are all used to evaluate the algorithm’s performance.Following a thorough investigation of the experimental data,it is concluded that the proposed image encryption approach is secure against a wide range of attacks and provides superior compression friendliness when compared to chaos-based alternatives.展开更多
The rapid development of biomedical imaging modalities led to its wide application in disease diagnosis.Tongue-based diagnostic procedures are proficient and non-invasive in nature to carry out secondary diagnostic pr...The rapid development of biomedical imaging modalities led to its wide application in disease diagnosis.Tongue-based diagnostic procedures are proficient and non-invasive in nature to carry out secondary diagnostic processes ubiquitously.Traditionally,physicians examine the characteristics of tongue prior to decision-making.In this scenario,to get rid of qualitative aspects,tongue images can be quantitatively inspected for which a new disease diagnosis model is proposed.This model can reduce the physical harm made to the patients.Several tongue image analytical methodologies have been proposed earlier.However,there is a need exists to design an intelligent Deep Learning(DL)based disease diagnosis model.With this motivation,the current research article designs an Intelligent DL-basedDisease Diagnosis method using Biomedical Tongue Images called IDLDD-BTI model.The proposed IDLDD-BTI model incorporates Fuzzy-based Adaptive Median Filtering(FADM)technique for noise removal process.Besides,SqueezeNet model is employed as a feature extractor in which the hyperparameters of SqueezeNet are tuned using Oppositional Glowworm Swarm Optimization(OGSO)algorithm.At last,Weighted Extreme Learning Machine(WELM)classifier is applied to allocate proper class labels for input tongue color images.The design of OGSO algorithm for SqueezeNet model shows the novelty of the work.To assess the enhanced diagnostic performance of the presented IDLDD-BTI technique,a series of simulations was conducted on benchmark dataset and the results were examined in terms of several measures.The resultant experimental values highlighted the supremacy of IDLDD-BTI model over other state-of-the-art methods.展开更多
A robust digital watermarking algorithm is proposed based on quaternion wavelet transform(QWT) and discrete cosine transform(DCT) for copyright protection of color images. The luminance component Y of a host color ima...A robust digital watermarking algorithm is proposed based on quaternion wavelet transform(QWT) and discrete cosine transform(DCT) for copyright protection of color images. The luminance component Y of a host color image in YIQ space is decomposed by QWT, and then the coefficients of four low-frequency subbands are transformed by DCT. An original binary watermark scrambled by Arnold map and iterated sine chaotic system is embedded into the mid-frequency DCT coefficients of the subbands. In order to improve the performance of the proposed algorithm against rotation attacks, a rotation detection scheme is implemented before watermark extracting. The experimental results demonstrate that the proposed watermarking scheme shows strong robustness not only against common image processing attacks but also against arbitrary rotation attacks.展开更多
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2021R1I1A3049788).
文摘In today’s digital era,the rapid evolution of image editing technologies has brought about a significant simplification of image manipulation.Unfortunately,this progress has also given rise to the misuse of manipulated images across various domains.One of the pressing challenges stemming from this advancement is the increasing difficulty in discerning between unaltered and manipulated images.This paper offers a comprehensive survey of existing methodologies for detecting image tampering,shedding light on the diverse approaches employed in the field of contemporary image forensics.The methods used to identify image forgery can be broadly classified into two primary categories:classical machine learning techniques,heavily reliant on manually crafted features,and deep learning methods.Additionally,this paper explores recent developments in image forensics,placing particular emphasis on the detection of counterfeit colorization.Image colorization involves predicting colors for grayscale images,thereby enhancing their visual appeal.The advancements in colorization techniques have reached a level where distinguishing between authentic and forged images with the naked eye has become an exceptionally challenging task.This paper serves as an in-depth exploration of the intricacies of image forensics in the modern age,with a specific focus on the detection of colorization forgery,presenting a comprehensive overview of methodologies in this critical field.
基金supported by the National Basic Research 973 Program of China under Grant No.2011CB302201the National Natural Science Foundation of China under Grant Nos.61003094,60931160443+1 种基金funded by Tsinghua National Laboratory for Information Science and Technology(TNList) Cross-Discipline Foundation of Chinasupported by the Innovation Fund of Tsinghua-Tencent Joint Laboratory of China
文摘Colorization of gray-scale images has attracted many attentions for a long time. An important role of image color is the conveyer of emotions (through color themes). The colorization with an undesired color theme is less useful, even it is semantically correct. However this has been rarely considered. Automatic colorization respecting both the semantics and the emotions is undoubtedly a challenge. In this paper~ we propose a complete system for affective image colorization. We only need the user to assist object segmentation along with text labels and an affective word. First, the text labels along with other object characters are jointly used to filter the internet images to give each object a set of semantically correct reference images. Second, we select a set of color themes according to the affective word based on art theories. With these themes, a generic algorithm is used to select the best reference for each object, balancing various requirements. Finally, we propose a hybrid texture synthesis approach for colorization. To the best of our knowledge, it is the first system which is able to efficiently colorize a gray-scale image semantically by an emotionally controllable fashion. Our experiments show the effectiveness of our system, especially the benefit compared with the previous Markov random field (MRF) based method.
基金The National Natural Science Foundation of China(No.61572258,61173141,61271312,61232016,61272421)the Natural Science Foundation of Jiangsu Province(No.BK2012858,BK20151530)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.13KJB520015)Open Fund of Jiangsu Engineering Center of Network Monitoring(No.KJR1404)
文摘In order to effectively restore color noisy images with the mixture of Gaussian noise and impulse noise,a new algorithm is proposed using the quaternion-based holistic processing idea for color images.First,a color image is represented by a pure quaternion matrix.Secondly,according to the different characteristics of the Gaussian noise and the impulse noise,an algorithm based on quaternion directional vector order statistics is used to detect the impulse noise. Finally,the quaternion optimal weights non-local means filter (QOWNLMF)for Gaussian noise removal is improved for the mixed noise removal.The detected impulse noise pixels are not considered in the calculation of weights.Experimental results on five standard images demonstrate that the proposed algorithm performs better than the commonly used robust outlyingness ratio-nonlocal means (ROR-NLM)algorithm and the optimal weights mixed filter (OWMF).
文摘An approach for color image segmentation is proposed based on the contributions of color features to segmentation rather than the choice of a particular color space. The determination of effective color features depends on the analysis of various color features from each tested color image via the designed feature encoding. It is different from the pervious methods where self organized feature map (SOFM) is used for constructing the feature encoding so that the feature encoding can self organize the effective features for different color images. Fuzzy clustering is applied for the final segmentation when the well suited color features and the initial parameter are available. The proposed method has been applied in segmenting different types of color images and the experimental results show that it outperforms the classical clustering method. The study shows that the feature encoding approach offers great promise in automating and optimizing the segmentation of color images.
文摘Abstract:Stephen Crane was an outstanding American novelist,poet,and journalist.He achieved great success in his literary works during his brief career.Crane’s most well-known work,The Red Badge of Courage,is commonly believed to be the first great novel of the American Civil War,largely because of its vivid and detailed description of the experience of warfare.This paper analyzes the images of color,animal and machine,which convey Crane’s thoughts of war:war is full of chaos,brutality,and confusion,without any romantic elements or heroism.
基金The National Natural Science Foundation of China under contract No.41306193the Research and Development Special Foundation for Public Welfare Industry under of China contract No.201105016the Basic Research of First Institute of Oceanography,State Oceanic Administration under contract No.GY2014T03
文摘A method to estimate the thickness of the sea ice of the Bohai Sea is proposed using geostationary ocean color imager (GOCI) data and then applied to the dynamic monitoring of the sea ice thickness in the Bohal Sea during the winter of 2014 to 2015. First of all, a model is given between the GOCI shortwave broadband albedo and the reflectance of each band with high temporal resolution GOCI data. Then, the relationship model between the sea ice thickness and the GOCI shortwave broadband albedo is established and applied to the thickness extraction of the sea ice in the Bohai Sea. Finally, the sea ice thickness extraction method is tested by the results based on the MODIS data, thermodynamic empirical models (Lebedev and Zubov), and the in situ ice thickness data. The test results not only indicated that the sea ice thickness retrieval method based on the GOCI data was a good correlation (r2〉0.66) with the sea ice thickness retrieved by the MODIS and thermodynamic empirical models, but also that the RMS is only 6.82 cm different from the thickness of the sea ice based on the GOCI and in situ data.
基金supported by the National Natural Science Foundation of China(Grant Nos.61203094 and 61305042)the Natural Science Foundation of the United States(Grant Nos.CNS-1253424 and ECCS-1202225)+3 种基金the Science and Technology Foundation of Henan Province,China(Grant No.152102210048)the Foundation and Frontier Project of Henan Province,China(Grant No.162300410196)the Natural Science Foundation of Educational Committee of Henan Province,China(Grant No.14A413015)the Research Foundation of Henan University,China(Grant No.xxjc20140006)
文摘Recently, many image encryption algorithms based on chaos have been proposed. Most of the previous algorithms encrypt components R, G, and B of color images independently and neglect the high correlation between them. In the paper, a novel color image encryption algorithm is introduced. The 24 bit planes of components R, G, and B of the color plain image are obtained and recombined into 4 compound bit planes, and this can make the three components affect each other. A four-dimensional(4D) memristive hyperchaotic system generates the pseudorandom key streams and its initial values come from the SHA 256 hash value of the color plain image. The compound bit planes and key streams are confused according to the principles of genetic recombination, then confusion and diffusion as a union are applied to the bit planes,and the color cipher image is obtained. Experimental results and security analyses demonstrate that the proposed algorithm is secure and effective so that it may be adopted for secure communication.
文摘True color image city map is a sort of new-style map which combines the high resolution image and map symbols and shows both advantages in visualization. At the same time, the map unification and harmonization should be taken into account dur-ing the design process, since some visual conflicts appear when map symbols overlaid on the true color image. The objective of this research is to explore the rules in the process of true color image city map design based on chromatic and aesthetic knowledge. At the end, taking the Image Atlas of Guangzhou as an example, image color adjustment, road network presentation, and symbol de-signing issues will be discussed in the application.
基金Project(60874070) supported by the National Natural Science Foundation of China
文摘To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can preserve the discontinuity characteristics of an image are segmented by MS algorithm,and then they are represented by a graph in which every region is represented by a node.In order to solve the graph partition problem,an improved ant clustering algorithm,called similarity carrying ant model(SCAM-ant),is proposed,in which a new similarity calculation method is given.Using SCAM-ant,the maximum number of items that each ant can carry will increase,the clustering time will be effectively reduced,and globally optimized clustering can also be realized.Because the graph is not based on the pixels of original image but on the segmentation result of MS algorithm,the computational complexity is greatly reduced.Experiments show that the proposed method can realize color image segmentation efficiently,and compared with the conventional methods based on the image pixels,it improves the image segmentation quality and the anti-interference ability.
基金supported by the National Natural Science Foundation of China(Grant Nos.61161006 and 61573383)
文摘In this paper, Adomian decomposition method (ADM) with high accuracy and fast convergence is introduced to solve the fractional-order piecewise-linear (PWL) hyperchaotic system. Based on the obtained hyperchaotic sequences, a novel color image encryption algorithm is proposed by employing a hybrid model of bidirectional circular permutation and DNA masking. In this scheme, the pixel positions of image are scrambled by circular permutation, and the pixel values are substituted by DNA sequence operations. In the DNA sequence operations, addition and substraction operations are performed according to traditional addition and subtraction in the binary, and two rounds of addition rules are used to encrypt the pixel values. The simulation results and security analysis show that the hyperchaotic map is suitable for image encryption, and the proposed encryption algorithm has good encryption effect and strong key sensitivity. It can resist brute-force attack, statistical attack, differential attack, known-plaintext, and chosen-plaintext attacks.
基金supported partly by the National Basic Research Program of China (2005CB724303)the National Natural Science Foundation of China (60671062) Shanghai Leading Academic Discipline Project (B112).
文摘A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected as the features. The four features are combined together as a parameter to detect the edges of color images. Experimental results show that the method can inhibit noisy edges and facilitate the detection for weak edges. It has a better performance than conventional methods in noisy environments.
文摘This paper proposes a hybrid technique for color image segmentation. First an input image is converted to the image of CIE L*a*b* color space. The color features "a" and "b" of CIE L^*a^*b^* are then fed into fuzzy C-means (FCM) clustering which is an unsupervised method. The labels obtained from the clustering method FCM are used as a target of the supervised feed forward neural network. The network is trained by the Levenberg-Marquardt back-propagation algorithm, and evaluates its performance using mean square error and regression analysis. The main issues of clustering methods are determining the number of clusters and cluster validity measures. This paper presents a method namely co-occurrence matrix based algorithm for finding the number of clusters and silhouette index values that are used for cluster validation. The proposed method is tested on various color images obtained from the Berkeley database. The segmentation results from the proposed method are validated and the classification accuracy is evaluated by the parameters sensitivity, specificity, and accuracy.
基金supported by the National Natural Science Foundation of China(61271315)the State Scholarship Fund of China
文摘Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are generally used to get SIFT descriptors in order to reduce the complexity. The regions which have a similar grayscale level but different hues tend to produce wrong matching results in this case. Therefore, the loss of color information may result in decreasing of matching ratio. An image matching algorithm based on SIFT is proposed, which adds a color offset and an exposure offset when converting color images to grayscale images in order to enhance the matching ratio. Experimental results show that the proposed algorithm can effectively differentiate the regions with different colors but the similar grayscale level, and increase the matching ratio of image matching based on SIFT. Furthermore, it does not introduce much complexity than the traditional SIFT.
基金the National Natural Science Foundation of China (No. 60675023)
文摘A support vector regression(SVR) based color image restoration algorithm is proposed.The test color images are firstly mapped into the YUV color space,and then SVR is applied to build up a theoretical model between the degraded images and the original one.Performance comparisons of the proposed algorithm versus traditional filtering algorithms are given.Experimental results show that the proposed algorithm has better performance than traditional filtering algorithms and has less computation time than iterative blind deconvolution algorithm.
基金the National Natural Science Foundation of China(Grant No.62061014)the Provincial Natural Science Foundation of Liaoning(Grant No.2020-MS-274)the Basic Scientific Research Projects of Colleges and Universities of Liaoning Province,China(Grant No.LJKZ0545).
文摘We devise a color image encryption scheme via combining hyperchaotic map,cross-plane operation and gene theory.First,the hyperchaotic map used in the encryption scheme is analyzed and studied.On the basis of the dynamics of hyperchaotic map,a color image encryption scheme is designed.At the end of the encryption process,a DNA mutation operation is used to increase the encoding images’randomness and to improve the encryption algorithm’s security.Finally,simulation experiments,performance analysis,and attack tests are performed to prove the effectiveness and security of the designed algorithm.This work provides the possibility of applying chaos theory and gene theory in image encryption.
文摘It is well-known that classical quality measures,such as Mean Squared Error(MSE),Weighted Mean Squared Error(WMSE)or Peak Signal-to-Noise Ratio(PSNR),are not always corresponding with visual observations.Structural similarity based image quality assessment was proposed under the assumption that the Human Visual System(HVS)is highly adapted for extracting structural information from an image.While the demand on high color quality increases in the media industry,color loss will make the visual quality different.In this paper,we proposed an improved quality assessment(QA)method by adding color comparison into the structural similarity(SSIM)measurement system for evaluating color image quality.Then we divided the task of similarity measurement into four comparisons:luminance,contrast,structure,and color.Experimental results show that the predicted quality scores of the proposed method are more effective and consistent with visual quality than the classical methods using five different distortion types of color image sets.
基金The work was supported in part by the Natural Science Foundation of China under Grants(Nos.61772281,61502241,61272421,61232016,61402235 and 61572258)in part by the Natural Science Foundation of Jiangsu Province,China under Grant BK20141006+1 种基金in part by the Natural Science Foundation of the Universities in Jiangsu Province under Grant 14KJB520024the PAPD fund and the CICAEET fund.
文摘In the paper,a convolutional neural network based on quaternion transformation is proposed to detect median filtering for color images.Compared with conventional convolutional neural network,color images can be processed in a holistic manner in the proposed scheme,which makes full use of the correlation between RGB channels.And due to the use of convolutional neural network,it can effectively avoid the one-sidedness of artificial features.Experimental results have shown the scheme’s improvement over the state-of-the-art scheme on the accuracy of color image median filtering detection.
基金funded by Deanship of Scientific Research at King Khalid University under Grant Number R.G.P.2/86/43.
文摘The security of digital images transmitted via the Internet or other public media is of the utmost importance.Image encryption is a method of keeping an image secure while it travels across a non-secure communication medium where it could be intercepted by unauthorized entities.This study provides an approach to color image encryption that could find practical use in various contexts.The proposed method,which combines four chaotic systems,employs singular value decomposition and a chaotic sequence,making it both secure and compression-friendly.The unified average change intensity,the number of pixels’change rate,information entropy analysis,correlation coefficient analysis,compression friendliness,and security against brute force,statistical analysis and differential attacks are all used to evaluate the algorithm’s performance.Following a thorough investigation of the experimental data,it is concluded that the proposed image encryption approach is secure against a wide range of attacks and provides superior compression friendliness when compared to chaos-based alternatives.
基金This paper was funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,Saudi Arabia,under grant No.(D-79-305-1442).The authors,therefore,gratefully acknowledge DSR technical and financial support.
文摘The rapid development of biomedical imaging modalities led to its wide application in disease diagnosis.Tongue-based diagnostic procedures are proficient and non-invasive in nature to carry out secondary diagnostic processes ubiquitously.Traditionally,physicians examine the characteristics of tongue prior to decision-making.In this scenario,to get rid of qualitative aspects,tongue images can be quantitatively inspected for which a new disease diagnosis model is proposed.This model can reduce the physical harm made to the patients.Several tongue image analytical methodologies have been proposed earlier.However,there is a need exists to design an intelligent Deep Learning(DL)based disease diagnosis model.With this motivation,the current research article designs an Intelligent DL-basedDisease Diagnosis method using Biomedical Tongue Images called IDLDD-BTI model.The proposed IDLDD-BTI model incorporates Fuzzy-based Adaptive Median Filtering(FADM)technique for noise removal process.Besides,SqueezeNet model is employed as a feature extractor in which the hyperparameters of SqueezeNet are tuned using Oppositional Glowworm Swarm Optimization(OGSO)algorithm.At last,Weighted Extreme Learning Machine(WELM)classifier is applied to allocate proper class labels for input tongue color images.The design of OGSO algorithm for SqueezeNet model shows the novelty of the work.To assess the enhanced diagnostic performance of the presented IDLDD-BTI technique,a series of simulations was conducted on benchmark dataset and the results were examined in terms of several measures.The resultant experimental values highlighted the supremacy of IDLDD-BTI model over other state-of-the-art methods.
基金supported by the National Natural Science Foundation of China(Nos.61601467,61379102,61502498,U1433105 and U1433120)the Fundamental Research Funds for the Central Universities(3122017044)
文摘A robust digital watermarking algorithm is proposed based on quaternion wavelet transform(QWT) and discrete cosine transform(DCT) for copyright protection of color images. The luminance component Y of a host color image in YIQ space is decomposed by QWT, and then the coefficients of four low-frequency subbands are transformed by DCT. An original binary watermark scrambled by Arnold map and iterated sine chaotic system is embedded into the mid-frequency DCT coefficients of the subbands. In order to improve the performance of the proposed algorithm against rotation attacks, a rotation detection scheme is implemented before watermark extracting. The experimental results demonstrate that the proposed watermarking scheme shows strong robustness not only against common image processing attacks but also against arbitrary rotation attacks.