期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
B^(2)C^(3)NetF^(2):Breast cancer classification using an end‐to‐end deep learning feature fusion and satin bowerbird optimization controlled Newton Raphson feature selection 被引量:1
1
作者 Mamuna Fatima Muhammad Attique Khan +2 位作者 Saima Shaheen Nouf Abdullah Almujally Shui‐Hua Wang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第4期1374-1390,共17页
Currently,the improvement in AI is mainly related to deep learning techniques that are employed for the classification,identification,and quantification of patterns in clinical images.The deep learning models show mor... Currently,the improvement in AI is mainly related to deep learning techniques that are employed for the classification,identification,and quantification of patterns in clinical images.The deep learning models show more remarkable performance than the traditional methods for medical image processing tasks,such as skin cancer,colorectal cancer,brain tumour,cardiac disease,Breast cancer(BrC),and a few more.The manual diagnosis of medical issues always requires an expert and is also expensive.Therefore,developing some computer diagnosis techniques based on deep learning is essential.Breast cancer is the most frequently diagnosed cancer in females with a rapidly growing percentage.It is estimated that patients with BrC will rise to 70%in the next 20 years.If diagnosed at a later stage,the survival rate of patients with BrC is shallow.Hence,early detection is essential,increasing the survival rate to 50%.A new framework for BrC classification is presented that utilises deep learning and feature optimization.The significant steps of the presented framework include(i)hybrid contrast enhancement of acquired images,(ii)data augmentation to facilitate better learning of the Convolutional Neural Network(CNN)model,(iii)a pre‐trained ResNet‐101 model is utilised and modified according to selected dataset classes,(iv)deep transfer learning based model training for feature extraction,(v)the fusion of features using the proposed highly corrected function‐controlled canonical correlation analysis approach,and(vi)optimal feature selection using the modified Satin Bowerbird Optimization controlled Newton Raphson algorithm that finally classified using 10 machine learning classifiers.The experiments of the proposed framework have been carried out using the most critical and publicly available dataset,such as CBISDDSM,and obtained the best accuracy of 94.5%along with improved computation time.The comparison depicts that the presented method surpasses the current state‐ofthe‐art approaches. 展开更多
关键词 artificial intelligence artificial neural network deep learning medical image processing multi‐objective optimization
在线阅读 下载PDF
Behavior of Spikes in Spiking Neural Network (SNN)Model with Bernoulli for Plant Disease on Leaves
2
作者 Urfa Gul M.Junaid Gul +1 位作者 Gyu Sang Choi Chang-Hyeon Park 《Computers, Materials & Continua》 2025年第8期3811-3834,共24页
Spiking Neural Network(SNN)inspired by the biological triggering mechanism of neurons to provide a novel solution for plant disease detection,offering enhanced performance and efficiency in contrast to Artificial Neur... Spiking Neural Network(SNN)inspired by the biological triggering mechanism of neurons to provide a novel solution for plant disease detection,offering enhanced performance and efficiency in contrast to Artificial Neural Networks(ANN).Unlike conventional ANNs,which process static images without fully capturing the inherent temporal dynamics,our approach represents the first implementation of SNNs tailored explicitly for agricultural disease classification,integrating an encoding method to convert static RGB plant images into temporally encoded spike trains.Additionally,while Bernoulli trials and standard deep learning architectures likeConvolutionalNeuralNetworks(CNNs)and Fully Connected Neural Networks(FCNNs)have been used extensively,our work is the first to integrate these trials within an SNN framework specifically for agricultural applications.This integration not only refines spike regulation and reduces computational overhead by 30%but also delivers superior accuracy(93.4%)in plant disease classification,marking a significant advancement in precision agriculture that has not been previously explored.Our approach uniquely transforms static plant leaf images into time-dependent representations,leveraging SNNs’intrinsic temporal processing capabilities.This approach aligns with the inherent ability of SNNs to capture dynamic,timedependent patterns,making them more suitable for detecting disease activations in plants than conventional ANNs that treat inputs as static entities.Unlike prior works,our hybrid encoding scheme dynamically adapts to pixel intensity variations(via threshold),enabling robust feature extraction under diverse agricultural conditions.The dual-stage preprocessing customizes the SNN’s behavior in two ways:the encoding threshold is derived from pixel distributions in diseased regions,and Bernoulli trials selectively reduce redundant spikes to ensure energy efficiency on low-power devices.We used a comprehensive dataset of 87,000 RGB images of plant leaves,which included 38 distinct classes of healthy and unhealthy leaves.To train and evaluate three distinct neural network architectures,DeepSNN,SimpleCNN,and SimpleFCNN,the dataset was rigorously preprocessed,including stochastic rotation,horizontal flip,resizing,and normalization.Moreover,by integrating Bernoulli trials to regulate spike generation,ourmethod focuses on extracting themost relevant featureswhile reducingcomputational overhead.Using a comprehensivedatasetof87,000RGB images across 38 classes,we rigorously preprocessed the data and evaluated three architectures:DeepSNN,SimpleCNN,and SimpleFCNN.The results demonstrate that DeepSNN outperforms the other models,achieving superior accuracy,efficient feature extraction,and robust spike management,thereby establishing the potential of SNNs for real-time,energy-efficient agricultural applications. 展开更多
关键词 AGRICULTURE image processing machine learning neural network optimization plant disease detection spiking neural networks(SNNs)
在线阅读 下载PDF
Line Patterns Segmentation in Blurred Images Using Contrast Enhancement and Local Entropy Thresholding
3
作者 Marios Vlachos Evangelos Dermatas 《Journal of Computer and Communications》 2024年第2期116-141,共26页
Finger vein extraction and recognition hold significance in various applications due to the unique and reliable nature of finger vein patterns. While recently finger vein recognition has gained popularity, there are s... Finger vein extraction and recognition hold significance in various applications due to the unique and reliable nature of finger vein patterns. While recently finger vein recognition has gained popularity, there are still challenges associated with extracting and processing finger vein patterns related to image quality, positioning and alignment, skin conditions, security concerns and processing techniques applied. In this paper, a method for robust segmentation of line patterns in strongly blurred images is presented and evaluated in vessel network extraction from infrared images of human fingers. In a four-step process: local normalization of brightness, image enhancement, segmentation and cleaning were involved. A novel image enhancement method was used to re-establish the line patterns from the brightness sum of the independent close-form solutions of the adopted optimization criterion derived in small windows. In the proposed method, the computational resources were reduced significantly compared to the solution derived when the whole image was processed. In the enhanced image, where the concave structures have been sufficiently emphasized, accurate detection of line patterns was obtained by local entropy thresholding. Typical segmentation errors appearing in the binary image were removed using morphological dilation with a line structuring element and morphological filtering with a majority filter to eliminate isolated blobs. The proposed method performs accurate detection of the vessel network in human finger infrared images, as the experimental results show, applied both in real and artificial images and can readily be applied in many image enhancement and segmentation applications. 展开更多
关键词 Finger Vein Vessel Enhancement Vessel network Extraction Non-Uniform images binarization Morphological Post-processing
在线阅读 下载PDF
交通监控图像处理的Hopfield神经网络方法 被引量:3
4
作者 刘智勇 尹征琦 +2 位作者 朱劲 王向平 邱祖廉 《公路交通科技》 EI CAS CSCD 北大核心 2000年第3期33-35,46,共4页
提出一种基于S函数的全并行自反馈Hopfield神经网络的运动模糊图像恢复方法。实验结果表明 :该方法在模型不精确时也可以有效地恢复原图像 。
关键词 交通监控 图像处理 图像恢复 hopfield神经网络
在线阅读 下载PDF
用Hopfield网络实现边缘模糊图象的二值化处理 被引量:2
5
作者 章珂 刘贵忠 《电子科学学刊》 EI CSCD 1998年第1期38-43,共6页
本文基于Hopfield网络提出了一个实现边缘模糊图象二值化处理的新方法.首先将图象二值化处理问题转化成优化问题,然后构造相应的Hopfield网络参数并用Hopfield网络实现这个优化问题的解.实验说明,该方法具有较高的精度,同时对较小图象,... 本文基于Hopfield网络提出了一个实现边缘模糊图象二值化处理的新方法.首先将图象二值化处理问题转化成优化问题,然后构造相应的Hopfield网络参数并用Hopfield网络实现这个优化问题的解.实验说明,该方法具有较高的精度,同时对较小图象,甚至一维信号亦具有好的效果. 展开更多
关键词 图象二值化处理 神经网络 图象识别
在线阅读 下载PDF
基于粒子群优化Hopfield网络匹配的稀相颗粒速度测量 被引量:2
6
作者 周云龙 宋连壮 周红娟 《化工学报》 EI CAS CSCD 北大核心 2011年第2期348-354,共7页
提出了一种基于粒子群算法(PSO)和Hopfield神经网络相结合的粒子跟踪测速算法。该方法采用高速摄影系统拍摄气固两相流的稀相颗粒运动图像,经图像处理后,提取形心参数。将粒子匹配问题转化为优化问题,采用粒子群优化算法与Hopfield神经... 提出了一种基于粒子群算法(PSO)和Hopfield神经网络相结合的粒子跟踪测速算法。该方法采用高速摄影系统拍摄气固两相流的稀相颗粒运动图像,经图像处理后,提取形心参数。将粒子匹配问题转化为优化问题,采用粒子群优化算法与Hopfield神经网络相结合的方法进行优化,求出最优解来实现颗粒的正确匹配,然后计算出颗粒的速度矢量,并与互相关法求出的速度进行对比,实验结果表明,该方法能准确地跟踪稀相颗粒,是一种有效的稀相流场速度测量方法。 展开更多
关键词 稀相输送 图像处理 粒子群优化 hopfield网络 粒子跟踪测速技术
在线阅读 下载PDF
基于堆栈滤波器和Hopfield神经网络的边界检测法 被引量:1
7
作者 黎明 严超华 刘高航 《中国图象图形学报(A辑)》 CSCD 1999年第7期562-567,共6页
提出了一种基于堆栈滤波器和Hopfield神经网络的边界检测法。采用较小滤波窗口的堆栈滤波器优化估计图象象素点之间的灰度梯度,再根据这些灰度梯度的优化估计值计算及确定Hopfield神经网络的权重矢量,Hopfiel... 提出了一种基于堆栈滤波器和Hopfield神经网络的边界检测法。采用较小滤波窗口的堆栈滤波器优化估计图象象素点之间的灰度梯度,再根据这些灰度梯度的优化估计值计算及确定Hopfield神经网络的权重矢量,Hopfield神经网络收敛时输出图象的边界。相对于基于堆栈滤波器边界检测法,该方法对堆栈滤波器的优化训练速度大大提高,所需内存大为减少;而相对于基于Hopfield神经网络的边界检测法,该方法又具有较强的抗混合分布噪声的能力,边界检测的效果更好。 展开更多
关键词 图象处理 边界检测 堆栈滤波器 神经网络
在线阅读 下载PDF
Smart Lung Tumor Prediction Using Dual Graph Convolutional Neural Network 被引量:1
8
作者 Abdalla Alameen 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期369-383,共15页
A significant advantage of medical image processing is that it allows non-invasive exploration of internal anatomy in great detail.It is possible to create and study 3D models of anatomical structures to improve treatm... A significant advantage of medical image processing is that it allows non-invasive exploration of internal anatomy in great detail.It is possible to create and study 3D models of anatomical structures to improve treatment outcomes,develop more effective medical devices,or arrive at a more accurate diagnosis.This paper aims to present a fused evolutionary algorithm that takes advantage of both whale optimization and bacterial foraging optimization to optimize feature extraction.The classification process was conducted with the aid of a convolu-tional neural network(CNN)with dual graphs.Evaluation of the performance of the fused model is carried out with various methods.In the initial input Com-puter Tomography(CT)image,150 images are pre-processed and segmented to identify cancerous and non-cancerous nodules.The geometrical,statistical,struc-tural,and texture features are extracted from the preprocessed segmented image using various methods such as Gray-level co-occurrence matrix(GLCM),Histo-gram-oriented gradient features(HOG),and Gray-level dependence matrix(GLDM).To select the optimal features,a novel fusion approach known as Whale-Bacterial Foraging Optimization is proposed.For the classification of lung cancer,dual graph convolutional neural networks have been employed.A com-parison of classification algorithms and optimization algorithms has been con-ducted.According to the evaluated results,the proposed fused algorithm is successful with an accuracy of 98.72%in predicting lung tumors,and it outper-forms other conventional approaches. 展开更多
关键词 CNN dual graph convolutional neural network GLCM GLDM HOG image processing lung tumor prediction whale bacterial foraging optimization
在线阅读 下载PDF
基于调和模型的连续Hopfield神经网络次优图像复原
9
作者 姜明勇 陈向宁 喻夏琼 《测绘科学》 CSCD 北大核心 2012年第3期121-123,共3页
本文提出了一种基于调和模型的连续Hopfield神经网络正则化次优图像复原算法。针对传统正则化图像复原由于"模糊矩阵"和"高通滤波器"规模庞大而带来的复原过程中占用存储资源多的问题,提出了一种基于部分图像信息... 本文提出了一种基于调和模型的连续Hopfield神经网络正则化次优图像复原算法。针对传统正则化图像复原由于"模糊矩阵"和"高通滤波器"规模庞大而带来的复原过程中占用存储资源多的问题,提出了一种基于部分图像信息的次优复原算法,该算法能在性能下降不大的前提下,较好地解决传统复原资源消耗问题。同时算法采用由梯度算子生成的调和模型作为正则项,能在复原的同时保留图像边缘。仿真结果表明了算法的有效性。 展开更多
关键词 图像复原 调和模型 hopfield神经网络 正则化 次优算法
原文传递
Image processing with Optical matrix vector multipliers implemented for encoding and decoding tasks
10
作者 Minjoo Kim Yelim Kim Won Il Park 《Light(Science & Applications)》 2025年第9期2628-2641,共14页
This study introduces an optical neural network(ONN)-based autoencoder for efficient image processing,utilizing specialized optical matrix-vector multipliers for both encoding and decoding tasks.To address the challen... This study introduces an optical neural network(ONN)-based autoencoder for efficient image processing,utilizing specialized optical matrix-vector multipliers for both encoding and decoding tasks.To address the challenges in efficient decoding,we propose a method that optimizes output processing through scalar multiplications,enhancing performance in generating higher-dimensional outputs.By employing on-system iterative tuning,we mitigate hardware imperfections and noise,progressively improving image reconstruction accuracy to near-digital quality.Furthermore,our approach supports noise reduction and optical image generation,enabling models such as denoising autoencoders,variational autoencoders,and generative adversarial networks.Our results demonstrate that ONN-based systems have the potential to surpass the energy efficiency of traditional electronic systems,enabling real-time,low-power image processing in applications such as medical imaging,autonomous vehicles,and edge computing. 展开更多
关键词 image reconstru scalar multiplicationsenhancing optical neural network decoding image processingutilizing image processing optical matrix vector multipliers optimizes output processing
原文传递
基于深度卷积神经网络的超材料微带天线拓扑结构性能预测
11
作者 尹家龙 董焱章 王全伟 《湖北汽车工业学院学报》 2025年第2期56-60,共5页
基于卷积神经网络模型,建立了超材料微带天线拓扑结构布置图-增益性能数据库,实现了超材料微带天线拓扑结构性能预测。针对数据库预测精度不足的问题,改进卷积神经网络结构模型,引入了深度卷积方法和反向残差结构等。改进后的数据库性... 基于卷积神经网络模型,建立了超材料微带天线拓扑结构布置图-增益性能数据库,实现了超材料微带天线拓扑结构性能预测。针对数据库预测精度不足的问题,改进卷积神经网络结构模型,引入了深度卷积方法和反向残差结构等。改进后的数据库性能比较优良,损失函数下降至0.008,且在验证集上达到了99%的预测准确率,验证了基于深度卷积神经网络的超材料微带天线拓扑结构性能预测的有效性。 展开更多
关键词 深度学习 卷积神经网络 超材料 拓扑优化 图像处理
在线阅读 下载PDF
基于海鸥优化算法的PCNN芯片引线框架图像自动分割
12
作者 刘勍 侯喆 +4 位作者 周玉博 陆芳 赵利民 李向兵 张进兵 《青海师范大学学报(自然科学版)》 2025年第3期89-95,共7页
为满足集成电路封装阶段对芯片引线框架图像的高精度分割需求,本文提出了一种新的图像自动分割方法,该方法基于海鸥优化算法(Seagull Optimization Algorithm, SOA)和脉冲耦合神经网络(Pulse-Coupled Neural Network, PCNN),旨在解决传... 为满足集成电路封装阶段对芯片引线框架图像的高精度分割需求,本文提出了一种新的图像自动分割方法,该方法基于海鸥优化算法(Seagull Optimization Algorithm, SOA)和脉冲耦合神经网络(Pulse-Coupled Neural Network, PCNN),旨在解决传统图像切割技术在处理引线框架图像时存在的精度低、边缘模糊以及对噪声过于敏感的问题.首先从引线框架图像的需求出发,对传统的PCNN模型进行了针对性的改进.其次将图像熵作为SOA算法的适应度函数,以此自适应地优化PCNN的连接系数β、阈值衰减系数αE和阈值放大系数VE,以实现对引线框架图像的最佳分割效果.最后,将所提算法与传统的PCNN、GA-PCNN和GWO-PCNN方法进行了主观实验对比,并采用Dice系数、召回率和分割精确度等常用图像分割评价指标,对这四种处理方法进行了客观的性能评估.实验结果表明,本研究提出的技术方案在分割精度上表现出色,并且具备良好的鲁棒性,显示出其在实际工程应用中的潜力和价值. 展开更多
关键词 图像处理 芯片引线框架 图像分割 海鸥优化算法 脉冲耦合神经网络
在线阅读 下载PDF
基于机器视觉的表面缺陷检测技术研究
13
作者 张凡博 宁波 +3 位作者 孔宁亮 李俊良 赵明明 郭延涛 《新技术新工艺》 2025年第6期74-80,共7页
针对目前弹箭产品表面缺陷检测技术精度和效率不高的问题,以某型弹箭产品表面缺陷为研究对象,设计了一套弹箭产品表面缺陷检测系统。首先分析检测对象的特征,结合检测流程提出检测系统框架,利用图像灰度化和滤波技术完成特征提取;随后选... 针对目前弹箭产品表面缺陷检测技术精度和效率不高的问题,以某型弹箭产品表面缺陷为研究对象,设计了一套弹箭产品表面缺陷检测系统。首先分析检测对象的特征,结合检测流程提出检测系统框架,利用图像灰度化和滤波技术完成特征提取;随后选用YOLOv5网络搭建机器视觉算法模型,针对弹箭产品表面缺陷特点,引入BIFPN模块对网络结构进行优化,提出一种基于机器视觉的表面缺陷检测技术;最后选取数据集进行多组对比实验,实验结果表明,所研究的检测模型能够识别弹箭产品表面各类缺陷。该表面缺陷检测技术研究成果已经应用于工业现场,显著提升了弹箭产品表面缺陷检测效率和准确率,对相似产品领域缺陷检测具有一定的借鉴意义。 展开更多
关键词 表面缺陷检测 机器视觉 YOLOv5网络模型 特征提取 图像处理 模型结构优化
在线阅读 下载PDF
基于Hopfield神经网络的打磨工艺路线优化 被引量:4
14
作者 崔光鲁 陈劲杰 +1 位作者 徐希羊 周媛 《电子科技》 2017年第5期36-39,共4页
为提升工件表面处理工艺品质,提出运用人工智能的方法解决打磨工艺执行路线决策问题。基于人工神经网络思想,利用连续型Hopfield神经网络算法,对打磨工艺执行路线进行优化排序。文中以锅具打磨为分析案例,展示具体应用方法。得出了更加... 为提升工件表面处理工艺品质,提出运用人工智能的方法解决打磨工艺执行路线决策问题。基于人工神经网络思想,利用连续型Hopfield神经网络算法,对打磨工艺执行路线进行优化排序。文中以锅具打磨为分析案例,展示具体应用方法。得出了更加优化的锅具表面打磨工艺执行路线,为以后工件表面处理更加智能高效提供了理论依据。 展开更多
关键词 决策优化 智能算法 hopfield神经网络 工艺排序方法
在线阅读 下载PDF
基于Hopfield神经网络模型的启发式学习算法及其在数字模式处理中的应用
15
作者 姚毓林 张逸敏 洪进 《机器人》 EI CSCD 北大核心 1990年第4期21-24,共4页
本文给出了一个基于Hopfield神经网络的启发式学习算法.使用这个算法对6个分别被0.1和0.5随机噪声干扰的数字模式成功地进行了校正处理,得到了较好的结果.
关键词 神经网络 学习算法 模型 模式处理
在线阅读 下载PDF
Hopfield网络的蚁群优化及其对笔迹图像的预处理
16
作者 涂岩恺 鄢煜尘 《厦门理工学院学报》 2015年第3期80-84,共5页
为了减小笔迹图像中的书写波动与噪声,研究了基于蚁群算法优化Hopfield神经网络的图像规范化预处理方法,使网络调整后的图像更接近标准样本,并对其进行特征提取和分类鉴别.同时引入动态组网的系统结构和网络联想自我评价方法,在大样本... 为了减小笔迹图像中的书写波动与噪声,研究了基于蚁群算法优化Hopfield神经网络的图像规范化预处理方法,使网络调整后的图像更接近标准样本,并对其进行特征提取和分类鉴别.同时引入动态组网的系统结构和网络联想自我评价方法,在大样本笔迹数据库上进行实验表明,该方法能够对笔迹图像中的复杂波动与噪声进行有效的规范化处理,以提高计算机笔迹鉴别的准确性,10候选鉴别正确率可提高到95.65%. 展开更多
关键词 hopfield网络 蚁群算法 图像处理 笔迹鉴别
在线阅读 下载PDF
Algorithm of the Real-Time Extraction Image for Vehicle
17
作者 LIU Quan HUANG Guo sheng 《Wuhan University Journal of Natural Sciences》 EI CAS 2000年第2期178-180,共3页
An algorithm applied to a real-time extraction image of vehicle is introduced. The algorithm include an image processing with a binarzation method, image grab for a vehicle with high speed, character isolator one by o... An algorithm applied to a real-time extraction image of vehicle is introduced. The algorithm include an image processing with a binarzation method, image grab for a vehicle with high speed, character isolator one by one, and neural network algorithm. The techniques include vehicles sensing, image garb control, vehicle license location, lighting and optic character recognition. The system is much more robust and faster than the traditional thresholding method. 展开更多
关键词 Key words image processing target extraction binarization neural network
在线阅读 下载PDF
离散Hopfield神经网络在车牌识别系统中的应用 被引量:2
18
作者 皇甫磊磊 阎瑞兵 赵晓晓 《信息与电脑》 2018年第17期81-84,共4页
在一些特殊环境,如建设单位施工现场等,施工现场环境复杂,扬尘较大,采集的车牌汉字图像由于各种原因可能会出现变形、倾斜、污损、模糊和背光等情况,系统对车牌的识别精度明显下降。因此,提出一种基于离散Hopfield神经网络联想记忆的的... 在一些特殊环境,如建设单位施工现场等,施工现场环境复杂,扬尘较大,采集的车牌汉字图像由于各种原因可能会出现变形、倾斜、污损、模糊和背光等情况,系统对车牌的识别精度明显下降。因此,提出一种基于离散Hopfield神经网络联想记忆的的车牌识别系统,在一定程度上去除了采集过程中出现的干扰。实验表明该方法具有较强的有效性和可行性,与传统算法在字符识别阶段加入深度学习的系统研究相比,该方法大大提高了车牌识别系统的正确率,提高了识别效率,优化了车牌识别系统。 展开更多
关键词 车牌识别 图像处理 离散hopfield神经网络 霍夫变换
在线阅读 下载PDF
A GAUSSIAN MIXTURE MODEL-BASED REGULARIZATION METHOD IN ADAPTIVE IMAGE RESTORATION
19
作者 Liu Peng Zhang Yan Mao Zhigang 《Journal of Electronics(China)》 2007年第1期83-89,共7页
A GMM (Gaussian Mixture Model) based adaptive image restoration is proposed in this paper. The feature vectors of pixels are selected and extracted. Pixels are clustered into smooth,edge or detail texture region accor... A GMM (Gaussian Mixture Model) based adaptive image restoration is proposed in this paper. The feature vectors of pixels are selected and extracted. Pixels are clustered into smooth,edge or detail texture region according to variance-sum criteria function of the feature vectors. Then pa-rameters of GMM are calculated by using the statistical information of these feature vectors. GMM predicts the regularization parameter for each pixel adaptively. Hopfield Neural Network (Hopfield-NN) is used to optimize the objective function of image restoration,and network weight value matrix is updated by the output of GMM. Since GMM is used,the regularization parameters share properties of different kind of regions. In addition,the regularization parameters are different from pixel to pixel. GMM-based regularization method is consistent with human visual system,and it has strong gener-alization capability. Comparing with non-adaptive and some adaptive image restoration algorithms,experimental results show that the proposed algorithm obtains more preferable restored images. 展开更多
关键词 image processing Gaussian Mixture Model (GMM) hopfield Neural network hopfield-NN) REGULARIZATION Adaptive image restoration
在线阅读 下载PDF
基于GA-BP神经网络的多层多道焊工艺预测及优化 被引量:3
20
作者 王天琪 孟锴权 王传睿 《焊接学报》 EI CAS CSCD 北大核心 2024年第5期29-37,共9页
针对目前多层多道焊工艺参数的选择问题,利用遗传算法(genetic algorithm,GA)对BP神经网络(back propagation neural network,BPNN)进行优化,提出多层多道焊成形预测及焊接工艺参数优化方法,旨在为工艺参数选取提供有效指导,提高焊接生... 针对目前多层多道焊工艺参数的选择问题,利用遗传算法(genetic algorithm,GA)对BP神经网络(back propagation neural network,BPNN)进行优化,提出多层多道焊成形预测及焊接工艺参数优化方法,旨在为工艺参数选取提供有效指导,提高焊接生产效率及焊接质量.首先通过分析多层多道焊图像,提出采用三次样条插值法与自适应分段法进行特征点识别,然后根据焊接顺序、焊道工艺建立焊接过程各焊道横截面积形状预测模型,运用解析法进行焊接工艺参数预测,进一步结合不同焊道工艺参数优选原则,采用改进神经网络进行焊接工艺参数优化,从而建立具有实时性的焊接工艺参数与焊缝轮廓关系模型.结果表明,该方法对多层多道焊中各焊道焊接工艺参数提供有效预测,试验结果满足实际需求,对提高焊接产品质量、简化焊接工艺参数选取具有实际意义. 展开更多
关键词 工艺参数优化 图像处理 解析法预测 神经网络优化
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部