The reliable operation of power grid secondary equipment is an important guarantee for the safety and stability of the power system.However,various defects could be produced in the secondary equipment during longtermo...The reliable operation of power grid secondary equipment is an important guarantee for the safety and stability of the power system.However,various defects could be produced in the secondary equipment during longtermoperation.The complex relationship between the defect phenomenon andmulti-layer causes and the probabilistic influence of secondary equipment cannot be described through knowledge extraction and fusion technology by existing methods,which limits the real-time and accuracy of defect identification.Therefore,a defect recognition method based on the Bayesian network and knowledge graph fusion is proposed.The defect data of secondary equipment is transformed into the structured knowledge graph through knowledge extraction and fusion technology.The knowledge graph of power grid secondary equipment is mapped to the Bayesian network framework,combined with historical defect data,and introduced Noisy-OR nodes.The prior and conditional probabilities of the Bayesian network are then reasonably assigned to build a model that reflects the probability dependence between defect phenomena and potential causes in power grid secondary equipment.Defect identification of power grid secondary equipment is achieved by defect subgraph search based on the knowledge graph,and defect inference based on the Bayesian network.Practical application cases prove this method’s effectiveness in identifying secondary equipment defect causes,improving identification accuracy and efficiency.展开更多
Background:The medicinal material known as Os Draconis(Longgu)originates from fossilized remains of ancient mammals and is widely used in treating emotional and mental conditions.However,fossil resources are nonrenewa...Background:The medicinal material known as Os Draconis(Longgu)originates from fossilized remains of ancient mammals and is widely used in treating emotional and mental conditions.However,fossil resources are nonrenewable,and clinical demand is increasingly difficult to meet,leading to a proliferation of counterfeit products.During prolonged geological burial,static pressure from the surrounding strata severely compromises the microstructural integrity of osteons in Os Draconis,but Os Draconis still largely retains the structural features of mammalian bone.Methods:Using verified authentic Os Draconis samples over 10,000 years old as a baseline,this study summarizes the ultrastructural characteristics of genuine Os Draconis.Employing electron probe microanalysis and optical polarized light microscopy,we examined 28 batches of authentic Os Draconis and 31 batches of counterfeits to identify their ultrastructural differences.Key points for ultrastructural identification of Os Draconis were compiled,and a new identification approach was proposed based on these differences.Results:Authentic Os Draconis exhibited distinct ultrastructural markers:irregularly shaped osteons with traversing fissures,deformed/displaced Haversian canals,and secondary mineral infill(predominantly calcium carbonate).Counterfeits showed regular osteon arrangements,absent traversal fissures,and homogeneous hydroxyapatite composition.Lab-simulated samples lacked structural degradation features.EPMA confirmed calcium carbonate infill in fossilized Haversian canals,while elemental profiles differentiated lacunae types(void vs.mineral-packed).Conclusion:The study established ultrastructural criteria for authentic Os Draconis identification:osteon deformation,geological fissures penetrating bone units,and heterogenous mineral deposition.These features,unattainable in counterfeits or modern processed bones,provide a cost-effective,accurate identification method.This approach bridges gaps in TCM material standardization and supports quality control for clinical applications.展开更多
Root rot is a prevalent soil-borne fungal disease in citrus.Citron C-05(Citrus medica)stands out as a germplasm within Citrus spp.due to its complete resistance to citrus canker and favorable characteristics such as s...Root rot is a prevalent soil-borne fungal disease in citrus.Citron C-05(Citrus medica)stands out as a germplasm within Citrus spp.due to its complete resistance to citrus canker and favorable characteristics such as single embryo and easy rooting.However,Citron C-05 was found to be highly susceptible to root rot during cultivation,with the specific pathogens previously unknown.In this study,four candidate fungal species were isolated from Citron C-05 roots.Sequence analysis of ITS,EF-1a,RPB1,and RPB2 identified two Fusarium solani strains,Rr-2 and Rr-4,as the candidates causing root rot in Citron C-05.Resistance tests showed these two pathogens increased root damage rate from 10.30%to 35.69%in Citron C-05,sour orange(Citrus aurantium),sweet orange(Citrus sinensis)and pummelo(Citrus grandis).F.solani exhibited the weak pathogenicity towards trifoliate orange(Poncirus trifoliata).DAB staining revealed none of reddish-brown precipitation in the four susceptible citrus germplasm after infection with F.solani,while trifoliate orange exhibited significant H2O2 accumulation.Trypan blue staining indicated increased cell death in the four susceptible citrus germplasm following infection with these two pathogens but not in trifoliate orange.These findings provide a comprehensive understanding of citrus root rot and support future research on the mechanisms of root rot resistance in citrus.展开更多
在处理复杂环境下的定位问题时,射频识别(Radio Frequency Identification,RFID)的信号会受到多种环境因素的影响而产生随机波动,导致定位结果与实际位置存在偏差,影响仓储配送的准确性和效率。因此,文章提出基于RFID虚拟标签的电力物...在处理复杂环境下的定位问题时,射频识别(Radio Frequency Identification,RFID)的信号会受到多种环境因素的影响而产生随机波动,导致定位结果与实际位置存在偏差,影响仓储配送的准确性和效率。因此,文章提出基于RFID虚拟标签的电力物资仓储配送模糊定位方法——为电力物资生成RFID虚拟标签,通过无线射频扫描技术获取这些标签所发出的无线射频信号,引入超宽带(Ultra Wide Band,UWB)无线定位技术进行辅助,通过卡尔曼滤波来整合RFID虚拟标签数据和无线定位技术获取的位置数据;在获取信号后,利用基于射频识别技术的室内定位算法对信号进行处理和分析,以此实现电力物资在仓储配送过程中的模糊定位。实验证明,所提方法定位误差不超过0.1 m,可以实现对物资的精准追踪与定位。展开更多
Dynamic framed slotted Aloha algorithm is one of popular passive radio frequency identification(RFID) tag anticollision algorithms. In the algorithm, a frame length requires dynamical adjustment to achieve higher iden...Dynamic framed slotted Aloha algorithm is one of popular passive radio frequency identification(RFID) tag anticollision algorithms. In the algorithm, a frame length requires dynamical adjustment to achieve higher identification efficiency.Generally, the adjustment of the frame length is not only related to the number of tags, but also to the occurrence probability of capture effect. Existing algorithms could estimate both the number of tags and the probability of capture effect. Under large-scale RFID tag identification, however, the number of tags would be much larger than an initial frame length. In this scenario, the existing algorithm's estimation errors would substantially increase. In this paper, we propose a novel algorithm called capture-aware Bayesian estimate, which adopts Bayesian rules to accurately estimate the number and the probability simultaneously. From numerical results, the proposed algorithm adapts well to the large-scale RFID tag identification. It has lower estimation errors than the existing algorithms. Further,the identification efficiency from the proposed estimate is also higher than the existing algorithms.展开更多
基金supported by the State Grid Southwest Branch Project“Research on Defect Diagnosis and Early Warning Technology of Relay Protection and Safety Automation Devices Based on Multi-Source Heterogeneous Defect Data”.
文摘The reliable operation of power grid secondary equipment is an important guarantee for the safety and stability of the power system.However,various defects could be produced in the secondary equipment during longtermoperation.The complex relationship between the defect phenomenon andmulti-layer causes and the probabilistic influence of secondary equipment cannot be described through knowledge extraction and fusion technology by existing methods,which limits the real-time and accuracy of defect identification.Therefore,a defect recognition method based on the Bayesian network and knowledge graph fusion is proposed.The defect data of secondary equipment is transformed into the structured knowledge graph through knowledge extraction and fusion technology.The knowledge graph of power grid secondary equipment is mapped to the Bayesian network framework,combined with historical defect data,and introduced Noisy-OR nodes.The prior and conditional probabilities of the Bayesian network are then reasonably assigned to build a model that reflects the probability dependence between defect phenomena and potential causes in power grid secondary equipment.Defect identification of power grid secondary equipment is achieved by defect subgraph search based on the knowledge graph,and defect inference based on the Bayesian network.Practical application cases prove this method’s effectiveness in identifying secondary equipment defect causes,improving identification accuracy and efficiency.
基金supported by the Scientific and Technological Innovation Project of the China Academy of Chinese Medical Sciences(CI2021A04013)the National Natural Science Foundation of China(82204610)+1 种基金the Qihang Talent Program(L2022046)the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ15-YQ-041 and L2021029).
文摘Background:The medicinal material known as Os Draconis(Longgu)originates from fossilized remains of ancient mammals and is widely used in treating emotional and mental conditions.However,fossil resources are nonrenewable,and clinical demand is increasingly difficult to meet,leading to a proliferation of counterfeit products.During prolonged geological burial,static pressure from the surrounding strata severely compromises the microstructural integrity of osteons in Os Draconis,but Os Draconis still largely retains the structural features of mammalian bone.Methods:Using verified authentic Os Draconis samples over 10,000 years old as a baseline,this study summarizes the ultrastructural characteristics of genuine Os Draconis.Employing electron probe microanalysis and optical polarized light microscopy,we examined 28 batches of authentic Os Draconis and 31 batches of counterfeits to identify their ultrastructural differences.Key points for ultrastructural identification of Os Draconis were compiled,and a new identification approach was proposed based on these differences.Results:Authentic Os Draconis exhibited distinct ultrastructural markers:irregularly shaped osteons with traversing fissures,deformed/displaced Haversian canals,and secondary mineral infill(predominantly calcium carbonate).Counterfeits showed regular osteon arrangements,absent traversal fissures,and homogeneous hydroxyapatite composition.Lab-simulated samples lacked structural degradation features.EPMA confirmed calcium carbonate infill in fossilized Haversian canals,while elemental profiles differentiated lacunae types(void vs.mineral-packed).Conclusion:The study established ultrastructural criteria for authentic Os Draconis identification:osteon deformation,geological fissures penetrating bone units,and heterogenous mineral deposition.These features,unattainable in counterfeits or modern processed bones,provide a cost-effective,accurate identification method.This approach bridges gaps in TCM material standardization and supports quality control for clinical applications.
基金supported by Joint Funds of the National Natural Science Foundation of China(Grant No.U21A20228).
文摘Root rot is a prevalent soil-borne fungal disease in citrus.Citron C-05(Citrus medica)stands out as a germplasm within Citrus spp.due to its complete resistance to citrus canker and favorable characteristics such as single embryo and easy rooting.However,Citron C-05 was found to be highly susceptible to root rot during cultivation,with the specific pathogens previously unknown.In this study,four candidate fungal species were isolated from Citron C-05 roots.Sequence analysis of ITS,EF-1a,RPB1,and RPB2 identified two Fusarium solani strains,Rr-2 and Rr-4,as the candidates causing root rot in Citron C-05.Resistance tests showed these two pathogens increased root damage rate from 10.30%to 35.69%in Citron C-05,sour orange(Citrus aurantium),sweet orange(Citrus sinensis)and pummelo(Citrus grandis).F.solani exhibited the weak pathogenicity towards trifoliate orange(Poncirus trifoliata).DAB staining revealed none of reddish-brown precipitation in the four susceptible citrus germplasm after infection with F.solani,while trifoliate orange exhibited significant H2O2 accumulation.Trypan blue staining indicated increased cell death in the four susceptible citrus germplasm following infection with these two pathogens but not in trifoliate orange.These findings provide a comprehensive understanding of citrus root rot and support future research on the mechanisms of root rot resistance in citrus.
基金supported in part by the National Natural Science Foundation of China(61762093)the 17th Batch of Young and Middle-aged Leaders in Academic and Technical Reserved Talents Project of Yunnan Province(2014HB019)the Program for Innovative Research Team(in Science and Technology)in University of Yunnan Province
文摘Dynamic framed slotted Aloha algorithm is one of popular passive radio frequency identification(RFID) tag anticollision algorithms. In the algorithm, a frame length requires dynamical adjustment to achieve higher identification efficiency.Generally, the adjustment of the frame length is not only related to the number of tags, but also to the occurrence probability of capture effect. Existing algorithms could estimate both the number of tags and the probability of capture effect. Under large-scale RFID tag identification, however, the number of tags would be much larger than an initial frame length. In this scenario, the existing algorithm's estimation errors would substantially increase. In this paper, we propose a novel algorithm called capture-aware Bayesian estimate, which adopts Bayesian rules to accurately estimate the number and the probability simultaneously. From numerical results, the proposed algorithm adapts well to the large-scale RFID tag identification. It has lower estimation errors than the existing algorithms. Further,the identification efficiency from the proposed estimate is also higher than the existing algorithms.