We introduce the concept of ideal-comparability condition for regular rings. Let I be an ideal of a regular ring R. If R satisfies the I-comparability condition, then R is one-sided unit-regular if and only if so is R...We introduce the concept of ideal-comparability condition for regular rings. Let I be an ideal of a regular ring R. If R satisfies the I-comparability condition, then R is one-sided unit-regular if and only if so is R/I. Also, we show that a regular ring R satisfies the general comparability if and only if the following hold: (1) R/I satisfies the general comparability; (2) R satisfies the general I-comparability condition; (3) The natural map B(R) → B(R/I) is surjective.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 19801012)the Ministry of Education of China ([2000] 65)
文摘We introduce the concept of ideal-comparability condition for regular rings. Let I be an ideal of a regular ring R. If R satisfies the I-comparability condition, then R is one-sided unit-regular if and only if so is R/I. Also, we show that a regular ring R satisfies the general comparability if and only if the following hold: (1) R/I satisfies the general comparability; (2) R satisfies the general I-comparability condition; (3) The natural map B(R) → B(R/I) is surjective.