The negative freeboard of sea ice(i.e., the height of ice surface below sea level) with subsequent flooding is widespread in the Southern Ocean, as opposed to the Arctic, due to the relatively thicker ice and thinner ...The negative freeboard of sea ice(i.e., the height of ice surface below sea level) with subsequent flooding is widespread in the Southern Ocean, as opposed to the Arctic, due to the relatively thicker ice and thinner snow. In this study, we used the observations of snow and ice thickness from 103 ice mass balance buoys(IMBs) and NASA Operation IceBridge Aircraft Missions to investigate the spatial distribution of negative freeboard of Arctic sea ice. The Result showed that seven IMBs recorded negative freeboards, which were sporadically located in the seas around Northeast Greenland, the Central Arctic Ocean, and the marginal areas of the Chukchi–Beaufort Sea. The observed maximum values of negative freeboard could reach-0.12 m in the seas around Northeast Greenland. The observations from IceBridge campaigns also revealed negative freeboard comparable to those of IMBs in the seas around North Greenland and the Beaufort Sea. We further investigated the large-scale distribution of negative freeboard using NASA CryoSat-2 radar altimeter data, and the result indicates that except for the negative freeboard areas observed by IMBs and IceBridge, there are negative freeboards in other marginal seas of the Arctic Ocean. However, the comparison of the satellite data with the IMB data and IceBridge data shows that the Cryosat-2 data generally overestimate the extent and magnitude of the negative freeboard in the Arctic.展开更多
The basal channel is a detailed morphological feature of the ice shelf caused by uneven basal melting.This kind of specifically morphology is widely distributed in polar ice shelves.It is an important research object ...The basal channel is a detailed morphological feature of the ice shelf caused by uneven basal melting.This kind of specifically morphology is widely distributed in polar ice shelves.It is an important research object of sea-ice interaction and plays a vital role in studying the relationship between the ice sheet/ice shelf and global warming.In this paper,high-resolution remote sensing image and ice penetration data were combined to extract the basal channel of the Pine Island Ice Shelf.The depth variation of Pine Island Ice Shelf in the recent 20 years was analyzed and discussed by using ICESat-1,ICESat-2,and IceBridge data.Combined with relevant marine meteorological elements(sea surface temperature,surface melting days,circumpolar deep water and wind)to analyze the basal channel changes,the redistribution of ocean heat is considered to be the most important factor affecting the evolution and development of the basal channel.展开更多
基金supported by the National Key Research and Development Program of China (No. 2018YFC1406104)the National Natural Science Foundation of China (Nos. 41425003 and 41971084)。
文摘The negative freeboard of sea ice(i.e., the height of ice surface below sea level) with subsequent flooding is widespread in the Southern Ocean, as opposed to the Arctic, due to the relatively thicker ice and thinner snow. In this study, we used the observations of snow and ice thickness from 103 ice mass balance buoys(IMBs) and NASA Operation IceBridge Aircraft Missions to investigate the spatial distribution of negative freeboard of Arctic sea ice. The Result showed that seven IMBs recorded negative freeboards, which were sporadically located in the seas around Northeast Greenland, the Central Arctic Ocean, and the marginal areas of the Chukchi–Beaufort Sea. The observed maximum values of negative freeboard could reach-0.12 m in the seas around Northeast Greenland. The observations from IceBridge campaigns also revealed negative freeboard comparable to those of IMBs in the seas around North Greenland and the Beaufort Sea. We further investigated the large-scale distribution of negative freeboard using NASA CryoSat-2 radar altimeter data, and the result indicates that except for the negative freeboard areas observed by IMBs and IceBridge, there are negative freeboards in other marginal seas of the Arctic Ocean. However, the comparison of the satellite data with the IMB data and IceBridge data shows that the Cryosat-2 data generally overestimate the extent and magnitude of the negative freeboard in the Arctic.
基金The National Natural Science Foundation of China under contract Nos 41941010 and 42006184the Fundamental Research Funds for the Central Universities under contract No.2042022kf1068the Independent Scientific Research Project of the State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing.
文摘The basal channel is a detailed morphological feature of the ice shelf caused by uneven basal melting.This kind of specifically morphology is widely distributed in polar ice shelves.It is an important research object of sea-ice interaction and plays a vital role in studying the relationship between the ice sheet/ice shelf and global warming.In this paper,high-resolution remote sensing image and ice penetration data were combined to extract the basal channel of the Pine Island Ice Shelf.The depth variation of Pine Island Ice Shelf in the recent 20 years was analyzed and discussed by using ICESat-1,ICESat-2,and IceBridge data.Combined with relevant marine meteorological elements(sea surface temperature,surface melting days,circumpolar deep water and wind)to analyze the basal channel changes,the redistribution of ocean heat is considered to be the most important factor affecting the evolution and development of the basal channel.