This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA f...This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA framework integrates security by design principles, micro-segmentation, and Island Mode Operation (IMO) to enhance cyber resilience and ensure continuous, secure operations. The methodology deploys a Forward-Thinking Architecture Strategy (FTAS) algorithm, which utilises an industrial Intrusion Detection System (IDS) implemented with Python’s Network Intrusion Detection System (NIDS) library. The FTAS algorithm successfully identified and responded to cyber-attacks, ensuring minimal system disruption. ISERA has been validated through comprehensive testing scenarios simulating Denial of Service (DoS) attacks and malware intrusions, at both the IT and OT layers where it successfully mitigates the impact of malicious activity. Results demonstrate ISERA’s efficacy in real-time threat detection, containment, and incident response, thus ensuring the integrity and reliability of critical infrastructure systems. ISERA’s decentralised approach contributes to global net zero goals by optimising resource use and minimising environmental impact. By adopting a decentralised control architecture and leveraging virtualisation, ISERA significantly enhances the cyber resilience and sustainability of critical infrastructure systems. This approach not only strengthens defences against evolving cyber threats but also optimises resource allocation, reducing the system’s carbon footprint. As a result, ISERA ensures the uninterrupted operation of essential services while contributing to broader net zero goals.展开更多
The electro⁃thermal anti/de-icing systems have high heating efficiency and relatively simple structures,marking them as a key development direction for future icing protection.Existing simulation algorithms for electr...The electro⁃thermal anti/de-icing systems have high heating efficiency and relatively simple structures,marking them as a key development direction for future icing protection.Existing simulation algorithms for electrothermal de-icing seldom delve into comprehensive ice accretion-melting-deicing models that account for ice shedding.Therefore,the detachment behavior of ice layers during the heating process requires in-depth research and discussion.This paper physically models the phenomenon of ice shedding,incorporates the detachment behavior of ice layers during heating,improves the existing mathematical model for electro-thermal de-icing calculations,establishes an ice accretion-melting-deicing model for electro-thermal de-icing systems,and conducts numerical simulation,verification and optimization analysis of electro-thermal de-icing considering ice shedding.Through multi-condition de-icing numerical simulations of a specific wing model,it is found that ambient temperature can serve as a factor for adapting the electro heating anti/de-icing strategy to the environment.An optimization of heating heat flux density and heating/cooling time is conducted for the wing de-icing control law under the calculated conditions.The improved electrothermal de-icing model and algorithm developed in this paper provide solid technical support for the design of electrothermal de-icing systems.展开更多
The International Commission on Stratigraphy(ICS)has been producing and updating its International Chro-nostratigraphic Chart for several decades.The chart communicates higher-order divisions of geological time and ac...The International Commission on Stratigraphy(ICS)has been producing and updating its International Chro-nostratigraphic Chart for several decades.The chart communicates higher-order divisions of geological time and actual knowledge on the numerical ages of their bound-aries.Distributed via the ICS website www.stratigraphy.org the chart promotes use in graphic,tabulated and further digital forms in multiple languages.This paper is a status update,eleven years since the last such publication,cov-ering activities between 2012 and 2024.Chart updates during the past decade have echoed the ICS’s primary objective of precisely defining a global standard set of time-correlative units(Systems,Series,Stages)for stratigraphic successions worldwide.These units are,in turn,the basis for the Periods,Epochs,and Ages of the Geological Time Scale.Their standardization is fundamental for expressing geological knowledge,in application and education,out-reach and continuing research.The chart offers a frame-work through which regional-scale higher-resolution divisions can be linked,equated and collated.Likewise it offers a framework for digital representation of the Geological Time Scale.Maintenance and distribution of chart versions on the web has been a manual endeavour,a process that ICS is upgrading to serve an increasingly digital world.展开更多
Objective:To anatomically and phenotypically characterize the insular cortex(IC)-nucleus tractus soli-tari(NTS)neural pathway.Methods:Adult male Sprague-Dawley rats were divided into three experimental cohorts for neu...Objective:To anatomically and phenotypically characterize the insular cortex(IC)-nucleus tractus soli-tari(NTS)neural pathway.Methods:Adult male Sprague-Dawley rats were divided into three experimental cohorts for neural circuit tracing.Anterograde labeling was achieved by injecting anterograde self-complementary adeno-associated viruses(scAAVs)into the IC.Retrograde tracing involved NTS injections of either retrograde scAAVs or FluoroGold(FG),combined with immunofluorescence histochemical staining to identify IC-originating projection neurons.For postsynaptic neurochemical phenotype characterization,IC was injected with AAV2/1-CaMKII-Cre,while a mixture of AAV2/9-Syn-DIO-mCherry and AAV2/9-VGAT1-EGFP was injected into the NTS.The rats were allowed to survive for one week following scAAVs or FG injection or four weeks after recombinase-dependent systems injection.Then the rats were sacrificed,and serial brain sections were prepared for immunofluorescence histochemical staining(brain section containing FG)and subsequent fluorescence/confocal microscopic analysis.Results:(1)Anterograde viral tracing re-vealed dense axonal terminals from the IC projecting to the medial subnucleus of the NTS,while retrograde tracing re-vealed that IC neurons projecting to the NTS were predominantly localized within the dysgranular layer;(2)IC-NTS projection neurons were exclusive glutamatergic(100%,n=3);(3)NTS neurons receiving IC inputs were mainly lo-calized in the medial subnucleus,and were predominantly GABAergic(79.8±3.2%,n=3).Conclusion:The pres-ent results indicate that a descending pathway from excitatory neurons of the IC terminates onto inhibitory neurons of the NTS,which might represent a potential neuromodulatory target for visceral pain disorders.展开更多
The icing characteristics of supercooled large droplet(SLD)impacting carbon fiber-reinforced composites(CFRCs)remain poorly understood,hindering the enhancement of ice protection capabilities and the certification of ...The icing characteristics of supercooled large droplet(SLD)impacting carbon fiber-reinforced composites(CFRCs)remain poorly understood,hindering the enhancement of ice protection capabilities and the certification of ice-accreted composite aircraft.The paper systematically investigates the effects of the supercooling degree,the surface temperature,and the impact velocity on the ice accretion behavior of SLDs impacting carbon fiber-reinforced epoxy composite surfaces.To address the ice-prone nature of CFRCs,nanoparticle-modified anti-icing coatings are developed,and the icing characteristics of SLD-impacted modified carbon fiber-reinforced epoxy composite surfaces are analyzed.Results demonstrate that surface-modified carbon fiber-reinforced epoxy composite exhibits significantly delayed ice formation.Under conditions of droplet temperature(−15℃)and surface temperature(−18℃),the icing time of hydrophobic-modified CFRCs was delayed by over 1100 ms,representing a 5.4-fold improvement compared to the unmodified carbon fiber-reinforced epoxy composite.展开更多
This numerical simulation investigates the two⁃phase flow under the condition of supercooled large droplets impinging on the aircraft surface.Based on Eulerian framework,a method for calculating supercooled water drop...This numerical simulation investigates the two⁃phase flow under the condition of supercooled large droplets impinging on the aircraft surface.Based on Eulerian framework,a method for calculating supercooled water droplet impingement characteristics is established.Then,considering the deformation and breaking effects during the movement,this method is extended to calculate the impingement characteristics of supercooled large droplets,as well as the bouncing and splashing effects during impingement.The impingement characteristics of supercooled large droplets is then investigated by this method.The results demonstrate that the deformation and breaking effects of supercooled large droplets have negligible influence on the impingement characteristics under the experimental conditions of this paper.In addition,the results of the impingement range and collection efficiency decrease when considering the bouncing and splashing effects.The bouncing effect mainly affects the mass loss near the impingement limits,while the splashing effect influences the result around the stagnation point.This investigation is beneficial for the analysis of aircraft icing and the design of anti⁃icing system with supercooled large droplet conditions.展开更多
Wind turbine blades in cold regions are susceptible to icing due to meteorological conditions,significantly affecting the turbine's energy capture efficiency and operational safety.Precise calculation of droplet c...Wind turbine blades in cold regions are susceptible to icing due to meteorological conditions,significantly affecting the turbine's energy capture efficiency and operational safety.Precise calculation of droplet collection efficiency(DCE)is essential for accurate icing prediction.This study examines existing methods for calculating DCE and identifies limitations during glaze ice formation.An enhanced method based on the Euler Wall Film(EWF)model is introduced to address these limitations,incorporating splashing and rebound phenomena during glaze ice formation on wind turbine blades.The method's reliability is validated using data from the classic symmetric airfoil,NACA0012.Through the control variable method,this research examines DCE variations under different incoming velocities,medium volume droplet diameters(MVDs),and temperatures.The study also analyzes the distinctions between the improved method and the existing Eulerian method.Results indicate that both impact range and maximum DCE increase with higher incoming velocity and MVD,while temperature exhibits minimal influence on DCE.Variations between the calculation methods reveal differences in water droplet splashing intensity,primarily influenced by droplet kinetic energy and liquid film thickness.The splashing phenomenon gradually decreases as incoming velocity and MVD increase.展开更多
This study presents a data-driven approach to predict tailplane aerodynamics in icing conditions,supporting the ice-tolerant design of aircraft horizontal stabilizers.The core of this work is a low-cost predictive mod...This study presents a data-driven approach to predict tailplane aerodynamics in icing conditions,supporting the ice-tolerant design of aircraft horizontal stabilizers.The core of this work is a low-cost predictive model for analyzing icing effects on swept tailplanes.The method relies on a multi-fidelity data gathering campaign,enabling seamless integration into multidisciplinary aircraft design workflows.A dataset of iced airfoil shapes was generated using 2D inviscid methods across various flight conditions.High-fidelity CFD simulations were conducted on both clean and iced geometries,forming a multidimensional aerodynamic database.This 2D database feeds a nonlinear vortex lattice method to estimate 3D aerodynamic characteristics,following a'quasi-3D'approach.The resulting reduced-order model delivers fast aerodynamic performance estimates of iced tailplanes.To demonstrate its effectiveness,optimal ice-tolerant tailplane designs were selected from a range of feasible shapes based on a reference transport aircraft.The analysis validates the model's reliability,accuracy,and limitations concerning 3D ice shapes and aerodynamic characteristics.Most notably,the model offers near-zero computational cost compared to high-fidelity simulations,making it a valuable tool for efficient aircraft design.展开更多
近年来全球极端低温天气频发,严重影响了茶树的产量和品质。ICE(Inducer of CBF expression)基因家族主要参与植物的低温胁迫响应,但在茶树领域中的相关研究还不够全面。本研究从茶树基因组中鉴定出51个茶树CsICEs基因,对其理化性质、...近年来全球极端低温天气频发,严重影响了茶树的产量和品质。ICE(Inducer of CBF expression)基因家族主要参与植物的低温胁迫响应,但在茶树领域中的相关研究还不够全面。本研究从茶树基因组中鉴定出51个茶树CsICEs基因,对其理化性质、基因结构和启动子顺式作用元件展开生物信息学分析。茶树CsICEs基因的启动子区域富含光响应、植物激素、生长发育及非生物胁迫相关顺式作用元件,其可能参与多种逆境胁迫响应。转录组分析和RT-qPCR验证结果发现,低温下CsICE43基因的表达量上升了4.24倍,其可能与茶树低温响应相关。以茶树品种‘保靖黄金茶1号’的cDNA为模板,克隆获得了CsICE43基因,其在不同组织中的表达模式存在差异,在顶芽和嫩叶中特异性高表达。蛋白氨基酸序列和系统进化树分析表明,CsICE43基因包含与ICE家族其他成员一致的S-rich、bHLH、ACT等保守结构域,且与毛花猕猴桃(Actinidiaeriantha)的亲缘关系较近。在STRING在线网站中以拟南芥AtICEs为模型,推测茶树CsICE43蛋白与HOS1、MYB15、DREB1/2存在潜在的互作关系。亚细胞定位试验表明CsICE43定位于细胞核,与跨膜结构分析结果一致。综上所述,本研究发现CsICE43基因可能与茶树低温响应关联,为深入挖掘其基因功能与抗寒分子机理提供了一定的理论基础。展开更多
Based on comprehensive observations of 20 wire icing events during winter from 2019 to 2021,we investigated the characteristics of the icing properties,the atmospheric boundary layer structure,the raindrop size distri...Based on comprehensive observations of 20 wire icing events during winter from 2019 to 2021,we investigated the characteristics of the icing properties,the atmospheric boundary layer structure,the raindrop size distribution,and their associated effects on the ice accretion mechanism in the mountainous region of Southwest China.The maximum ice weight was positively correlated with the duration of ice accretion in the mountainous area.The duration of precipitation accounted for less than 20%of the icing period in the mountainous area,with solid-phase hydrometeors being predominant.Icing events,dominated by freezing rain(FR)and mixed rain–graupel(more than 70%),were characterized by glaze or highdensity mixed icing.The relationship between the melting energy and refreezing energy reflected the distribution characteristics of the proportion of FR under mixed-phase precipitation.The intensity of the warm layer and the dominant precipitation phase significantly affected the variations in the microphysical properties of FR.The melting of large dry snowflakes significantly contributed to FR in the mountainous areas,resulting in smaller generalized intercepts and larger mass-weighted mean diameters in the presence of a stronger warm layer.Under a weaker warm layer,the value of the massweighted mean diameter was significantly smaller because of the inability of large solid particles to melt.Finally,FR in the mountainous area dominated the ice weight during the rapid ice accumulation period.A numerical simulation of FR icing on wires effectively revealed the evolution of disaster-causing icing in mountainous areas.展开更多
Existing icing detection technologies face challenges when applied to small and medium-sized aircraft,especially electric vertical take-off and landing(eVTOL)aircraft that meet the needs of low-altitude economic devel...Existing icing detection technologies face challenges when applied to small and medium-sized aircraft,especially electric vertical take-off and landing(eVTOL)aircraft that meet the needs of low-altitude economic development.This study proposes a data-driven icing detection method based on rotor performance evolution.Through dry-air baseline tests and dynamic icing comparative experiments(wind speed 0—30 m/s,rotational speed 0—3000 r/min,collective pitch 0°—8°)of a 0.6 m rotor in the FL-61 icing wind tunnel,a multi-source heterogeneous dataset containing motion parameters,aerodynamic parameters,and icing state identifiers is constructed.An innovative signal processing architecture combining adaptive Kalman filtering and moving average cascading is adopted.And a comparative study is conducted on the performance of support vector machine(SVM),multilayer perceptron(MLP),and random forest(RF)algorithms,achieving real-time identification of icing states in rotating components.Experimental results demonstrate that the method exhibits a minimum detection latency of 6.9 s and 96%overall accuracy in reserved test cases,featuring low-latency and low false-alarm,providing a sensor-free lightweight solution for light/vertical takeoff and landing aircraft.展开更多
Icing of water droplets is a ubiquitous phenomenon with significant implications across natural systems and industrial applications.Despite extensive research,the intricate interplay among heat transfer,mass transport...Icing of water droplets is a ubiquitous phenomenon with significant implications across natural systems and industrial applications.Despite extensive research,the intricate interplay among heat transfer,mass transport,and phase change during droplet freezing remains incompletely understood,particularly in the context of multiscale dynamics and environmental dependencies.This review critically examines recent advances in uncovering the fundamental mechanisms of droplet icing through experimental,theoretical,and computational approaches.We begin by revisiting the classical tip singularity problem in the freezing of pure water droplets,analyzing its mathematical formulation and physical significance.Subsequent sections explore how environmental boundary conditions and multicomponent effects influence freezing kinetics,solute redistribution,and ice morphology.Furthermore,we evaluate emerging hybrid numerical frameworks that resolve coupled multiphase physics during solidification processes.Finally,we identify key challenges and open questions that require further investigation in this field.展开更多
Ice cover on transmission lines is a significant issue that affects the safe operation of the power system.Accurate calculation of the thickness of wire icing can effectively prevent economic losses caused by ice disa...Ice cover on transmission lines is a significant issue that affects the safe operation of the power system.Accurate calculation of the thickness of wire icing can effectively prevent economic losses caused by ice disasters and reduce the impact of power outages on residents.However,under extreme weather conditions,strong instantaneous wind can cause tension sensors to fail,resulting in significant errors in the calculation of icing thickness in traditional mechanics-based models.In this paper,we propose a dynamic prediction model of wire icing thickness that can adapt to extreme weather environments.The model expands scarce raw data by the Wasserstein Generative Adversarial Network with Gradient Penalty(WGAN-GP)technique,records historical environmental information by a recurrent neural network,and evaluates the ice warning levels by a classifier.At each time point,the model diagnoses whether the current sensor failure is due to icing or strong winds.If it is determined that the wire is covered with ice,the icing thickness will be calculated after the wind-induced tension is removed from the ice-wind coupling tension.Our new model was evaluated using data from the power grid in an area with extreme weather.The results show that the proposed model has significant improvements in accuracy compared with traditional models.展开更多
Polar ships face significant risks from ice accretion on decks,superstructures,and power systems.Ice formation on the power intake system particularly affects vessel stability and safety.While freshwater icing has bee...Polar ships face significant risks from ice accretion on decks,superstructures,and power systems.Ice formation on the power intake system particularly affects vessel stability and safety.While freshwater icing has been extensively researched,comprehensive multi-parameter studies on ice accretion for intake structures remain insufficient.This investigation examines the icing characteristics of the air shroud,a critical component of marine gas turbines,resulting from saltwater droplet freezing.The study utilized a custom-built cyclic ice wind tunnel,with flow field quality verified through Five-hole probe and Hot wire anemometer methods,and droplet field quality validated using Laser,Flowmeter,Ice blade,and Icing calibration grid techniques.The research analyzes ice distribution and thickness on the shroud under varying NaCl concentrations,considering temperature,liquid water content(LWC),and median volume diameter(MVD).The findings reveal that decreased salinity facilitates rime ice formation,resulting in rough ice texture.Temperature reduction,increased LWC,and larger MVD enhanced salinity's influence on ice thickness.The shroud exhibits substantial radial ice accretion,with coverage extending to approximately 90%.These results establish a foundation for further investigation of saltwater icing mechanisms and pioneer icing research in marine gas turbine intake systems.展开更多
Ice accretion on structures such as aircraft wings and wind turbine blades poses serious risks to aerodynamic performance and operational safety,particularly in cold and humid environments.This study conducts numerica...Ice accretion on structures such as aircraft wings and wind turbine blades poses serious risks to aerodynamic performance and operational safety,particularly in cold and humid environments.This study conducts numerical simulations of ice formation on thin flat plates using CFD and FENSAP-ICE,exploring how air temperature,wind velocity,and angle of attack(AOA)affect icing behavior and aerodynamic characteristics.Results indicate that ice thickness increases linearly over time.Rime ice forms at low temperatures due to immediate droplet freezing,whereas glaze ice develops at higher temperatures when a water film forms and subsequently refreezes into protruding ice horns;under identical conditions,rime ice consistently produces thicker ice layers than glaze ice.Increasing wind speed substantially enhances ice growth and coverage,while speeds as low as 1 m/s result in minimal accretion.Changes in AOA shift the icing region toward the pressure side,and AOAs of equal magnitude but opposite sign yield symmetrical ice accretion patterns and identical maximum thickness values.After icing,the plate’s leading edge becomes smoother,slightly reducing drag while increasing lift and moment coefficients.These findings highlight the dominant roles of temperature,wind speed,and AOA in determining ice morphology,extent,and aerodynamic impact,providing valuable insights for predicting icing effects and developing mitigation strategies for structures operating in icing-prone regions.展开更多
Icing detection is critically important for preventing safety accidents and economic losses,especially concerning ice formation from invalidated anti-icing fluids(water and ethylene glycol)under extreme conditions.Tra...Icing detection is critically important for preventing safety accidents and economic losses,especially concerning ice formation from invalidated anti-icing fluids(water and ethylene glycol)under extreme conditions.Traditional technologies like ultrasonics and capacitor-antenna face challenges with limited detection areas,lower accuracy,and susceptibility to electromagnetic interference.Here,we introduce a novel viscosity-ultrasensitive fluorescent probe 40,4‴-(2,2-diphenyle-thene-1,1-diyl)bis-(3,5-dicarboxylate)(TPE-2B4C)based on AIEgens for moni-toring ice formation of anti-icing fluids in low-temperature environments.TPE-2B4C,consisting of four sodium carboxylate groups and multiple freely rotating benzene rings,demonstrates outstanding solubility in anti-icing fluids and exhibits no fluorescent background signal even at low temperatures(<−20°C).Upon freezing,TPE-2B4C relocates from the water phase to higher viscosity ethylene glycol,causing restriction of benzene rings and a significantly increased green fluorescence signal.TPE-2B4C can successfully determine whether the anti-icing fluids are icing from−5 to−20°C with a high contrast ratio.Due to its simple setup,fast operation,and broad applicability,our new method is anticipated to be employed for rapid,real-time,and large-scale icing detection.展开更多
This study addresses the issue of spray icing on the air intake grilles of ship power systems in cold maritime environments.Through numerical simulation methods,the influence of environmental parameters on icing chara...This study addresses the issue of spray icing on the air intake grilles of ship power systems in cold maritime environments.Through numerical simulation methods,the influence of environmental parameters on icing characteristics is revealed,and an energy-efficient zoned electric heating anti-icing strategy is proposed.A threedimensional grille model is constructed to systematically analyze the effects of environmental temperature(from−20℃to−4℃),droplet diameter(from 50μm to 500μm),and liquid water content(from 0.5 g/m³to 8 g/m³)on icing rates and blockage of the flow channel.The results indicate that low temperature and high liquid water content significantly exacerbate icing.Under the condition of an environmental temperature of−20℃,droplet diameter of 500μm,and liquid water content of 8 g/m³,the flow channel blockage ratio reaches 30.95%within 10 min.Additionally,as droplet diameter increases,the droplet impingement and icing regions become more concentrated toward the leading edge of blades.To mitigate grille icing in cold environments,an electric heating film configuration is employed for thermal protection.Optimization of the heating strategy reveals that the zoned heating approach,compared to the initial uniform heating scheme,effectively homogenizes surface temperature distribution while reducing total power consumption by 37.47%.This study validates the engineering applicability of the zoned electric heating anti/de-icing strategy,providing theoretical and technical support for the design of anti-icing systems in ship power systems operating in cold maritime regions.展开更多
基金funded by the Office of Gas and Electricity Markets(Ofgem)and supported by De Montfort University(DMU)and Nottingham Trent University(NTU),UK.
文摘This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA framework integrates security by design principles, micro-segmentation, and Island Mode Operation (IMO) to enhance cyber resilience and ensure continuous, secure operations. The methodology deploys a Forward-Thinking Architecture Strategy (FTAS) algorithm, which utilises an industrial Intrusion Detection System (IDS) implemented with Python’s Network Intrusion Detection System (NIDS) library. The FTAS algorithm successfully identified and responded to cyber-attacks, ensuring minimal system disruption. ISERA has been validated through comprehensive testing scenarios simulating Denial of Service (DoS) attacks and malware intrusions, at both the IT and OT layers where it successfully mitigates the impact of malicious activity. Results demonstrate ISERA’s efficacy in real-time threat detection, containment, and incident response, thus ensuring the integrity and reliability of critical infrastructure systems. ISERA’s decentralised approach contributes to global net zero goals by optimising resource use and minimising environmental impact. By adopting a decentralised control architecture and leveraging virtualisation, ISERA significantly enhances the cyber resilience and sustainability of critical infrastructure systems. This approach not only strengthens defences against evolving cyber threats but also optimises resource allocation, reducing the system’s carbon footprint. As a result, ISERA ensures the uninterrupted operation of essential services while contributing to broader net zero goals.
基金supported by the National Natural Science Foundation of China(No.52272428)。
文摘The electro⁃thermal anti/de-icing systems have high heating efficiency and relatively simple structures,marking them as a key development direction for future icing protection.Existing simulation algorithms for electrothermal de-icing seldom delve into comprehensive ice accretion-melting-deicing models that account for ice shedding.Therefore,the detachment behavior of ice layers during the heating process requires in-depth research and discussion.This paper physically models the phenomenon of ice shedding,incorporates the detachment behavior of ice layers during heating,improves the existing mathematical model for electro-thermal de-icing calculations,establishes an ice accretion-melting-deicing model for electro-thermal de-icing systems,and conducts numerical simulation,verification and optimization analysis of electro-thermal de-icing considering ice shedding.Through multi-condition de-icing numerical simulations of a specific wing model,it is found that ambient temperature can serve as a factor for adapting the electro heating anti/de-icing strategy to the environment.An optimization of heating heat flux density and heating/cooling time is conducted for the wing de-icing control law under the calculated conditions.The improved electrothermal de-icing model and algorithm developed in this paper provide solid technical support for the design of electrothermal de-icing systems.
文摘The International Commission on Stratigraphy(ICS)has been producing and updating its International Chro-nostratigraphic Chart for several decades.The chart communicates higher-order divisions of geological time and actual knowledge on the numerical ages of their bound-aries.Distributed via the ICS website www.stratigraphy.org the chart promotes use in graphic,tabulated and further digital forms in multiple languages.This paper is a status update,eleven years since the last such publication,cov-ering activities between 2012 and 2024.Chart updates during the past decade have echoed the ICS’s primary objective of precisely defining a global standard set of time-correlative units(Systems,Series,Stages)for stratigraphic successions worldwide.These units are,in turn,the basis for the Periods,Epochs,and Ages of the Geological Time Scale.Their standardization is fundamental for expressing geological knowledge,in application and education,out-reach and continuing research.The chart offers a frame-work through which regional-scale higher-resolution divisions can be linked,equated and collated.Likewise it offers a framework for digital representation of the Geological Time Scale.Maintenance and distribution of chart versions on the web has been a manual endeavour,a process that ICS is upgrading to serve an increasingly digital world.
文摘Objective:To anatomically and phenotypically characterize the insular cortex(IC)-nucleus tractus soli-tari(NTS)neural pathway.Methods:Adult male Sprague-Dawley rats were divided into three experimental cohorts for neural circuit tracing.Anterograde labeling was achieved by injecting anterograde self-complementary adeno-associated viruses(scAAVs)into the IC.Retrograde tracing involved NTS injections of either retrograde scAAVs or FluoroGold(FG),combined with immunofluorescence histochemical staining to identify IC-originating projection neurons.For postsynaptic neurochemical phenotype characterization,IC was injected with AAV2/1-CaMKII-Cre,while a mixture of AAV2/9-Syn-DIO-mCherry and AAV2/9-VGAT1-EGFP was injected into the NTS.The rats were allowed to survive for one week following scAAVs or FG injection or four weeks after recombinase-dependent systems injection.Then the rats were sacrificed,and serial brain sections were prepared for immunofluorescence histochemical staining(brain section containing FG)and subsequent fluorescence/confocal microscopic analysis.Results:(1)Anterograde viral tracing re-vealed dense axonal terminals from the IC projecting to the medial subnucleus of the NTS,while retrograde tracing re-vealed that IC neurons projecting to the NTS were predominantly localized within the dysgranular layer;(2)IC-NTS projection neurons were exclusive glutamatergic(100%,n=3);(3)NTS neurons receiving IC inputs were mainly lo-calized in the medial subnucleus,and were predominantly GABAergic(79.8±3.2%,n=3).Conclusion:The pres-ent results indicate that a descending pathway from excitatory neurons of the IC terminates onto inhibitory neurons of the NTS,which might represent a potential neuromodulatory target for visceral pain disorders.
基金supported by the National Key Laboratory of Advanced Composite Materials(No.KZ42191814)。
文摘The icing characteristics of supercooled large droplet(SLD)impacting carbon fiber-reinforced composites(CFRCs)remain poorly understood,hindering the enhancement of ice protection capabilities and the certification of ice-accreted composite aircraft.The paper systematically investigates the effects of the supercooling degree,the surface temperature,and the impact velocity on the ice accretion behavior of SLDs impacting carbon fiber-reinforced epoxy composite surfaces.To address the ice-prone nature of CFRCs,nanoparticle-modified anti-icing coatings are developed,and the icing characteristics of SLD-impacted modified carbon fiber-reinforced epoxy composite surfaces are analyzed.Results demonstrate that surface-modified carbon fiber-reinforced epoxy composite exhibits significantly delayed ice formation.Under conditions of droplet temperature(−15℃)and surface temperature(−18℃),the icing time of hydrophobic-modified CFRCs was delayed by over 1100 ms,representing a 5.4-fold improvement compared to the unmodified carbon fiber-reinforced epoxy composite.
基金supported in part by the National Natural Science Foundation of China(No.51806008)the Open Fund of Key Laboratory of Rotor Aerodynamics Key Laboratory(No.RAL202104-2)。
文摘This numerical simulation investigates the two⁃phase flow under the condition of supercooled large droplets impinging on the aircraft surface.Based on Eulerian framework,a method for calculating supercooled water droplet impingement characteristics is established.Then,considering the deformation and breaking effects during the movement,this method is extended to calculate the impingement characteristics of supercooled large droplets,as well as the bouncing and splashing effects during impingement.The impingement characteristics of supercooled large droplets is then investigated by this method.The results demonstrate that the deformation and breaking effects of supercooled large droplets have negligible influence on the impingement characteristics under the experimental conditions of this paper.In addition,the results of the impingement range and collection efficiency decrease when considering the bouncing and splashing effects.The bouncing effect mainly affects the mass loss near the impingement limits,while the splashing effect influences the result around the stagnation point.This investigation is beneficial for the analysis of aircraft icing and the design of anti⁃icing system with supercooled large droplet conditions.
基金supported by the National Natural Science Foundation of China(Grant No.51879125)。
文摘Wind turbine blades in cold regions are susceptible to icing due to meteorological conditions,significantly affecting the turbine's energy capture efficiency and operational safety.Precise calculation of droplet collection efficiency(DCE)is essential for accurate icing prediction.This study examines existing methods for calculating DCE and identifies limitations during glaze ice formation.An enhanced method based on the Euler Wall Film(EWF)model is introduced to address these limitations,incorporating splashing and rebound phenomena during glaze ice formation on wind turbine blades.The method's reliability is validated using data from the classic symmetric airfoil,NACA0012.Through the control variable method,this research examines DCE variations under different incoming velocities,medium volume droplet diameters(MVDs),and temperatures.The study also analyzes the distinctions between the improved method and the existing Eulerian method.Results indicate that both impact range and maximum DCE increase with higher incoming velocity and MVD,while temperature exhibits minimal influence on DCE.Variations between the calculation methods reveal differences in water droplet splashing intensity,primarily influenced by droplet kinetic energy and liquid film thickness.The splashing phenomenon gradually decreases as incoming velocity and MVD increase.
基金funding from the Department of Industrial Engineering,University of Naples FedericoⅡ,Italy。
文摘This study presents a data-driven approach to predict tailplane aerodynamics in icing conditions,supporting the ice-tolerant design of aircraft horizontal stabilizers.The core of this work is a low-cost predictive model for analyzing icing effects on swept tailplanes.The method relies on a multi-fidelity data gathering campaign,enabling seamless integration into multidisciplinary aircraft design workflows.A dataset of iced airfoil shapes was generated using 2D inviscid methods across various flight conditions.High-fidelity CFD simulations were conducted on both clean and iced geometries,forming a multidimensional aerodynamic database.This 2D database feeds a nonlinear vortex lattice method to estimate 3D aerodynamic characteristics,following a'quasi-3D'approach.The resulting reduced-order model delivers fast aerodynamic performance estimates of iced tailplanes.To demonstrate its effectiveness,optimal ice-tolerant tailplane designs were selected from a range of feasible shapes based on a reference transport aircraft.The analysis validates the model's reliability,accuracy,and limitations concerning 3D ice shapes and aerodynamic characteristics.Most notably,the model offers near-zero computational cost compared to high-fidelity simulations,making it a valuable tool for efficient aircraft design.
文摘近年来全球极端低温天气频发,严重影响了茶树的产量和品质。ICE(Inducer of CBF expression)基因家族主要参与植物的低温胁迫响应,但在茶树领域中的相关研究还不够全面。本研究从茶树基因组中鉴定出51个茶树CsICEs基因,对其理化性质、基因结构和启动子顺式作用元件展开生物信息学分析。茶树CsICEs基因的启动子区域富含光响应、植物激素、生长发育及非生物胁迫相关顺式作用元件,其可能参与多种逆境胁迫响应。转录组分析和RT-qPCR验证结果发现,低温下CsICE43基因的表达量上升了4.24倍,其可能与茶树低温响应相关。以茶树品种‘保靖黄金茶1号’的cDNA为模板,克隆获得了CsICE43基因,其在不同组织中的表达模式存在差异,在顶芽和嫩叶中特异性高表达。蛋白氨基酸序列和系统进化树分析表明,CsICE43基因包含与ICE家族其他成员一致的S-rich、bHLH、ACT等保守结构域,且与毛花猕猴桃(Actinidiaeriantha)的亲缘关系较近。在STRING在线网站中以拟南芥AtICEs为模型,推测茶树CsICE43蛋白与HOS1、MYB15、DREB1/2存在潜在的互作关系。亚细胞定位试验表明CsICE43定位于细胞核,与跨膜结构分析结果一致。综上所述,本研究发现CsICE43基因可能与茶树低温响应关联,为深入挖掘其基因功能与抗寒分子机理提供了一定的理论基础。
基金funded by the National Natural Science Foundation of China(Grant No.42325503)the Hubei Provincial Natural Science Foundation and the Meteorological Innovation and Development Project of China(Grant Nos.2023AFD096 and 2022CFD122)+1 种基金the Natural Science Foundation of Wuhan(Grant No.2024020901030454)the Beijige Foundation of NJIAS(Grant No.BJG202304)。
文摘Based on comprehensive observations of 20 wire icing events during winter from 2019 to 2021,we investigated the characteristics of the icing properties,the atmospheric boundary layer structure,the raindrop size distribution,and their associated effects on the ice accretion mechanism in the mountainous region of Southwest China.The maximum ice weight was positively correlated with the duration of ice accretion in the mountainous area.The duration of precipitation accounted for less than 20%of the icing period in the mountainous area,with solid-phase hydrometeors being predominant.Icing events,dominated by freezing rain(FR)and mixed rain–graupel(more than 70%),were characterized by glaze or highdensity mixed icing.The relationship between the melting energy and refreezing energy reflected the distribution characteristics of the proportion of FR under mixed-phase precipitation.The intensity of the warm layer and the dominant precipitation phase significantly affected the variations in the microphysical properties of FR.The melting of large dry snowflakes significantly contributed to FR in the mountainous areas,resulting in smaller generalized intercepts and larger mass-weighted mean diameters in the presence of a stronger warm layer.Under a weaker warm layer,the value of the massweighted mean diameter was significantly smaller because of the inability of large solid particles to melt.Finally,FR in the mountainous area dominated the ice weight during the rapid ice accumulation period.A numerical simulation of FR icing on wires effectively revealed the evolution of disaster-causing icing in mountainous areas.
基金supported in part by the National Key R&D Program of China(No.2022YFE0203700)the Aeronautical Science Foundation of China(No.2023Z010027001)。
文摘Existing icing detection technologies face challenges when applied to small and medium-sized aircraft,especially electric vertical take-off and landing(eVTOL)aircraft that meet the needs of low-altitude economic development.This study proposes a data-driven icing detection method based on rotor performance evolution.Through dry-air baseline tests and dynamic icing comparative experiments(wind speed 0—30 m/s,rotational speed 0—3000 r/min,collective pitch 0°—8°)of a 0.6 m rotor in the FL-61 icing wind tunnel,a multi-source heterogeneous dataset containing motion parameters,aerodynamic parameters,and icing state identifiers is constructed.An innovative signal processing architecture combining adaptive Kalman filtering and moving average cascading is adopted.And a comparative study is conducted on the performance of support vector machine(SVM),multilayer perceptron(MLP),and random forest(RF)algorithms,achieving real-time identification of icing states in rotating components.Experimental results demonstrate that the method exhibits a minimum detection latency of 6.9 s and 96%overall accuracy in reserved test cases,featuring low-latency and low false-alarm,providing a sensor-free lightweight solution for light/vertical takeoff and landing aircraft.
基金supported by National Natural Science Foundation of China Excellence Research Group Program for“Multiscale Problems in Nonlinear Mechanics”(Grant No.12588201)the National Natural Science Foundation of China(Grant No.12402321)+3 种基金the National Key R&D Program of China(Grant No.2021YFA0716201)the New Cornerstone Science Foundation through the New Cornerstone Investigator Program and the XPLORER PRIZEthe Postdoctoral Fellowship Program of the China Postdoctoral Science Foundation(Grant Nos.GZB20240366 and 2024M751637)Shuimu Tsinghua Scholar Program(Grant No.2023SM038).
文摘Icing of water droplets is a ubiquitous phenomenon with significant implications across natural systems and industrial applications.Despite extensive research,the intricate interplay among heat transfer,mass transport,and phase change during droplet freezing remains incompletely understood,particularly in the context of multiscale dynamics and environmental dependencies.This review critically examines recent advances in uncovering the fundamental mechanisms of droplet icing through experimental,theoretical,and computational approaches.We begin by revisiting the classical tip singularity problem in the freezing of pure water droplets,analyzing its mathematical formulation and physical significance.Subsequent sections explore how environmental boundary conditions and multicomponent effects influence freezing kinetics,solute redistribution,and ice morphology.Furthermore,we evaluate emerging hybrid numerical frameworks that resolve coupled multiphase physics during solidification processes.Finally,we identify key challenges and open questions that require further investigation in this field.
基金supported by the Science and Technology Project of State Grid Corporation of China(SGXJDK00GYJS2400035).
文摘Ice cover on transmission lines is a significant issue that affects the safe operation of the power system.Accurate calculation of the thickness of wire icing can effectively prevent economic losses caused by ice disasters and reduce the impact of power outages on residents.However,under extreme weather conditions,strong instantaneous wind can cause tension sensors to fail,resulting in significant errors in the calculation of icing thickness in traditional mechanics-based models.In this paper,we propose a dynamic prediction model of wire icing thickness that can adapt to extreme weather environments.The model expands scarce raw data by the Wasserstein Generative Adversarial Network with Gradient Penalty(WGAN-GP)technique,records historical environmental information by a recurrent neural network,and evaluates the ice warning levels by a classifier.At each time point,the model diagnoses whether the current sensor failure is due to icing or strong winds.If it is determined that the wire is covered with ice,the icing thickness will be calculated after the wind-induced tension is removed from the ice-wind coupling tension.Our new model was evaluated using data from the power grid in an area with extreme weather.The results show that the proposed model has significant improvements in accuracy compared with traditional models.
基金supported by the National Natural Science Foundation of China(Grant No.U2241270)China Postdoctoral Science Foundation(Grant No.2025M774341)+1 种基金the Heilongjiang Province Postdoctoral Special Funding Project(Grant No.LBHTZ2408)the Outstanding Doctoral Dissertation Funding Project of Heilongjiang in the New Era(Grant No.LJYXL2024-007)。
文摘Polar ships face significant risks from ice accretion on decks,superstructures,and power systems.Ice formation on the power intake system particularly affects vessel stability and safety.While freshwater icing has been extensively researched,comprehensive multi-parameter studies on ice accretion for intake structures remain insufficient.This investigation examines the icing characteristics of the air shroud,a critical component of marine gas turbines,resulting from saltwater droplet freezing.The study utilized a custom-built cyclic ice wind tunnel,with flow field quality verified through Five-hole probe and Hot wire anemometer methods,and droplet field quality validated using Laser,Flowmeter,Ice blade,and Icing calibration grid techniques.The research analyzes ice distribution and thickness on the shroud under varying NaCl concentrations,considering temperature,liquid water content(LWC),and median volume diameter(MVD).The findings reveal that decreased salinity facilitates rime ice formation,resulting in rough ice texture.Temperature reduction,increased LWC,and larger MVD enhanced salinity's influence on ice thickness.The shroud exhibits substantial radial ice accretion,with coverage extending to approximately 90%.These results establish a foundation for further investigation of saltwater icing mechanisms and pioneer icing research in marine gas turbine intake systems.
基金supported by the National Natural Science Foundation of China(52278532)Sichuan Science and Technology Program(2024NSFSC0153)。
文摘Ice accretion on structures such as aircraft wings and wind turbine blades poses serious risks to aerodynamic performance and operational safety,particularly in cold and humid environments.This study conducts numerical simulations of ice formation on thin flat plates using CFD and FENSAP-ICE,exploring how air temperature,wind velocity,and angle of attack(AOA)affect icing behavior and aerodynamic characteristics.Results indicate that ice thickness increases linearly over time.Rime ice forms at low temperatures due to immediate droplet freezing,whereas glaze ice develops at higher temperatures when a water film forms and subsequently refreezes into protruding ice horns;under identical conditions,rime ice consistently produces thicker ice layers than glaze ice.Increasing wind speed substantially enhances ice growth and coverage,while speeds as low as 1 m/s result in minimal accretion.Changes in AOA shift the icing region toward the pressure side,and AOAs of equal magnitude but opposite sign yield symmetrical ice accretion patterns and identical maximum thickness values.After icing,the plate’s leading edge becomes smoother,slightly reducing drag while increasing lift and moment coefficients.These findings highlight the dominant roles of temperature,wind speed,and AOA in determining ice morphology,extent,and aerodynamic impact,providing valuable insights for predicting icing effects and developing mitigation strategies for structures operating in icing-prone regions.
基金support from the National Natural Science Foundation of China(9235630033,22105069)Shanghai Pujiang Program(20PJ1402900)+2 种基金Shanghai Natural Science Foundation(21ZR1418400)Innovation Program of Shanghai Municipal Education Commission(2023FGS01)Natural Science Foundation of Jiangsu Province(BK20231225).
文摘Icing detection is critically important for preventing safety accidents and economic losses,especially concerning ice formation from invalidated anti-icing fluids(water and ethylene glycol)under extreme conditions.Traditional technologies like ultrasonics and capacitor-antenna face challenges with limited detection areas,lower accuracy,and susceptibility to electromagnetic interference.Here,we introduce a novel viscosity-ultrasensitive fluorescent probe 40,4‴-(2,2-diphenyle-thene-1,1-diyl)bis-(3,5-dicarboxylate)(TPE-2B4C)based on AIEgens for moni-toring ice formation of anti-icing fluids in low-temperature environments.TPE-2B4C,consisting of four sodium carboxylate groups and multiple freely rotating benzene rings,demonstrates outstanding solubility in anti-icing fluids and exhibits no fluorescent background signal even at low temperatures(<−20°C).Upon freezing,TPE-2B4C relocates from the water phase to higher viscosity ethylene glycol,causing restriction of benzene rings and a significantly increased green fluorescence signal.TPE-2B4C can successfully determine whether the anti-icing fluids are icing from−5 to−20°C with a high contrast ratio.Due to its simple setup,fast operation,and broad applicability,our new method is anticipated to be employed for rapid,real-time,and large-scale icing detection.
基金supported in part by the Ship Preliminary Research Project (No.3020401020102)。
文摘This study addresses the issue of spray icing on the air intake grilles of ship power systems in cold maritime environments.Through numerical simulation methods,the influence of environmental parameters on icing characteristics is revealed,and an energy-efficient zoned electric heating anti-icing strategy is proposed.A threedimensional grille model is constructed to systematically analyze the effects of environmental temperature(from−20℃to−4℃),droplet diameter(from 50μm to 500μm),and liquid water content(from 0.5 g/m³to 8 g/m³)on icing rates and blockage of the flow channel.The results indicate that low temperature and high liquid water content significantly exacerbate icing.Under the condition of an environmental temperature of−20℃,droplet diameter of 500μm,and liquid water content of 8 g/m³,the flow channel blockage ratio reaches 30.95%within 10 min.Additionally,as droplet diameter increases,the droplet impingement and icing regions become more concentrated toward the leading edge of blades.To mitigate grille icing in cold environments,an electric heating film configuration is employed for thermal protection.Optimization of the heating strategy reveals that the zoned heating approach,compared to the initial uniform heating scheme,effectively homogenizes surface temperature distribution while reducing total power consumption by 37.47%.This study validates the engineering applicability of the zoned electric heating anti/de-icing strategy,providing theoretical and technical support for the design of anti-icing systems in ship power systems operating in cold maritime regions.