By virtue of the property that Weyl ordering is invariant under similar transformations we show that the Weyl ordered form of the Wigner operator, a Dirac δ-operator function, brings much convenience for deriving mis...By virtue of the property that Weyl ordering is invariant under similar transformations we show that the Weyl ordered form of the Wigner operator, a Dirac δ-operator function, brings much convenience for deriving miscellaneous Wigner transforms. The operators which engender various transforms of the Wigner operator, can also be easily deduced by virtue of the Weyl ordering technique. The correspondence between the optical Wigner transforms and the squeezing transforms in quantum optics is investigated.展开更多
The Moyal bracket is an exemplification of Weyl's correspondence to formulate quantum mechancis in terms of Wigner function. Here we present a formalism of Weyl-ordered operator Moyal bracket by virtue of the method...The Moyal bracket is an exemplification of Weyl's correspondence to formulate quantum mechancis in terms of Wigner function. Here we present a formalism of Weyl-ordered operator Moyal bracket by virtue of the method of integral within a Weyl ordered product of operators and the Weyl ordering operator formula.展开更多
By virtue of the technique of integration within Weyl ordered of operators we derive the formula of Weyl ordering expansion of power product of coordinate and momentum operators (√2Q)^m(√2iP) ^τ=:: Hm,r (√2...By virtue of the technique of integration within Weyl ordered of operators we derive the formula of Weyl ordering expansion of power product of coordinate and momentum operators (√2Q)^m(√2iP) ^τ=:: Hm,r (√2Q, √2iP)::, the introduction of two-variable Hermite polynomial Hm,r brings much convenience to the study of Weyl correspondence.展开更多
文摘By virtue of the property that Weyl ordering is invariant under similar transformations we show that the Weyl ordered form of the Wigner operator, a Dirac δ-operator function, brings much convenience for deriving miscellaneous Wigner transforms. The operators which engender various transforms of the Wigner operator, can also be easily deduced by virtue of the Weyl ordering technique. The correspondence between the optical Wigner transforms and the squeezing transforms in quantum optics is investigated.
基金The project supported by National Natural Science Foundation of China under Grant No. 10475056
文摘The Moyal bracket is an exemplification of Weyl's correspondence to formulate quantum mechancis in terms of Wigner function. Here we present a formalism of Weyl-ordered operator Moyal bracket by virtue of the method of integral within a Weyl ordered product of operators and the Weyl ordering operator formula.
基金Supported by the President Foundation of Chinese Academy of Scienceby the Specialized Research Fund for the Doctorial Progress of Higher Education of China
文摘By virtue of the technique of integration within Weyl ordered of operators we derive the formula of Weyl ordering expansion of power product of coordinate and momentum operators (√2Q)^m(√2iP) ^τ=:: Hm,r (√2Q, √2iP)::, the introduction of two-variable Hermite polynomial Hm,r brings much convenience to the study of Weyl correspondence.