The transformation mechanism of the inclusions and microstructure in 316L stainless steel after post-isothermal heat treatment(IHT)was revealed,along with the pitting behavior of the inclusions in a chloride environme...The transformation mechanism of the inclusions and microstructure in 316L stainless steel after post-isothermal heat treatment(IHT)was revealed,along with the pitting behavior of the inclusions in a chloride environment before and after the transformation.The effect of the inclusion transformation on the pitting corrosion behavior of 316L stainless steel and its intrinsic mechanism was also revealed.Results revealed a gradual transformation of MnO-SiO_(2)inclusions into MnO-Cr_(2)O_(3) within the temperature range of 1373 to 1573 K.MnO-Cr_(2)O_(3)inclusions exhibited minimal dissolution in chloride ion corrosion environments,while MnO-SiO_(2)oxides demonstrated higher electrochemical activity and were more prone to dissolve and form pits.Meanwhile,IHT significantly reduced the dislocation density of stainless steel,rendering it more stable in corrosive environments.X-ray photoelectron spectroscopy peak distributions of the passive films demonstrated that IHT increased the proportion of Cr and Fe oxides and hydroxides in the passive film which improved the stability and corrosion resistance of the steel.展开更多
Semicrystalline polymers usually undergo multilevel microstructural evolutions with annealing and stretching processes,which is es-sential to tailor the physical properties of the polymer.Here,poly(butylene carbonate)...Semicrystalline polymers usually undergo multilevel microstructural evolutions with annealing and stretching processes,which is es-sential to tailor the physical properties of the polymer.Here,poly(butylene carbonate)(PBC)sheets were prepared via isothermal annealing and unidirectional pre-stretching processes,then the changes of PBC in crystallinity,mechanical properties,thermal properties and microscopic changes before and after annealing and stretching were measured,as well as the relationship between microstructure and macroscopic proper-ties before and after stretching.The strengthening mechanism of PBC was also described.It was demonstrated that shish-kabab structure emerged under the pre-stretching process.With the increase of the tensile ratio,the crystallinity,structure and mechanical properties are in-creased differently.Among them,the crystallinity and tensile strength after annealing-stretching treatment increased to 24.45%and 104.5 MPa,respectively,which were about 1.55 times and 3.4 times of those-without any treatment.展开更多
Silicomanganese dust contains large amounts of valuables,such as Si and Mn,which can be used as raw materials for the smelting of silicomanganese.However,the direct addition of dust to the submerged arc furnace can in...Silicomanganese dust contains large amounts of valuables,such as Si and Mn,which can be used as raw materials for the smelting of silicomanganese.However,the direct addition of dust to the submerged arc furnace can influence the permeability of burden due to the fine particle size of dust,which results in incomplete reduction reactions during the smelting process.In this paper,silicomanganese dust,graphite powder,and other additives were pressed to form carbon-containing dust briquettes,and the self-reduction process of the dust briquettes was investigated through the isothermal thermogravimetric method with different carbon–oxygen (C/O) molar ratios,contents of fluxing agents,and reduction temperatures.Various reduction kinetic models for dust briquettes at different temperatures were established.The results show that the reaction fraction of the dust briquettes was about 90%at a C/O molar ratio of 1.2 with optimal reduction efficiency.The addition of CaF_(2)contributed to the decrease in the melting point and viscosity of dust briquettes,which increased their reduction rate.As the reduction temperature increased,the reduction rate of dust briquettes increased.The reduction reaction rate of dust briquettes was controlled through gas-phase diffusion.Meanwhile,their reduction process was analyzed kinetically,with the reaction time of 5 min as the dividing line.The apparent activation energies for the two diffusion stages were 56.10 and 100.52 kJ/mol,respectively.The kinetic equations are expressed as[1-(1-f)^(1/3)]^(2)=0.69e^(-56100/(RT))t and [1-(1-f)^(1/3)]^(2)=2.06e^(-100520/(RT))t.展开更多
The factors affecting the oxidation degree of vanadium–titanium magnetite (VTM) pellets were analyzed via the isothermal oxidation experiment. Furthermore, the oxidation kinetics of VTM pellets were explored through ...The factors affecting the oxidation degree of vanadium–titanium magnetite (VTM) pellets were analyzed via the isothermal oxidation experiment. Furthermore, the oxidation kinetics of VTM pellets were explored through linear fitting to the kinetic equations based on the shrinking unreacted-core model. The results reveal that VTM pellets undergo oxidation in three distinct phases: pre-oxidation, mid-oxidation, and final stable phase. Notably, the mid-oxidation phase is absent in magnetite oxidation. The shrinking unreacted-core model has been proven to be suitable for modeling the process of oxidizing VTM pellets. In the pre-oxidation stage, the rate-controlling step is determined by both the oxidation temperature and the effective oxygen concentration. The influence of the effective oxygen concentration on the rate of oxidation is more pronounced at temperatures between 1073 and 1273 K, especially when the oxygen content falls below 15 vol.%. For the production of oxidized VTM pellets, it is necessary to maintain a preheating temperature above 1173 K (to accelerate the oxidation reaction) and below 1473 K (to prevent the swift formation of compact Fe2TiO5 at the shell of the pellet) in an oxygen-enriched atmosphere.展开更多
The isothermal oxidation kinetics of vanadium–titanium magnetite(VTM)pellets prepared with 3Co-binder(coal-based colloidal composite binder)and F-binder(pulverized Funa binder)are compared.The oxidation process was a...The isothermal oxidation kinetics of vanadium–titanium magnetite(VTM)pellets prepared with 3Co-binder(coal-based colloidal composite binder)and F-binder(pulverized Funa binder)are compared.The oxidation process was analyzed using the first-order irreversible reaction,following the shrinking unreacted nucleus model.The results demonstrate that VTM pellets prepared with 3Co-binder exhibit a faster oxidation rate than those with F-binder across the temperatures ranging from 1073 to 1473 K.In both cases,the oxidation process was controlled by an interfacial chemical reaction during the pre-oxidation stage and by internal diffusion during the mid-oxidation stage.The type of binder did not influence the primary oxidation control mechanism of the VTM pellets.However,the apparent rate constants in the pre-oxidation stage and the internal diffusion coefficients in the mid-oxidation stage were higher for pellets with 3Co-binder compared to those with F-binder.The apparent activation energies for the 3Co-binder pellets were similar to those of bentonite,indicating favorable kinetic conditions without negative impacts on the oxidation process.Nonetheless,it is important to note that pellets with F-binder required a longer oxidation time than those with 3Co-binder.展开更多
Sn/ENIG has recently been used in flexible interconnects to form a more stable micron-sized metallurgical joint,due to high power capability which causes solder joints to heat up to 200℃.However,Cu_(6)Sn_(5)which is ...Sn/ENIG has recently been used in flexible interconnects to form a more stable micron-sized metallurgical joint,due to high power capability which causes solder joints to heat up to 200℃.However,Cu_(6)Sn_(5)which is critical for a microelectronic interconnection,will go through a phase transition at temperatures between 186 and 189℃.This research conducted an in-situ TEM study of a micro Cu/ENIG/Sn solder joint under isothermal aging test and proposed a model to illustrate the mechanism of the microstructural evolution.The results showed that part of the Sn solder reacted with Cu diffused from the electrode to formη´-Cu_(6)Sn_(5)during the ultrasonic bonding process,while the rest of Sn was left and enriched in a region in the solder joint.But the enriched Sn quickly diffused to both sides when the temperature reached 100℃,reacting with the ENIG coating and Cu to form(Ni_(x)Cu_(1-x))_(3)Sn_(4),AuSn_(4),and Cu_(6)Sn_(5)IMCs.After entering the heat preservation process,the diffusion of Cu from the electrode to the joint became more intense,resulting in the formation of Cu_(3)Sn.The scallop-type Cu_(6)Sn_(5)and the seahorse-type Cu_(3)Sn constituted a typical two-layered structure in the solder joint.Most importantly,the transition betweenηandη’was captured near the phase transition temperature for Cu_(6)Sn_(5)during both the heating and cooling process,which was accompanied by a volume shifting,and the transition process was further studied.This research is expected to serve as a reference for the service of micro Cu/ENIG/Sn solder joints in the electronic industry.展开更多
Different amounts of Fe(0.005,0.01,0.03,0.05,and 0.07 wt%)were added to SAC305 to study the shear behavior damage of Fe-doped SAC solder joints under thermal loading(170℃,holding time of 0,250,500,and 750 h).The resu...Different amounts of Fe(0.005,0.01,0.03,0.05,and 0.07 wt%)were added to SAC305 to study the shear behavior damage of Fe-doped SAC solder joints under thermal loading(170℃,holding time of 0,250,500,and 750 h).The results show that during isothermal aging at 170℃,the average shear force of all solder joints decreases with increasing aging time,while the average fracture energy first increases and then decreases,reaching a maximum at 500 h.Minor Fe doping could both increase shear forces and related fracture energy,with the optimum Fe doping amount being 0.03 wt%within the entire aging range.This is because the doping Fe reduces the undercooling of the SAC305 alloy,resulting in the microstructure refining of solder joints.This in turn causes the microstructure changing from network structure(SAC305 joint:eutectic network+β-Sn)to a single matrix structure(0.03Fe-doped SAC305 joint:β-Sn matrix+small compound particles).Specifically,Fe atoms can replace some Cu in Cu_(6)Sn_(5)(both inside the solder joint and at the interface),and then form(Cu,Fe)_(6)Sn_(5) compounds,resulting in an increase in the elastic modulus and nanohardness of the compounds.Moreover,the growth of Cu_(6)Sn_(5) and Cu_(3)Sn intermetallic compounds(IMC)layer are inhibited by Fe doping even after the aging time prolonging,and Fe aggregates near the interface compound to form FeSn_(2).This study is of great significance for controlling the growth of interfacial compounds,stabilizing the microstructures,and providing strengthening strategy for solder joint alloy design.展开更多
Transient liquid phase(TLP)bonding is a promising process for the joining and repairing of nickel-base superalloys.One of the most important parameters in TLP bonding is the bonding time required for suf-ficient isoth...Transient liquid phase(TLP)bonding is a promising process for the joining and repairing of nickel-base superalloys.One of the most important parameters in TLP bonding is the bonding time required for suf-ficient isothermal solidification which prevents the formation of undesirable precipitated phases.In the present work,the effect of bonding time on the microstructure,type,and evolution of precipitates in the non-isothermal solidified zone(NSZ)and their effect on micro-mechanical properties were systemat-ically investigated using multi-scale tests in TLP bonded Mar-M247 superalloy joints with Ni-15.2Cr-3.74B interlayer at 1230℃.For a bonding time of 5 min,dual-phase M_(23)(C,B)_(6)-γ/γ’(where M is a mix-ture of Hf,Ta,Cr,and Ni)with eutectic configuration was formed in NSZ.With the increase in bonding time,the evolution of NSZ microstructure can be summed up as eutectic M_(23)(C,B)_(6)-γ/γ’,semi-striping dual-phase M_(23)(C,B)_(6)-γ/γ’,discontinuously striping M_(23)(C,B)_(6)-γ/γ’,followed by the disintegration of NSZ.As the NSZ counterpart,the isothermal solidified zone(ISZ)is mainly composed ofγ/γ’.Ac-companied by the dissolution of M_(23)(C,B)_(6) in the centerline,the proportion of the ISZ increases greatly until the joints are completely occupied by ISZ.Finally,a bamboo-like structure with domain size of-100μm was formed in the joint centerline,along withγ’reorganized themselves all into cubic shapes and distributed homogeneously.Mechanical property tests demonstrated that in comparison to samples with longer bonding time,the NSZ of the shortest bonding time(5 min)has the highest strength and a subsequent decrease in strength was observed with prolonging the bonding time and post-bond heat treatment.Furthermore,possible solidification/transformation path,segregation behavior,and formation mechanism of NSZ/ISZ evolution were discussed.展开更多
Norovirus is an infectious disease that can cause non-bacterial gastroenteritis,which has a low infectious dose,rapid onset,and strong transmission ability;therefore,rapid and sensitive detection is essential to reduc...Norovirus is an infectious disease that can cause non-bacterial gastroenteritis,which has a low infectious dose,rapid onset,and strong transmission ability;therefore,rapid and sensitive detection is essential to reduce the transmission of gastroenteritis.In the study,a norovirus GII loop-mediated isothermal amplification assay was developed and prepared into freeze-drying microspheres,and a closed-cassette-based,integrated,reagent-ambient storage,on-site instant detection platform for norovirus GII was constructed using a commercial,fully automated nucleic acid analyzer with integrated magnetic bearing based nuclear acid extraction and nucleic acid detection,with a sensitivity of 10 copies/μL,with no cross-reactivity with other 5 viruses.For 28 simulated samples,the integrated assay platform was consistent with the experimental results of reverse transcription-quantitative polymerase chain reaction(RT-qPCR)assays after conventional laboratory nucleic acid extraction.The entire process can be finished in about 1 h,which is ideal for immediate rapid detection.展开更多
The mechanical properties of the sample and the stability of retained austenite were studied by designing two kinds of ultra-fine bainitic steel with different heat treatment methods austempering above and below Ms(ma...The mechanical properties of the sample and the stability of retained austenite were studied by designing two kinds of ultra-fine bainitic steel with different heat treatment methods austempering above and below Ms(martensite start tem-perature),which were subjected to tensile tests at 20 and 450℃,respectively.The results show that compared to room temperature(20℃)tensile properties,the uniform elongation of the sample at high temperature(450℃)significantly decreased.Specifically,the uniform elongation of the sample austempered above Ms decreased from 8.0%to 3.5%,and the sample austempered below Ms decreased from 10.9%to 3.1%.Additionally,the tensile strength of the sample austempered above Ms significantly decreased(from 1281 to 912 MPa),and the sample austempered below Ms slightly decreased(from 1010 to 974 MPa).This was due to the high carbon content(1.60 wt.%),high mechanical stability,low thermal stability for the retained austenite of the sample austempered below Ms.Besides,the retained austenite decomposed at high temper-atures,the carbon content and transformation driving force were significantly reduced,the transformation rate increased,and the phase transformation content reduced.展开更多
The oxidation behavior of ferrovanadium spinel(FeV_(2)O_(4)),synthesized via high-temperature solid-state reaction,was investigated using thermogravimetry,X-ray diffractometry,and X-ray photoelectron spectroscopy over...The oxidation behavior of ferrovanadium spinel(FeV_(2)O_(4)),synthesized via high-temperature solid-state reaction,was investigated using thermogravimetry,X-ray diffractometry,and X-ray photoelectron spectroscopy over the temperature range of 450–700℃.The results revealed that the oxidation process of FeV_(2)O_(4)can be divided into three stages with the second stage being responsible for maximum weight gain due to oxidation.Three classical methods were employed to analyze the reaction mechanisms and model functions for distinct oxidation stages.The random nucleation and subsequent growth(A_(3))kinetic model was found to be applicable to both initial and secondary stage.The third stage of oxidation was consistent with the three-dimensional diffusion,spherical symmetry(D_(3))kinetic mode.Both the model-function method and the model-free method were utilized to investigate the apparent activation energy of the oxidation reaction at each stage.It was found that the intermediates including Fe_(3)O_(4),VO_(2),V_(2)O_(3),and Fe_(2.5)V_(7.11)O_(16),played significant roles in the oxidation process prior to the final formation of FeVO_(4)and V_(2)O_(5)through oxidation of FeV_(2)O_(4).展开更多
To clarify the deformation behavior of MnS inclusions in a non-quenched and tempered steel at three different positions (edge, 1/2 radius and center) in the cross-section of the billet in the course of hot rolling, is...To clarify the deformation behavior of MnS inclusions in a non-quenched and tempered steel at three different positions (edge, 1/2 radius and center) in the cross-section of the billet in the course of hot rolling, isothermal compression experiments were performed under the deformation temperature range from 1073 to 1473 K, the reduction rates from 25% to 75% and the strain rates from 0.01 to 10 s^(−1). The variations of deformability features (i.e., aspect ratios, size distributions, and morphologies) of MnS inclusions with those isothermal compression parameters were revealed. The evaluation of the probable maximum aspect ratio of MnS inclusions at the three different positions in the cross-section of the billet after hot rolling was examined using the statistical analysis of extreme values. Results showed that the number densities of MnS inclusions at three different positions (edge, 1/2 radius and center) in the cross-section of the steel billet only fluctuated slightly when the deformation parameters varied in the isothermal compression, while the average inclusion aspect ratios in all cases generally have a negative correlation with the deformation temperature and positive correlations with the reduction ratio and the strain rate. Statistical analysis reveals that larger inclusions deform more easily during hot rolling. The effect of rolling temperature on the extreme value of the aspect ratio of inclusions is the smallest, while the effects of initial size, reduction ratio and strain rate are more significant.展开更多
The high-temperature magnetic perfo rmance and micro structure of Sm_(1-x)Gd_(x)(Co_(bal)Fe_(0.09)Cu_(0.09)Zr_(0.025))_(7.2)(x=0.3,0.5) magnets were investigated.With the isothermal aging time decreasing from 11 to 3 ...The high-temperature magnetic perfo rmance and micro structure of Sm_(1-x)Gd_(x)(Co_(bal)Fe_(0.09)Cu_(0.09)Zr_(0.025))_(7.2)(x=0.3,0.5) magnets were investigated.With the isothermal aging time decreasing from 11 to 3 h,the temperature coefficient of intrinsic coercivity in the temperature range of 25-500℃,β_(25-500℃),was optimized from -0,167%/℃ to-0.112%/℃ for x=0.3 magnets.The noticeable enhancement(~33%) of temperature stability is correlated with the increased content of 1:5H cell boundary phase and its relatively high Curie temperature as well.However,for the x=0.5 magnet,it is found that the presence of Sm_(5)Co_(19) phases and wider nanotwin variants hinder the formation of 1:5H cell boundary phase.The insufficient 1:5H is not beneficial to the proper redistribution of Cu in cell boundary,making the x=0.5 magnet difficult to achieve higher temperature stability.Consequently,the approach of adjusting the isothermal aging process can offer guidance for attaining superior magnetic performance in the temperature range from 25 to 500℃ for Gd-substituted Sm_(2)Co_(17)-type magnets.展开更多
The effect of the amount of isothermal martensite and bainite on the microstructure and properties in a medium-carbon quenching and partitioning(Q&P)steel was investigated by designing the different Q&P treatm...The effect of the amount of isothermal martensite and bainite on the microstructure and properties in a medium-carbon quenching and partitioning(Q&P)steel was investigated by designing the different Q&P treatment parameters.The results show that the amount of isothermal martensite increased gradually with the increase in quenching time.The increase in isothermal martensite amount improved the product of strength and elongation(PSE)of Q&P steels.In addition,the increase in carbides amount and the recovery in prior martensite with longer partitioning time led to an increase in PSE first and then,a decrease.It implies that a higher PSE could be obtained by the selection of a suitable partitioning time.Furthermore,the effect of bainite transformation during partitioning on PSE was investigated by designing the different partitioning temperatures,including 300,400(below bainite starting temperature,B_(s))and 480℃(above B_(s)).The results show that compared with the samples partitioned at temperature above B_(s),the bainite transformation was only detected when the samples were partitioned at temperature below B_(s).The bainite transformation amount increased with the decreasing partitioning temperature,leading to the inhibition of carbides precipitation and more stable RA and thus,resulting in the highest PSE.展开更多
Numerical predictions are made for Laminar Forced convection heat transfer with and without buoyancy effects for Supercritical Nitrogen flowing over an isothermal horizontal flat plate with a heated surface facing dow...Numerical predictions are made for Laminar Forced convection heat transfer with and without buoyancy effects for Supercritical Nitrogen flowing over an isothermal horizontal flat plate with a heated surface facing downwards.Computations are performed by varying the value ofΔT from5 to 30 K and P_(∞)/P_(cr)ratio from1.1 to 1.5.Variation of all the thermophysical properties of supercritical Nitrogen is considered.The wall temperatures are chosen in such a way that two values of Tw are less than T∗(T*is the temperature at which the fluid has a maximum value of Cp for the given pressure),one value equal to T∗and two values greater than T∗.Three different values of U∞are used to obtain Re∞range of 3.6×10_(4)to 4.74×10^(5)for forced convection without buoyancy effects and Gr_(∞)/Re^(2)_(∞)range of 0.011 to 3.107 for the case where buoyancy effects are predominant.Six different forms of correlations are proposed based on numerical predictions and are compared with actual numerical predictions.It has been found that in all six forms of correlations,the maximum deviations are found to occur in those cases where the pseudocritical temperature TT∗lies between the wall temperature and bulk fluid temperature.展开更多
Based on the entropy function, a two-dimensional phase field model of binary alloys was established. Meanwhile, an explicit difference method with uniform grid was adopted to solve the phase field and solute field con...Based on the entropy function, a two-dimensional phase field model of binary alloys was established. Meanwhile, an explicit difference method with uniform grid was adopted to solve the phase field and solute field controlled equations. And the alternating direction implicit(ADI) algorithm for solving temperature field controlled equation was also employed to avoid the restriction of time step. Some characteristics of the Ni-Cu alloy were captured in the process of non-isothermal solidification, and the comparative analysis of the isothermal and the non-isothermal solidification was investigated. The simulation results indicate that the non-isothermal model is favorable to simulate the real solidification process of binary alloys, and when the thermal diffusivity decreases, the non-isothermal phase-field model is gradually consistent with the isothermal phase-field model.展开更多
The Mg-Ni hydride was prepared by hydriding combustion synthesis under a high magnetic field. The dehydriding kinetics of the hydrides was measured under the isothermal and non-isothermal conditions. A model was appli...The Mg-Ni hydride was prepared by hydriding combustion synthesis under a high magnetic field. The dehydriding kinetics of the hydrides was measured under the isothermal and non-isothermal conditions. A model was applied to analyzing the kinetics behavior of Mg-Ni hydride. The calculation results show that the theoretical value and the experimental data can reach a good agreement, especially in the case of non-isothermal dehydriding. The rate-controlling step is the diffusion of hydrogen atoms in the solid solution. The sample prepared under magnetic field of 6 T under the isothermal condition can reach the best performance. The similar tendency was observed under the non-isothermal condition and the reason was discussed.展开更多
This study established a loop-mediated isothermal amplification(LAMP)system for specially detecting the pathogen causing tobacco target spot in a rapid manner.With genes encoding the Internal Transcribed Spacer(ITS)as...This study established a loop-mediated isothermal amplification(LAMP)system for specially detecting the pathogen causing tobacco target spot in a rapid manner.With genes encoding the Internal Transcribed Spacer(ITS)as targets,four LAMP primers with high specificity and sensitivity were designed and screened.The specificity and sensitivity of the established method were evaluated,and then the method was used to detect the samples of tobacco plants artificially inoculated with pathogens.The established method enabled the observation of detection results by the color change of dye after 60 min of isothermal amplification at 65°C.In the specificity test,only the reaction tubes of the pathogen causing tobacco target spot appeared green,and the electrophoresis lanes were dispersive,indicating positive results,while all other fungal strains showed negative results.The method had a minimum limit of detection being 0.1 ng/μL for the genomic DNA of the pathogen causing tobacco target spot,allowing direct detection of the pathogen from lesions.The established LAMP method can be directly used for the diagnosis of tobacco plants infected with target spot in the field.展开更多
The microstructural evolution of AZ61 magnesium alloy predeformed by equal channel angular extrusion(ECAE) during semisolid isothermal treatment(SSIT) was investigated by means of optical metalloscopy and image an...The microstructural evolution of AZ61 magnesium alloy predeformed by equal channel angular extrusion(ECAE) during semisolid isothermal treatment(SSIT) was investigated by means of optical metalloscopy and image analysis equipment.The process involved application of ECAE to as-cast alloy at 310 ℃ to induce strain prior to heating in the semisolid region for different time lengths.The results show that extrusion pass,isothermal temperature and processing route have an influence on microstructural evolution of predeformed AZ61 magnesium alloy during SSIT.With the increase of extrusion pass,the solid particle size is reduced gradually.When isothermal temperature increases from 530 ℃ to 560 ℃,the average particle size increases from 22 μm to 35 μm.When isothermal temperature is 575 ℃,the average particle size decreases.The particle size of microstructure of AZ61 magnesium alloy predeformed by ECAE at BC during SSIT is the finest.展开更多
A Mg-8%Al-1%Si alloy with semisolid microstructure was fabricated by isothermal heat treatment process. The effects of isothermal process parameters such as holding temperature and holding time on the microstructure o...A Mg-8%Al-1%Si alloy with semisolid microstructure was fabricated by isothermal heat treatment process. The effects of isothermal process parameters such as holding temperature and holding time on the microstructure of Mg-8%Al-1%Si alloy were investigated. The results show that a non-dendritic microstructure could be obtained by isothermal heat treatment. With increasing holding temperature from 560 to 575 °C or holding time from 5 to 30 min, the liquid volume fraction increases, the average size of α-Mg grains grows larger and globular tendency becomes more obvious. In addition, the Mg2Si phase transforms from Chinese script shape to granule shape. The morphology modification mechanisium of Mg2Si phase in Mg-8%Al-1%Si alloy during the semisolid isothermal heat treatment was also studied.展开更多
基金the support from the National Natural Science Foundation of China(Grant Nos.52074198,52374342,and U21A20113)the Department of Science and Technology of Hubei Province(Grant Nos.2023AFB603 and 2023DJC140).
文摘The transformation mechanism of the inclusions and microstructure in 316L stainless steel after post-isothermal heat treatment(IHT)was revealed,along with the pitting behavior of the inclusions in a chloride environment before and after the transformation.The effect of the inclusion transformation on the pitting corrosion behavior of 316L stainless steel and its intrinsic mechanism was also revealed.Results revealed a gradual transformation of MnO-SiO_(2)inclusions into MnO-Cr_(2)O_(3) within the temperature range of 1373 to 1573 K.MnO-Cr_(2)O_(3)inclusions exhibited minimal dissolution in chloride ion corrosion environments,while MnO-SiO_(2)oxides demonstrated higher electrochemical activity and were more prone to dissolve and form pits.Meanwhile,IHT significantly reduced the dislocation density of stainless steel,rendering it more stable in corrosive environments.X-ray photoelectron spectroscopy peak distributions of the passive films demonstrated that IHT increased the proportion of Cr and Fe oxides and hydroxides in the passive film which improved the stability and corrosion resistance of the steel.
基金supported by the Sichuan Provincial Regional Innovation Cooperation Project(No.2024YFHZ0159).
文摘Semicrystalline polymers usually undergo multilevel microstructural evolutions with annealing and stretching processes,which is es-sential to tailor the physical properties of the polymer.Here,poly(butylene carbonate)(PBC)sheets were prepared via isothermal annealing and unidirectional pre-stretching processes,then the changes of PBC in crystallinity,mechanical properties,thermal properties and microscopic changes before and after annealing and stretching were measured,as well as the relationship between microstructure and macroscopic proper-ties before and after stretching.The strengthening mechanism of PBC was also described.It was demonstrated that shish-kabab structure emerged under the pre-stretching process.With the increase of the tensile ratio,the crystallinity,structure and mechanical properties are in-creased differently.Among them,the crystallinity and tensile strength after annealing-stretching treatment increased to 24.45%and 104.5 MPa,respectively,which were about 1.55 times and 3.4 times of those-without any treatment.
基金financially supported by the Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steelmaking (No. KF-20-3)Shandong Postdoctoral Science Foundation, China (No. SDCX-ZG-202301014)。
文摘Silicomanganese dust contains large amounts of valuables,such as Si and Mn,which can be used as raw materials for the smelting of silicomanganese.However,the direct addition of dust to the submerged arc furnace can influence the permeability of burden due to the fine particle size of dust,which results in incomplete reduction reactions during the smelting process.In this paper,silicomanganese dust,graphite powder,and other additives were pressed to form carbon-containing dust briquettes,and the self-reduction process of the dust briquettes was investigated through the isothermal thermogravimetric method with different carbon–oxygen (C/O) molar ratios,contents of fluxing agents,and reduction temperatures.Various reduction kinetic models for dust briquettes at different temperatures were established.The results show that the reaction fraction of the dust briquettes was about 90%at a C/O molar ratio of 1.2 with optimal reduction efficiency.The addition of CaF_(2)contributed to the decrease in the melting point and viscosity of dust briquettes,which increased their reduction rate.As the reduction temperature increased,the reduction rate of dust briquettes increased.The reduction reaction rate of dust briquettes was controlled through gas-phase diffusion.Meanwhile,their reduction process was analyzed kinetically,with the reaction time of 5 min as the dividing line.The apparent activation energies for the two diffusion stages were 56.10 and 100.52 kJ/mol,respectively.The kinetic equations are expressed as[1-(1-f)^(1/3)]^(2)=0.69e^(-56100/(RT))t and [1-(1-f)^(1/3)]^(2)=2.06e^(-100520/(RT))t.
基金supported by the National Natural Science Foundation of China(No.52204302)Young Elite Scientist Sponsorship Program by CAST(No.YESS20220533)+1 种基金Hunan Provincial Natural Science Foundation of China(No.2022JJ50274)China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202103).
文摘The factors affecting the oxidation degree of vanadium–titanium magnetite (VTM) pellets were analyzed via the isothermal oxidation experiment. Furthermore, the oxidation kinetics of VTM pellets were explored through linear fitting to the kinetic equations based on the shrinking unreacted-core model. The results reveal that VTM pellets undergo oxidation in three distinct phases: pre-oxidation, mid-oxidation, and final stable phase. Notably, the mid-oxidation phase is absent in magnetite oxidation. The shrinking unreacted-core model has been proven to be suitable for modeling the process of oxidizing VTM pellets. In the pre-oxidation stage, the rate-controlling step is determined by both the oxidation temperature and the effective oxygen concentration. The influence of the effective oxygen concentration on the rate of oxidation is more pronounced at temperatures between 1073 and 1273 K, especially when the oxygen content falls below 15 vol.%. For the production of oxidized VTM pellets, it is necessary to maintain a preheating temperature above 1173 K (to accelerate the oxidation reaction) and below 1473 K (to prevent the swift formation of compact Fe2TiO5 at the shell of the pellet) in an oxygen-enriched atmosphere.
基金supported by National Natural Science Foundation of China(No.52204302)Young Elite Scientist Sponsorship Program by CAST(No.YESS20220533)Hunan Provincial Natural Science Foundation of China(No.2022JJ40625).
文摘The isothermal oxidation kinetics of vanadium–titanium magnetite(VTM)pellets prepared with 3Co-binder(coal-based colloidal composite binder)and F-binder(pulverized Funa binder)are compared.The oxidation process was analyzed using the first-order irreversible reaction,following the shrinking unreacted nucleus model.The results demonstrate that VTM pellets prepared with 3Co-binder exhibit a faster oxidation rate than those with F-binder across the temperatures ranging from 1073 to 1473 K.In both cases,the oxidation process was controlled by an interfacial chemical reaction during the pre-oxidation stage and by internal diffusion during the mid-oxidation stage.The type of binder did not influence the primary oxidation control mechanism of the VTM pellets.However,the apparent rate constants in the pre-oxidation stage and the internal diffusion coefficients in the mid-oxidation stage were higher for pellets with 3Co-binder compared to those with F-binder.The apparent activation energies for the 3Co-binder pellets were similar to those of bentonite,indicating favorable kinetic conditions without negative impacts on the oxidation process.Nonetheless,it is important to note that pellets with F-binder required a longer oxidation time than those with 3Co-binder.
基金supported by the opening fund of National Key Research and Development Program of China(No.2020YFE0205300)Key Laboratory of Science and Technology on Silicon Devices,Chinese Academy of Sciences(No.KLSDTJJ2022-5)+1 种基金Chongqing Natural Science Foundation of China(No.cstc2021jcyj-msxmX1002)the Fundamental Research Funds for the Central Universities(No.AUGA5710051221).
文摘Sn/ENIG has recently been used in flexible interconnects to form a more stable micron-sized metallurgical joint,due to high power capability which causes solder joints to heat up to 200℃.However,Cu_(6)Sn_(5)which is critical for a microelectronic interconnection,will go through a phase transition at temperatures between 186 and 189℃.This research conducted an in-situ TEM study of a micro Cu/ENIG/Sn solder joint under isothermal aging test and proposed a model to illustrate the mechanism of the microstructural evolution.The results showed that part of the Sn solder reacted with Cu diffused from the electrode to formη´-Cu_(6)Sn_(5)during the ultrasonic bonding process,while the rest of Sn was left and enriched in a region in the solder joint.But the enriched Sn quickly diffused to both sides when the temperature reached 100℃,reacting with the ENIG coating and Cu to form(Ni_(x)Cu_(1-x))_(3)Sn_(4),AuSn_(4),and Cu_(6)Sn_(5)IMCs.After entering the heat preservation process,the diffusion of Cu from the electrode to the joint became more intense,resulting in the formation of Cu_(3)Sn.The scallop-type Cu_(6)Sn_(5)and the seahorse-type Cu_(3)Sn constituted a typical two-layered structure in the solder joint.Most importantly,the transition betweenηandη’was captured near the phase transition temperature for Cu_(6)Sn_(5)during both the heating and cooling process,which was accompanied by a volume shifting,and the transition process was further studied.This research is expected to serve as a reference for the service of micro Cu/ENIG/Sn solder joints in the electronic industry.
基金supported by the Yunnan Fundamental Research Projects(No.202301BC070001-001)funded by the Yunnan Provincial Department of Science and Technologythe Yunnan Provincial Science and Technology Plan Project(No.202005AF150045)+1 种基金the Jiangsu Province Industry-University-Research Cooperation Project(No.BY2022832)funded by the Jiangsu Provincial Department of Science and Technologythe National Natural Science Foundation of China(No.52275339).
文摘Different amounts of Fe(0.005,0.01,0.03,0.05,and 0.07 wt%)were added to SAC305 to study the shear behavior damage of Fe-doped SAC solder joints under thermal loading(170℃,holding time of 0,250,500,and 750 h).The results show that during isothermal aging at 170℃,the average shear force of all solder joints decreases with increasing aging time,while the average fracture energy first increases and then decreases,reaching a maximum at 500 h.Minor Fe doping could both increase shear forces and related fracture energy,with the optimum Fe doping amount being 0.03 wt%within the entire aging range.This is because the doping Fe reduces the undercooling of the SAC305 alloy,resulting in the microstructure refining of solder joints.This in turn causes the microstructure changing from network structure(SAC305 joint:eutectic network+β-Sn)to a single matrix structure(0.03Fe-doped SAC305 joint:β-Sn matrix+small compound particles).Specifically,Fe atoms can replace some Cu in Cu_(6)Sn_(5)(both inside the solder joint and at the interface),and then form(Cu,Fe)_(6)Sn_(5) compounds,resulting in an increase in the elastic modulus and nanohardness of the compounds.Moreover,the growth of Cu_(6)Sn_(5) and Cu_(3)Sn intermetallic compounds(IMC)layer are inhibited by Fe doping even after the aging time prolonging,and Fe aggregates near the interface compound to form FeSn_(2).This study is of great significance for controlling the growth of interfacial compounds,stabilizing the microstructures,and providing strengthening strategy for solder joint alloy design.
基金supported by the National Natural Science Foundation of China(No.52125101)the Basic and Applied Basic Research Major Program of Guangdong Province,China(Grant No.2021B0301030003)the Jihua Laboratory(Project No.X210141TL210).
文摘Transient liquid phase(TLP)bonding is a promising process for the joining and repairing of nickel-base superalloys.One of the most important parameters in TLP bonding is the bonding time required for suf-ficient isothermal solidification which prevents the formation of undesirable precipitated phases.In the present work,the effect of bonding time on the microstructure,type,and evolution of precipitates in the non-isothermal solidified zone(NSZ)and their effect on micro-mechanical properties were systemat-ically investigated using multi-scale tests in TLP bonded Mar-M247 superalloy joints with Ni-15.2Cr-3.74B interlayer at 1230℃.For a bonding time of 5 min,dual-phase M_(23)(C,B)_(6)-γ/γ’(where M is a mix-ture of Hf,Ta,Cr,and Ni)with eutectic configuration was formed in NSZ.With the increase in bonding time,the evolution of NSZ microstructure can be summed up as eutectic M_(23)(C,B)_(6)-γ/γ’,semi-striping dual-phase M_(23)(C,B)_(6)-γ/γ’,discontinuously striping M_(23)(C,B)_(6)-γ/γ’,followed by the disintegration of NSZ.As the NSZ counterpart,the isothermal solidified zone(ISZ)is mainly composed ofγ/γ’.Ac-companied by the dissolution of M_(23)(C,B)_(6) in the centerline,the proportion of the ISZ increases greatly until the joints are completely occupied by ISZ.Finally,a bamboo-like structure with domain size of-100μm was formed in the joint centerline,along withγ’reorganized themselves all into cubic shapes and distributed homogeneously.Mechanical property tests demonstrated that in comparison to samples with longer bonding time,the NSZ of the shortest bonding time(5 min)has the highest strength and a subsequent decrease in strength was observed with prolonging the bonding time and post-bond heat treatment.Furthermore,possible solidification/transformation path,segregation behavior,and formation mechanism of NSZ/ISZ evolution were discussed.
基金funded by the Science and Technology Development Fund,Macao SAR(Nos.0065/2020/A2,SKLQRCM(MUST)-2020-2022)Shenzhen-Hong Kong-Macao Science and Technology Project(Grade c)(No.SGDX20210823104201010).
文摘Norovirus is an infectious disease that can cause non-bacterial gastroenteritis,which has a low infectious dose,rapid onset,and strong transmission ability;therefore,rapid and sensitive detection is essential to reduce the transmission of gastroenteritis.In the study,a norovirus GII loop-mediated isothermal amplification assay was developed and prepared into freeze-drying microspheres,and a closed-cassette-based,integrated,reagent-ambient storage,on-site instant detection platform for norovirus GII was constructed using a commercial,fully automated nucleic acid analyzer with integrated magnetic bearing based nuclear acid extraction and nucleic acid detection,with a sensitivity of 10 copies/μL,with no cross-reactivity with other 5 viruses.For 28 simulated samples,the integrated assay platform was consistent with the experimental results of reverse transcription-quantitative polymerase chain reaction(RT-qPCR)assays after conventional laboratory nucleic acid extraction.The entire process can be finished in about 1 h,which is ideal for immediate rapid detection.
基金The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(52071238)Leading Innovation and Entrepreneurship Team in Zhejiang Province(2021R01020)+2 种基金the Key Research and Development Program of Hubei Province(2021BAA057)Science and Technology Program of Guangxi Province(AA22068080)the 111 Project.
文摘The mechanical properties of the sample and the stability of retained austenite were studied by designing two kinds of ultra-fine bainitic steel with different heat treatment methods austempering above and below Ms(martensite start tem-perature),which were subjected to tensile tests at 20 and 450℃,respectively.The results show that compared to room temperature(20℃)tensile properties,the uniform elongation of the sample at high temperature(450℃)significantly decreased.Specifically,the uniform elongation of the sample austempered above Ms decreased from 8.0%to 3.5%,and the sample austempered below Ms decreased from 10.9%to 3.1%.Additionally,the tensile strength of the sample austempered above Ms significantly decreased(from 1281 to 912 MPa),and the sample austempered below Ms slightly decreased(from 1010 to 974 MPa).This was due to the high carbon content(1.60 wt.%),high mechanical stability,low thermal stability for the retained austenite of the sample austempered below Ms.Besides,the retained austenite decomposed at high temper-atures,the carbon content and transformation driving force were significantly reduced,the transformation rate increased,and the phase transformation content reduced.
基金Project(cstb2022nscq-msx0801)supported by the Natural Science Foundation of Chongqing,ChinaProject(52004044)supported by the National Natural Science Foundation of China+2 种基金Project(ckrc2022030)supported by the Foundation of Chongqing University of Science and Technology,ChinaProject(YKJCX2220216)supported by the Graduate Research Innovation Project of Chongqing University of Science and Technology,ChinaProject(202311551007)supported by the National Undergraduate Training Program for Innovation and Entrepreneurship,China。
文摘The oxidation behavior of ferrovanadium spinel(FeV_(2)O_(4)),synthesized via high-temperature solid-state reaction,was investigated using thermogravimetry,X-ray diffractometry,and X-ray photoelectron spectroscopy over the temperature range of 450–700℃.The results revealed that the oxidation process of FeV_(2)O_(4)can be divided into three stages with the second stage being responsible for maximum weight gain due to oxidation.Three classical methods were employed to analyze the reaction mechanisms and model functions for distinct oxidation stages.The random nucleation and subsequent growth(A_(3))kinetic model was found to be applicable to both initial and secondary stage.The third stage of oxidation was consistent with the three-dimensional diffusion,spherical symmetry(D_(3))kinetic mode.Both the model-function method and the model-free method were utilized to investigate the apparent activation energy of the oxidation reaction at each stage.It was found that the intermediates including Fe_(3)O_(4),VO_(2),V_(2)O_(3),and Fe_(2.5)V_(7.11)O_(16),played significant roles in the oxidation process prior to the final formation of FeVO_(4)and V_(2)O_(5)through oxidation of FeV_(2)O_(4).
基金supported by the National Natural Science Foundation of China(Grant Nos.52074198,52374342 and U21A20113)also supported by the Department of Science and Technology of Hubei Province(Grant No.2023AFB603 and No.2023DJC140).
文摘To clarify the deformation behavior of MnS inclusions in a non-quenched and tempered steel at three different positions (edge, 1/2 radius and center) in the cross-section of the billet in the course of hot rolling, isothermal compression experiments were performed under the deformation temperature range from 1073 to 1473 K, the reduction rates from 25% to 75% and the strain rates from 0.01 to 10 s^(−1). The variations of deformability features (i.e., aspect ratios, size distributions, and morphologies) of MnS inclusions with those isothermal compression parameters were revealed. The evaluation of the probable maximum aspect ratio of MnS inclusions at the three different positions in the cross-section of the billet after hot rolling was examined using the statistical analysis of extreme values. Results showed that the number densities of MnS inclusions at three different positions (edge, 1/2 radius and center) in the cross-section of the steel billet only fluctuated slightly when the deformation parameters varied in the isothermal compression, while the average inclusion aspect ratios in all cases generally have a negative correlation with the deformation temperature and positive correlations with the reduction ratio and the strain rate. Statistical analysis reveals that larger inclusions deform more easily during hot rolling. The effect of rolling temperature on the extreme value of the aspect ratio of inclusions is the smallest, while the effects of initial size, reduction ratio and strain rate are more significant.
基金Project supported by the National Key Research and Development Program of China (2021YFB3503100,2022YFB3505303,2021YFB3501500)the Key Technology Research and Development Program of Shandong Province (2019JZZY020210)。
文摘The high-temperature magnetic perfo rmance and micro structure of Sm_(1-x)Gd_(x)(Co_(bal)Fe_(0.09)Cu_(0.09)Zr_(0.025))_(7.2)(x=0.3,0.5) magnets were investigated.With the isothermal aging time decreasing from 11 to 3 h,the temperature coefficient of intrinsic coercivity in the temperature range of 25-500℃,β_(25-500℃),was optimized from -0,167%/℃ to-0.112%/℃ for x=0.3 magnets.The noticeable enhancement(~33%) of temperature stability is correlated with the increased content of 1:5H cell boundary phase and its relatively high Curie temperature as well.However,for the x=0.5 magnet,it is found that the presence of Sm_(5)Co_(19) phases and wider nanotwin variants hinder the formation of 1:5H cell boundary phase.The insufficient 1:5H is not beneficial to the proper redistribution of Cu in cell boundary,making the x=0.5 magnet difficult to achieve higher temperature stability.Consequently,the approach of adjusting the isothermal aging process can offer guidance for attaining superior magnetic performance in the temperature range from 25 to 500℃ for Gd-substituted Sm_(2)Co_(17)-type magnets.
基金The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China(No.52104381)the China Postdoctoral Science Foundation(No.2023M732721)also the help on microstructure analysis from Dr.Zhen Wang at the Analytical and Testing Center of Wuhan University of Science and Technology.
文摘The effect of the amount of isothermal martensite and bainite on the microstructure and properties in a medium-carbon quenching and partitioning(Q&P)steel was investigated by designing the different Q&P treatment parameters.The results show that the amount of isothermal martensite increased gradually with the increase in quenching time.The increase in isothermal martensite amount improved the product of strength and elongation(PSE)of Q&P steels.In addition,the increase in carbides amount and the recovery in prior martensite with longer partitioning time led to an increase in PSE first and then,a decrease.It implies that a higher PSE could be obtained by the selection of a suitable partitioning time.Furthermore,the effect of bainite transformation during partitioning on PSE was investigated by designing the different partitioning temperatures,including 300,400(below bainite starting temperature,B_(s))and 480℃(above B_(s)).The results show that compared with the samples partitioned at temperature above B_(s),the bainite transformation was only detected when the samples were partitioned at temperature below B_(s).The bainite transformation amount increased with the decreasing partitioning temperature,leading to the inhibition of carbides precipitation and more stable RA and thus,resulting in the highest PSE.
文摘Numerical predictions are made for Laminar Forced convection heat transfer with and without buoyancy effects for Supercritical Nitrogen flowing over an isothermal horizontal flat plate with a heated surface facing downwards.Computations are performed by varying the value ofΔT from5 to 30 K and P_(∞)/P_(cr)ratio from1.1 to 1.5.Variation of all the thermophysical properties of supercritical Nitrogen is considered.The wall temperatures are chosen in such a way that two values of Tw are less than T∗(T*is the temperature at which the fluid has a maximum value of Cp for the given pressure),one value equal to T∗and two values greater than T∗.Three different values of U∞are used to obtain Re∞range of 3.6×10_(4)to 4.74×10^(5)for forced convection without buoyancy effects and Gr_(∞)/Re^(2)_(∞)range of 0.011 to 3.107 for the case where buoyancy effects are predominant.Six different forms of correlations are proposed based on numerical predictions and are compared with actual numerical predictions.It has been found that in all six forms of correlations,the maximum deviations are found to occur in those cases where the pseudocritical temperature TT∗lies between the wall temperature and bulk fluid temperature.
基金Projects(51161011,11364024)supported by the National Natural Science Foundation of China
文摘Based on the entropy function, a two-dimensional phase field model of binary alloys was established. Meanwhile, an explicit difference method with uniform grid was adopted to solve the phase field and solute field controlled equations. And the alternating direction implicit(ADI) algorithm for solving temperature field controlled equation was also employed to avoid the restriction of time step. Some characteristics of the Ni-Cu alloy were captured in the process of non-isothermal solidification, and the comparative analysis of the isothermal and the non-isothermal solidification was investigated. The simulation results indicate that the non-isothermal model is favorable to simulate the real solidification process of binary alloys, and when the thermal diffusivity decreases, the non-isothermal phase-field model is gradually consistent with the isothermal phase-field model.
基金Project(51464008) supported by the National Natural Science Foundation of ChinaProject(KY[2012]004) supported by the Key Laboratory Item of Education Office in Guizhou Province,China
文摘The Mg-Ni hydride was prepared by hydriding combustion synthesis under a high magnetic field. The dehydriding kinetics of the hydrides was measured under the isothermal and non-isothermal conditions. A model was applied to analyzing the kinetics behavior of Mg-Ni hydride. The calculation results show that the theoretical value and the experimental data can reach a good agreement, especially in the case of non-isothermal dehydriding. The rate-controlling step is the diffusion of hydrogen atoms in the solid solution. The sample prepared under magnetic field of 6 T under the isothermal condition can reach the best performance. The similar tendency was observed under the non-isothermal condition and the reason was discussed.
文摘This study established a loop-mediated isothermal amplification(LAMP)system for specially detecting the pathogen causing tobacco target spot in a rapid manner.With genes encoding the Internal Transcribed Spacer(ITS)as targets,four LAMP primers with high specificity and sensitivity were designed and screened.The specificity and sensitivity of the established method were evaluated,and then the method was used to detect the samples of tobacco plants artificially inoculated with pathogens.The established method enabled the observation of detection results by the color change of dye after 60 min of isothermal amplification at 65°C.In the specificity test,only the reaction tubes of the pathogen causing tobacco target spot appeared green,and the electrophoresis lanes were dispersive,indicating positive results,while all other fungal strains showed negative results.The method had a minimum limit of detection being 0.1 ng/μL for the genomic DNA of the pathogen causing tobacco target spot,allowing direct detection of the pathogen from lesions.The established LAMP method can be directly used for the diagnosis of tobacco plants infected with target spot in the field.
基金Project(51075099) supported by the National Natural Science Foundation of ChinaProject(E201038) supported by Natural Science Foundation of the Heilongjiang Province,China+3 种基金Project(20090460884) supported by the China Postdoctoral Science Foundation Project(SKLSP201121) supported by the Fund of the State Key Laboratory of Solidification Processing in NWPU,ChinaProject (2011RFQXG010) supported by the Harbin City Young Scientists Foundation,ChinaProject(LBH-T1102) supported by the Specially Postdoctoral Science Foundation of Heilongjiang Province,China
文摘The microstructural evolution of AZ61 magnesium alloy predeformed by equal channel angular extrusion(ECAE) during semisolid isothermal treatment(SSIT) was investigated by means of optical metalloscopy and image analysis equipment.The process involved application of ECAE to as-cast alloy at 310 ℃ to induce strain prior to heating in the semisolid region for different time lengths.The results show that extrusion pass,isothermal temperature and processing route have an influence on microstructural evolution of predeformed AZ61 magnesium alloy during SSIT.With the increase of extrusion pass,the solid particle size is reduced gradually.When isothermal temperature increases from 530 ℃ to 560 ℃,the average particle size increases from 22 μm to 35 μm.When isothermal temperature is 575 ℃,the average particle size decreases.The particle size of microstructure of AZ61 magnesium alloy predeformed by ECAE at BC during SSIT is the finest.
基金Project(2009AA03Z423)supported by the High-tech Research and Development Program of ChinaProject(51071055)supported by the National Natural Science Foundation of ChinaProject(HEUFT05038)supported by the Basic Research Foundation of Harbin Engineering University,China
文摘A Mg-8%Al-1%Si alloy with semisolid microstructure was fabricated by isothermal heat treatment process. The effects of isothermal process parameters such as holding temperature and holding time on the microstructure of Mg-8%Al-1%Si alloy were investigated. The results show that a non-dendritic microstructure could be obtained by isothermal heat treatment. With increasing holding temperature from 560 to 575 °C or holding time from 5 to 30 min, the liquid volume fraction increases, the average size of α-Mg grains grows larger and globular tendency becomes more obvious. In addition, the Mg2Si phase transforms from Chinese script shape to granule shape. The morphology modification mechanisium of Mg2Si phase in Mg-8%Al-1%Si alloy during the semisolid isothermal heat treatment was also studied.