Devices on aircraft are subjected to complex environmental excitations that pose risks to their operational safety.Passive vibration isolation techniques are extensively employed due to their advantage of not requirin...Devices on aircraft are subjected to complex environmental excitations that pose risks to their operational safety.Passive vibration isolation techniques are extensively employed due to their advantage of not requiring additional energy sources.This paper introduces a novel metallic vibration isolator based on zigzag structures.The proposed isolator features a compact design and can be manufactured using additive manufacturing techniques,allowing for the integration of structural and functional elements.Firstly,the vibration response of the single-degree-of-freedom(SDOF)system is analyzed.To achieve effective vibration reduction,it is crucial for the isolator's stiffness to be sufficiently low.Secondly,to obtain a structure with high compliance,the traversal algorithm and the finite element method(FEM)are applied.The results confirm that the zigzag structure is a reliable high-compliance configuration.Thirdly,the parametric geometric model of the zigzag structure is developed and its stiffness is calculated.Quasi-static compression experiments validate the accuracy of the calculations.Finally,a specific engineering example is considered,where a zigzag vibration isolator is designed and fabricated.Vibration experiments demonstrate that the zigzag isolator effectively reduces both the stiffness and the fundamental frequency of the vibration system,achieving a vibration isolation efficiency exceeding 60%.展开更多
Hydro-pneumatic near-zero frequency(NZF)vibration isolators have better performance at isolating vibration with low frequencies and heavy loadings when the nonlinear fluidic damping is introduced and the pressurized g...Hydro-pneumatic near-zero frequency(NZF)vibration isolators have better performance at isolating vibration with low frequencies and heavy loadings when the nonlinear fluidic damping is introduced and the pressurized gas pressure is properly adjusted.The nonlinear characteristics of such devices make their corresponding dynamic research involve chaotic dynamics.Chaos may bring negative influence and disorder to the structure and low-frequency working efficiency of isolators,which makes it necessary to clarify and control the threshold ranges for chaos generation in advance.In this work,the chaotic characteristics for a class of hydro-pneumatic NZF vibration isolators under dry friction,harmonic,and environmental noise excitations are analyzed by the analytical and numerical methods.The parameter ranges for the generation of chaos are obtained by the classical and random Melnikov methods.The chaotic characteristics and thresholds of the parameters in the systems with or without noise excitation are discussed and described.The analytical solutions and the influence of noise and harmonic excitation about chaos are tested and further analyzed through many numerical simulations.The results show that chaos in the system can be induced or inhibited with the adjustment of the magnitudes of harmonic excitation and noise intensity.展开更多
In this study, the three-dimensional non-premixed two-phase kerosene/air rotating detonation engines with different isolator configurations and throat area ratios are simulated by the Eulerian-Lagrangian method. The e...In this study, the three-dimensional non-premixed two-phase kerosene/air rotating detonation engines with different isolator configurations and throat area ratios are simulated by the Eulerian-Lagrangian method. The effects of the divergence, straight, and convergence isolators on the rotating detonation wave dynamics and the upstream oblique shock wave propagation mechanism are analyzed. The differences in the rotating detonation wave behaviors between ground and flight operations are clarified.The results indicate that the propagation regimes of the upstream oblique shock wave depend on the isolator configurations and operation conditions. With a divergence isolator, the airflow is accelerated throughout the isolator and divergence section, leading to a maximum Mach number(~1.8) before the normal shock. The total pressure loss reaches the largest, and the detonation pressure drops. The upstream oblique shock wave can be suppressed within the divergence section with the divergence isolator.However, for the straight and convergence isolators, the airflow in the isolator with a larger ψ_(1)(0.3 and0.4) can suffer from the disturbance of the upstream oblique shock wave. The critical incident angle is around 39° at ground operation conditions. The upstream oblique shock wave tends to be suppressed when the engine operates under flight operation conditions. The critical pressure ratio β_(cr0) is found to be able to help in distinguishing the propagation regimes of the upstream oblique shock wave. Slightly below or above the β_(cr0) can obtain different marginal propagation results. The high-speed airflow in the divergence section affects the fuel droplet penetration distance, which deteriorates the reactant mixing and the detonation area. Significant detonation velocity deficits are observed and the maximum velocity deficit reaches 26%. The results indicate the engine channel design should adopt different isolator configurations based on the purpose of total pressure loss or disturbance suppression. This study can provide useful guidance for the channel design of a more complete two-phase rotating detonation engine.展开更多
To improve the seismic performance of unrein-forced masonry(URM)buildings in the Himalayan re-gions,including Western China,India,Nepal,and Paki-stan,a low-cost bonded scrap tire rubber isolator(BSTRI)is proposed,and ...To improve the seismic performance of unrein-forced masonry(URM)buildings in the Himalayan re-gions,including Western China,India,Nepal,and Paki-stan,a low-cost bonded scrap tire rubber isolator(BSTRI)is proposed,and a series of vertical compression and horizontal shear tests are conducted.Incremental dynamic analyses are conducted for five types of BSTRI-supported URM buildings subjected to 22 far-field and 28 near-field earthquake ground motions.The resulting fragility curves and probability of damage curves are presented and utilized to evaluate the damage states of these buildings.The results show that in the base-isolated(BI)URM buildings under seismic ground motion at a peak ground acceleration(PGA)of 1.102g,the probability of exceeding the collapse prevention threshold is less than 25%under far-field earthquake ground motions and 31%under near-field earthquake ground motions.Furthermore,the maximum average vulnerability index for the BI-URM buildings,which are designed to withstand rare earthquakes with 9°(PGA=0.632g),is 40.87%for far-field earthquake ground motions and 41.83%for near-field earthquake ground motions.Therefore,the adoption of BSTRIs can significantly reduce the collapse probability of URM buildings.展开更多
Optical isolators,the photonic analogs of electronic diodes,are essential for ensuring the unidirectional flow of light in optical systems,thereby mitigating the destabilizing effects of back reflections.Thin-film lit...Optical isolators,the photonic analogs of electronic diodes,are essential for ensuring the unidirectional flow of light in optical systems,thereby mitigating the destabilizing effects of back reflections.Thin-film lithium niobate(TFLN),hailed as“the silicon of photonics,”has emerged as a pivotal material in the realm of chip-scale nonlinear optics,propelling the demand for compact optical isolators.We report a breakthrough in the development of a fully passive,integrated optical isolator on the TFLN platform,leveraging the Kerr effect to achieve an impressive 10.3 dB of isolation with a minimal insertion loss of 1.87 dB.Further theoretical simulations have demonstrated that our design,when applied to a microring resonator with a Q factor of 5×10^(6),can achieve 20 dB of isolation with an input power of merely 8 mW.This advancement underscores the immense potential of lithium niobate-based Kerr-effect isolators in propelling the integration and application of high-performance on-chip lasers,heralding a new era in integrated photonics.展开更多
Periodic isolator is well known for its wave filtering characteristic.While in middle and high frequencies,the internal resonances of the periodic isolator are evident especially when damping is small.This study propo...Periodic isolator is well known for its wave filtering characteristic.While in middle and high frequencies,the internal resonances of the periodic isolator are evident especially when damping is small.This study proposes a novel aperiodic vibration isolation for improving the internal resonances control of the periodic isolator.The mechanism of the internal resonances control by the aperiodic isolator is firstly explained.For comparing the internal resonances suppression effect of the aperiodic isolator with the periodic isolator,a dynamic model combing the rigid machine,the isolator,and the flexible plate is derived through multi subsystem modeling method and transfer matrix method,whose accuracy is verified through the finite element method.The influences of the aperiodicity and damping of the isolator on the vibration isolation performance and internal resonances suppression effect are investigated by numerical analysis.The numerical results demonstrate that vibration attenuation performances of the periodic isolator and aperiodic isolator are greatly over than that of the continuous isolator in middle and high frequencies.The aperiodic isolator opens the stop bandgaps comparing with the periodic isolator where the pass bandgaps are periodically existed.The damping of the isolator has the stop bandgap widening effect on both the periodic isolator and the aperiodic isolator.In addition,a parameter optimization algorithm of the aperiodic isolator is presented for improving the internal resonances control effect.It is shown that the vibration peaks within the target frequency band of the aperiodic isolator are effectively reduced after the optimization.Finally,the experiments of the three different vibration isolation systems are conducted for verifying the analysis work.展开更多
Quasi-zero stiffness(QZS)isolators have received considerable attention over the past years due to their outstanding vibration isolation performance in low-frequency bands.However,traditional mechanisms for achieving ...Quasi-zero stiffness(QZS)isolators have received considerable attention over the past years due to their outstanding vibration isolation performance in low-frequency bands.However,traditional mechanisms for achieving QZS suffer from low stiffness regions and significant nonlinear restoring forces with hardening characteristics,often struggling to withstand excitations with high amplitude.This paper presents a novel QZS vibration isolator that utilizes a more compact spring-rod mechanism(SRM)to provide primary negative stiffness.The nonlinearity of SRM is adjustable via altering the raceway of its spring-rod end,along with the compensatory force provided by the cam-roller mechanism so as to avoid complex nonlinear behaviors.The absolute zero stiffness can be achieved by a well-designed raceway curve with a concise mathematical expression.The nonlinear stiffness with softening properties can also be achieved by parameter adjustment.The study begins with the forcedisplacement relationship of the integrated mechanism first,followed by the design theory of the cam profile.The dynamic response and absolute displacement transmissibility of the isolation system are obtained based on the harmonic balance method.The experimental results show that the proposed vibration isolator maintains relatively low-dynamic stiffness even under non-ideal conditions,and exhibits enhanced vibration isolation performance compared to the corresponding linear isolator.展开更多
Bionic X-shaped vibration isolators have been widely employed in aerospace and other industrial fields,but the stiffness properties of classic X-shaped structures limit the vibration isolation ability for low frequenc...Bionic X-shaped vibration isolators have been widely employed in aerospace and other industrial fields,but the stiffness properties of classic X-shaped structures limit the vibration isolation ability for low frequencies.An innovative bionic quasi-zero stiffness(QZS)vibration isolator(BQZSVI),which can broaden the QZS range of a classic X-shaped isolator and can bring it closer to the equilibrium position,is proposed.The BQZSVI consists of an X-shaped structure as the bone fabric of lower limbs and a nonlinear magnetic loop device simulating the leg muscle.Based on static calculation,the stiffness characteristic of the structure is confirmed.The governing equations of motion of the BQZSVI structure are established in the framework of the Lagrange equation,and the harmonic balance method(HBM)is adopted to obtain the transmissibility responses.The results show that the BQZSVI can provide a more accessible and broader range of QZS.In the dynamic manifestation,the introduction of the BQZSVI can reduce the amplitude of a classic X-shaped vibration isolator by 65.7%,and bring down the initial vibration isolation frequency from 7.43 Hz to 2.39 Hz.In addition,a BQZSVI prototype is designed and fabricated,and the exactitude of the theoretical analysis method is proven by means of experiments.展开更多
The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructi...The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein,which uses the particle damping vibration absorption technology and bandgap vibration control theory.The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control.The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications.The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges.The vibration responses are obtained using the finite element method,while the structural noise radiation is simulated using the frequency-domain boundary element method.Using the particle swarm optimization algorithm,the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range.The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions.展开更多
Traditional vibration isolation structures cannot work effectively for low-frequency vibration under heavy loads,due to the inherent contradiction between the high-static and lowdynamic stiffness of these structures.A...Traditional vibration isolation structures cannot work effectively for low-frequency vibration under heavy loads,due to the inherent contradiction between the high-static and lowdynamic stiffness of these structures.Although the challenge can be effectively addressed by introducing a negative stiffness mechanism,the existing structures inevitably have complex configurations.Metastructures,a class of man-made structures with both extraordinary mechanical properties and simple configurations,provide a new insight for low-frequency vibration isolation technology.In this paper,circular metastructure isolators consisting of some simple beams are designed for low-frequency vibration,including a single-layer isolator and a double-layer isolator,and their static and dynamic characteristics are studied,respectively.For the static characteristic,the force–displacement and stiffness–displacement curves are obtained by finite element simulation;for the dynamic characteristic,the vibration transmissibility curves are obtained analytically and numerically.The result shows that the circular nonlinear single-layer isolator has excellent lowfrequency isolation performance,and the isolation frequency band will decrease about 20 Hz when the isolated mass is fixed at 1.535 kg,compared with a similar circular linear isolator.These static and dynamic properties are well verified through experiments.Our work provides an innovative approach for the low-frequency vibration isolation and has wide potential applications in aeronautics.展开更多
To achieve stability optimization in low-frequency vibration control for precision instruments,this paper presents a quasi-zero stiffness(QZS)vibration isolator with adjustable nonlinear stiffness.Additionally,the str...To achieve stability optimization in low-frequency vibration control for precision instruments,this paper presents a quasi-zero stiffness(QZS)vibration isolator with adjustable nonlinear stiffness.Additionally,the stress-magnetism coupling model is established through meticulous theoretical derivation.The controllable QZS interval is constructed via parameter design and magnetic control,effectively segregating the high static stiffness bearing section from the QZS vibration isolation section.Furthermore,a displacement control scheme utilizing a magnetic force is proposed to regulate entry into the QZS working range for the vibration isolation platform.Experimental results demonstrate that the operation within this QZS region reduces the peak-to-peak acceleration signal by approximately 66.7%compared with the operation outside this region,thereby significantly improving the low frequency performance of the QZS vibration isolator.展开更多
High-static-low-dynamic stiffness (HSLDS) vibration isolators have been demonstrated to be an effective means of attenuating low-frequency vibrations, and may be utilized for ship shafting applications to mitigate tor...High-static-low-dynamic stiffness (HSLDS) vibration isolators have been demonstrated to be an effective means of attenuating low-frequency vibrations, and may be utilized for ship shafting applications to mitigate torsional vibration. This paper presents the construction of a highly compact HSLDS torsional vibration isolator by connecting positive and negative stiffness components in paral lel. Based on mechanical model analysis, the restoring torque of negative stiffness components is de rived from their springs and connecting rods, while that of positive stiffness components is obtained through their circular section flexible rods. The quasizero stiffness characteristics of the HSLDS iso lator are achieved through a combination of static structural simulation and experimental test. The tor sional vibration isolation performance is assessed by means of numerical simulation and theory analy sis. Finally, the frequency-sweep vibration test is conducted. The test results indicate that the HSLDS torsional vibration isolator exhibits superior low-frequency isolation performance compared to its linear counterpart, rendering it a promising solution for mitigating low-frequency torsional vi bration in ship shafting.展开更多
The quasi-zero-stiffness (QZS) vibration isolators are effective in achieving low-frequency vibration isolation for a designedpayload, but the isolation effect would be substantially reduced by payload mismatch. To ta...The quasi-zero-stiffness (QZS) vibration isolators are effective in achieving low-frequency vibration isolation for a designedpayload, but the isolation effect would be substantially reduced by payload mismatch. To tackle such a challenging problem, acompensating QZS (CQZS) vibration isolation system (VIS) is proposed to acquire QZS characteristics under arbitrarypayloads. The dynamic characteristics of the CQZS VIS are analyzed to estimate the performance decline of vibration isolationunder payload mismatch. Moreover, the compensation principle of the CQZS VIS is demonstrated, and then the CQZS VIS isfabricated by combining a passive QZS isolator and a compensation system. Finally, experiments are conducted to evaluate thecompensation capability and vibration isolation performance enhance of the CQZS VIS. It is found that the CQZS VIS is ableto compensate payload mismatch, and thus the QZS characteristic can be regained when the payload deviates from thedesigned one, which enabls the QZS VIS to achieve significant low-frequency vibration isolation under payload mismatch.展开更多
A metamaterial vibration isolator,termed as wave-insulating isolator,is proposed,which preserves enough load-bearing capability and offers ultra-low and broad bandgaps for greatly enhanced wave insulation.It consists ...A metamaterial vibration isolator,termed as wave-insulating isolator,is proposed,which preserves enough load-bearing capability and offers ultra-low and broad bandgaps for greatly enhanced wave insulation.It consists of plate-shaped metacells,whose symmetric and antisymmetric local resonant modes offer several low and broad mode bandgaps although the complete bandgap remains high and narrow.The bandgap mechanisms,vibration isolation properties,effects of key parameters,and robustness to complex conditions are clarified.As experimentally demonstrated,the wave-insulating isolator can improve the vibration insulation in the ranges of[50 Hz,180 Hz]and[260 Hz,400 Hz]by 15 dB and 25 dB,respectively,in contrast to the conventional isolator with the same first resonant frequency.展开更多
In this paper,a new quasi-zero-stiffness(QZS)nonlinear isolation system using a double-curved beam(DCB)as a negative stiffness structure is proposed,and its performance is investigated.The negative stiffness provided ...In this paper,a new quasi-zero-stiffness(QZS)nonlinear isolation system using a double-curved beam(DCB)as a negative stiffness structure is proposed,and its performance is investigated.The negative stiffness provided by the DCB to the isolator in the equilibrium position reduces the isolator’s overall dynamic stiffness.Static and dynamic characteristics of the system are investigated.The amplitude-frequency characteristics and force transmissibility equation of the system were derived via the harmonic balance method.The effects of damping ratio and excitation force amplitude on amplitude-frequency and force transmissibility curves are examined,and the isolation performance is compared with that of an equivalent linear isolator supporting the same mass with the same static deflection as nonlinear isolators.Furthermore,MATLAB numerical simulation software is used to perform dynamic time analysis of the nonlinear isolation system.The results indicate that the amplitude-frequency curves of the nonlinear isolation system exhibit bending,accompanied by discontinuous jumps in frequency.The appropriate increase in the damping ratio or reduction in the excitation amplitude benefits the vibration isolation performance of the nonlinear vibration isolation system.Compared with the equivalent linear isolation system,the QZS isolation system exhibits a better low-frequency vibration isolation performance,which provides a theoretical basis for the design of low-frequency nonlinear isolators.展开更多
Vibration isolation for low frequency excitation and the power supply for low power monitoring sensors are important issues in bridge engineering.The main problem is how to effectively combine the vibration isolator w...Vibration isolation for low frequency excitation and the power supply for low power monitoring sensors are important issues in bridge engineering.The main problem is how to effectively combine the vibration isolator with the energy harvester to form a multi-functional structure.In this paper,a system called quasi-zero stiffness energy harvesting isolator(QZS-EHI)with triple negative stiffness(TNS)is proposed.The TNS structure consists of linear springs,rigid links,sliders,and ring permanent magnets.Newton’s second law and Kirchhoff’s law construct dynamic equations of the QZS-EHI,and a comparison is made to contrast it with other QZS and linear isolators.The comparison field includes the QZS range,amplitude-frequency relationship,force transmissibility,and energy harvested power.The isolator can be applied to many engineering fields such as bridges,automobiles,and railway transportation.This paper selects bridge engineering as the main field for the dynamic analysis of this system.Considering the multi-span beam bridge,this paper compares different situations including the bridge with QZS-EHI support,with linear stiffness isolator support,and with single beam support.All results show that the QZS-EHI is not only better than the traditional isolator with linear stiffness under both harmonic and stochastic excitation,but also better than some QZS isolators with double or single negative stiffness in bridge vibration isolation and energy harvesting.Theoretical analysis is verified to correspond to the simulation analysis,which means the proposed QZS-EHI has practical application value.展开更多
A novel X-shaped variable stiffness vibration isolator(X-VSVI)is proposed.The Runge-Kutta method,harmonic balance method,and wavelet transform spectra are introduced to evaluate the performance of the X-VSVI under var...A novel X-shaped variable stiffness vibration isolator(X-VSVI)is proposed.The Runge-Kutta method,harmonic balance method,and wavelet transform spectra are introduced to evaluate the performance of the X-VSVI under various excitations.The layer number,the installation angle of the X-shaped structure,the stiffness,and the active control parameters are systematically analyzed.In addition,a prototype of the X-VSVI is manufactured,and vibration tests are carried out.The results show that the proposed X-VSVI has a superior adaptability to that of a traditional X-shaped mechanism,and shows excellent vibration isolation performance in response to different amplitudes and forms of excitations.Moreover,the vibration isolation efficiency of the device can be improved by appropriate adjustment of parameters.展开更多
Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effe...Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effects.This deterioration of them requires the determination of the maintenance and repair needs and is important for the long-termisolator life.In this study,an artificial intelligence prediction model has been developed to determine the damage and maintenance-repair requirements of isolators as a result of environmental effects and dynamic factors over time.With the developed model,the required damping capacity of the isolator structure was estimated and compared with the previously placed isolator capacity,and the decrease in the damping property was tried to be determined.For this purpose,a data set was created by collecting the behavior of structures with single degrees of freedom(SDOF),different stiffness,damping ratio and natural period isolated from the foundation under far fault earthquakes.The data is divided into 5 different damping classes varying between 10%and 50%.Machine learning model was trained in damping classes with the data on the structure’s response to random seismic vibrations.As a result of the isolator behavior under randomly selected earthquakes,the recorded motion and structural acceleration of the structure against any seismic vibration were examined,and the decrease in the damping capacity was estimated on a class basis.The performance loss of the isolators,which are separated according to their damping properties,has been tried to be determined,and the reductions in the amounts to be taken into account have been determined by class.In the developed prediction model,using various supervised machine learning classification algorithms,the classification algorithm providing the highest precision for the model has been decided.When the results are examined,it has been determined that the damping of the isolator structure with the machine learning method is predicted successfully at a level exceeding 96%,and it is an effective method in deciding whether there is a decrease in the damping capacity.展开更多
In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven...In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven roads.First,the analytical expressions for the force and displacement of the HFBVI are derived with the Lagrange equation and d'Alembert's principle,and are validated through the prototype restoring force testing.Second,the harmonic balance method(HBM)is used to obtain the dynamic responses under harmonic excitation,and further the influence of pre-stretching on the dynamic characteristics and transmissibility is discussed.Finally,the experimental prototype of the HFBVI is fabricated,and vibration experiments are conducted under harmonic excitation to verify the vibration isolation performance(VIP)of the proposed vibration isolator.The experimental results indicate that the HFBVI can effectively suppress the frequency band(4-8 Hz)to which the human body is sensitive to vertical vibration.In addition,under real random road spectrum excitation,the HFBVI can achieve low-frequency vibration isolation close to 2 Hz,providing new prospects for ensuring the health of heavy-duty truck drivers.展开更多
Based on analysis of the work conditions and structural characteristics of the exterior pipeline of the aero-engine, a kind of cantilever-structure wire-rope isolator fitted to the exterior pipeline of the aero-engine...Based on analysis of the work conditions and structural characteristics of the exterior pipeline of the aero-engine, a kind of cantilever-structure wire-rope isolator fitted to the exterior pipeline of the aero-engine is designed for supporting and damping purposes. By static experiments, the static hysteresis loop, the relationship of stiffness and amplitude, and the relationship between the energy dissipation coefficient and the amplitude are obtained. Analyses show that the wire-rope isolator presents obvious hysteresis characteristics, and the characteristics of the isolator, such as stiffness and damping, behave obviously nonlinearly when the amplitude value of deformation changes. At the same time, by changing the structure parameters of the wire-rope, the wirerope isolators can be made with different functions to satisfy different work conditions. The research results have important reference values for the application of the wire-rope isolator on the exterior pipeline of an aeroengine.展开更多
基金supported by the National Key Research and Development Program of China(Nos.2023YFB4603900,2023YFB4603901)the National Natural Science Foundation of China(No.52275255)。
文摘Devices on aircraft are subjected to complex environmental excitations that pose risks to their operational safety.Passive vibration isolation techniques are extensively employed due to their advantage of not requiring additional energy sources.This paper introduces a novel metallic vibration isolator based on zigzag structures.The proposed isolator features a compact design and can be manufactured using additive manufacturing techniques,allowing for the integration of structural and functional elements.Firstly,the vibration response of the single-degree-of-freedom(SDOF)system is analyzed.To achieve effective vibration reduction,it is crucial for the isolator's stiffness to be sufficiently low.Secondly,to obtain a structure with high compliance,the traversal algorithm and the finite element method(FEM)are applied.The results confirm that the zigzag structure is a reliable high-compliance configuration.Thirdly,the parametric geometric model of the zigzag structure is developed and its stiffness is calculated.Quasi-static compression experiments validate the accuracy of the calculations.Finally,a specific engineering example is considered,where a zigzag vibration isolator is designed and fabricated.Vibration experiments demonstrate that the zigzag isolator effectively reduces both the stiffness and the fundamental frequency of the vibration system,achieving a vibration isolation efficiency exceeding 60%.
基金Project supported by the National Natural Science Foundation of China(Nos.12172340 and12411530068)the Shenzhen Science and Technology Program(No.JCYJ20240813114012016)+2 种基金the High-Level Talent Introduction Plan of Guangzhou Citythe Fundamental Research Funds for the Central Universities-China University of Geosciences(Wuhan)(No.G1323524005)the Young Top-Notch Talent Cultivation Program of Hubei Province。
文摘Hydro-pneumatic near-zero frequency(NZF)vibration isolators have better performance at isolating vibration with low frequencies and heavy loadings when the nonlinear fluidic damping is introduced and the pressurized gas pressure is properly adjusted.The nonlinear characteristics of such devices make their corresponding dynamic research involve chaotic dynamics.Chaos may bring negative influence and disorder to the structure and low-frequency working efficiency of isolators,which makes it necessary to clarify and control the threshold ranges for chaos generation in advance.In this work,the chaotic characteristics for a class of hydro-pneumatic NZF vibration isolators under dry friction,harmonic,and environmental noise excitations are analyzed by the analytical and numerical methods.The parameter ranges for the generation of chaos are obtained by the classical and random Melnikov methods.The chaotic characteristics and thresholds of the parameters in the systems with or without noise excitation are discussed and described.The analytical solutions and the influence of noise and harmonic excitation about chaos are tested and further analyzed through many numerical simulations.The results show that chaos in the system can be induced or inhibited with the adjustment of the magnitudes of harmonic excitation and noise intensity.
基金supported by the National Natural Science Foundation of China (Grant No. 12202204)the Natural Science Foundation of Jiangsu Province (Grant No. BK20220953)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Science and Technology Association's Young Talent Nurturing Program of Jiangsu Province (Grant No. JSTJ-2024-004)
文摘In this study, the three-dimensional non-premixed two-phase kerosene/air rotating detonation engines with different isolator configurations and throat area ratios are simulated by the Eulerian-Lagrangian method. The effects of the divergence, straight, and convergence isolators on the rotating detonation wave dynamics and the upstream oblique shock wave propagation mechanism are analyzed. The differences in the rotating detonation wave behaviors between ground and flight operations are clarified.The results indicate that the propagation regimes of the upstream oblique shock wave depend on the isolator configurations and operation conditions. With a divergence isolator, the airflow is accelerated throughout the isolator and divergence section, leading to a maximum Mach number(~1.8) before the normal shock. The total pressure loss reaches the largest, and the detonation pressure drops. The upstream oblique shock wave can be suppressed within the divergence section with the divergence isolator.However, for the straight and convergence isolators, the airflow in the isolator with a larger ψ_(1)(0.3 and0.4) can suffer from the disturbance of the upstream oblique shock wave. The critical incident angle is around 39° at ground operation conditions. The upstream oblique shock wave tends to be suppressed when the engine operates under flight operation conditions. The critical pressure ratio β_(cr0) is found to be able to help in distinguishing the propagation regimes of the upstream oblique shock wave. Slightly below or above the β_(cr0) can obtain different marginal propagation results. The high-speed airflow in the divergence section affects the fuel droplet penetration distance, which deteriorates the reactant mixing and the detonation area. Significant detonation velocity deficits are observed and the maximum velocity deficit reaches 26%. The results indicate the engine channel design should adopt different isolator configurations based on the purpose of total pressure loss or disturbance suppression. This study can provide useful guidance for the channel design of a more complete two-phase rotating detonation engine.
基金The National Natural Science Foundation of China(No.52208195)the Independent Subject of State Key Laboratory of Disaster Reduction in Civil Engineering of Tongji University(No.SLDRCE19-A-10).
文摘To improve the seismic performance of unrein-forced masonry(URM)buildings in the Himalayan re-gions,including Western China,India,Nepal,and Paki-stan,a low-cost bonded scrap tire rubber isolator(BSTRI)is proposed,and a series of vertical compression and horizontal shear tests are conducted.Incremental dynamic analyses are conducted for five types of BSTRI-supported URM buildings subjected to 22 far-field and 28 near-field earthquake ground motions.The resulting fragility curves and probability of damage curves are presented and utilized to evaluate the damage states of these buildings.The results show that in the base-isolated(BI)URM buildings under seismic ground motion at a peak ground acceleration(PGA)of 1.102g,the probability of exceeding the collapse prevention threshold is less than 25%under far-field earthquake ground motions and 31%under near-field earthquake ground motions.Furthermore,the maximum average vulnerability index for the BI-URM buildings,which are designed to withstand rare earthquakes with 9°(PGA=0.632g),is 40.87%for far-field earthquake ground motions and 41.83%for near-field earthquake ground motions.Therefore,the adoption of BSTRIs can significantly reduce the collapse probability of URM buildings.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2022YFF0712800 and 2019YFA0308700)。
文摘Optical isolators,the photonic analogs of electronic diodes,are essential for ensuring the unidirectional flow of light in optical systems,thereby mitigating the destabilizing effects of back reflections.Thin-film lithium niobate(TFLN),hailed as“the silicon of photonics,”has emerged as a pivotal material in the realm of chip-scale nonlinear optics,propelling the demand for compact optical isolators.We report a breakthrough in the development of a fully passive,integrated optical isolator on the TFLN platform,leveraging the Kerr effect to achieve an impressive 10.3 dB of isolation with a minimal insertion loss of 1.87 dB.Further theoretical simulations have demonstrated that our design,when applied to a microring resonator with a Q factor of 5×10^(6),can achieve 20 dB of isolation with an input power of merely 8 mW.This advancement underscores the immense potential of lithium niobate-based Kerr-effect isolators in propelling the integration and application of high-performance on-chip lasers,heralding a new era in integrated photonics.
基金supported by the National Key Research and Development Plan of China (Grant No.2023YFB3406302)Guangdong Basic and Applied Basic Research Foundation (Grant No.2024A1515011126)the Key Research and Development Plan of Shanxi (Grant No.2024GH-ZDXM-29)。
文摘Periodic isolator is well known for its wave filtering characteristic.While in middle and high frequencies,the internal resonances of the periodic isolator are evident especially when damping is small.This study proposes a novel aperiodic vibration isolation for improving the internal resonances control of the periodic isolator.The mechanism of the internal resonances control by the aperiodic isolator is firstly explained.For comparing the internal resonances suppression effect of the aperiodic isolator with the periodic isolator,a dynamic model combing the rigid machine,the isolator,and the flexible plate is derived through multi subsystem modeling method and transfer matrix method,whose accuracy is verified through the finite element method.The influences of the aperiodicity and damping of the isolator on the vibration isolation performance and internal resonances suppression effect are investigated by numerical analysis.The numerical results demonstrate that vibration attenuation performances of the periodic isolator and aperiodic isolator are greatly over than that of the continuous isolator in middle and high frequencies.The aperiodic isolator opens the stop bandgaps comparing with the periodic isolator where the pass bandgaps are periodically existed.The damping of the isolator has the stop bandgap widening effect on both the periodic isolator and the aperiodic isolator.In addition,a parameter optimization algorithm of the aperiodic isolator is presented for improving the internal resonances control effect.It is shown that the vibration peaks within the target frequency band of the aperiodic isolator are effectively reduced after the optimization.Finally,the experiments of the three different vibration isolation systems are conducted for verifying the analysis work.
基金supported by the National Natural Science Foundation of China(Grant No.11732006)the“Qinglan Project”of Jiangsu Higher Education Institutions.
文摘Quasi-zero stiffness(QZS)isolators have received considerable attention over the past years due to their outstanding vibration isolation performance in low-frequency bands.However,traditional mechanisms for achieving QZS suffer from low stiffness regions and significant nonlinear restoring forces with hardening characteristics,often struggling to withstand excitations with high amplitude.This paper presents a novel QZS vibration isolator that utilizes a more compact spring-rod mechanism(SRM)to provide primary negative stiffness.The nonlinearity of SRM is adjustable via altering the raceway of its spring-rod end,along with the compensatory force provided by the cam-roller mechanism so as to avoid complex nonlinear behaviors.The absolute zero stiffness can be achieved by a well-designed raceway curve with a concise mathematical expression.The nonlinear stiffness with softening properties can also be achieved by parameter adjustment.The study begins with the forcedisplacement relationship of the integrated mechanism first,followed by the design theory of the cam profile.The dynamic response and absolute displacement transmissibility of the isolation system are obtained based on the harmonic balance method.The experimental results show that the proposed vibration isolator maintains relatively low-dynamic stiffness even under non-ideal conditions,and exhibits enhanced vibration isolation performance compared to the corresponding linear isolator.
基金Project supported by the National Natural Science Foundation of China(No.U23A2066)the Liaoning Revitalization Talents Program of China(No.XLYC2202032)。
文摘Bionic X-shaped vibration isolators have been widely employed in aerospace and other industrial fields,but the stiffness properties of classic X-shaped structures limit the vibration isolation ability for low frequencies.An innovative bionic quasi-zero stiffness(QZS)vibration isolator(BQZSVI),which can broaden the QZS range of a classic X-shaped isolator and can bring it closer to the equilibrium position,is proposed.The BQZSVI consists of an X-shaped structure as the bone fabric of lower limbs and a nonlinear magnetic loop device simulating the leg muscle.Based on static calculation,the stiffness characteristic of the structure is confirmed.The governing equations of motion of the BQZSVI structure are established in the framework of the Lagrange equation,and the harmonic balance method(HBM)is adopted to obtain the transmissibility responses.The results show that the BQZSVI can provide a more accessible and broader range of QZS.In the dynamic manifestation,the introduction of the BQZSVI can reduce the amplitude of a classic X-shaped vibration isolator by 65.7%,and bring down the initial vibration isolation frequency from 7.43 Hz to 2.39 Hz.In addition,a BQZSVI prototype is designed and fabricated,and the exactitude of the theoretical analysis method is proven by means of experiments.
基金Project(51978585)supported by the National Natural Science Foundation,ChinaProject(2022YFB2603404)supported by the National Key Research and Development Program,China+1 种基金Project(U1734207)supported by the High-speed Rail Joint Fund Key Projects of Basic Research,ChinaProject(2023NSFSC1975)supported by the Sichuan Nature and Science Foundation Innovation Research Group Project,China。
文摘The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein,which uses the particle damping vibration absorption technology and bandgap vibration control theory.The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control.The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications.The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges.The vibration responses are obtained using the finite element method,while the structural noise radiation is simulated using the frequency-domain boundary element method.Using the particle swarm optimization algorithm,the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range.The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions.
基金Supported by Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China(No.CX2024001)National Natural Science Foundation of China(Nos.11972296,12372157)+1 种基金Aeronautical Science Foundation of China(No.20220057053001)Open Project of State Key Laboratory for Strength and Vibration of Mechanical Structures of Xi’an Jiaotong University,China(No.SV2023-KF-19).
文摘Traditional vibration isolation structures cannot work effectively for low-frequency vibration under heavy loads,due to the inherent contradiction between the high-static and lowdynamic stiffness of these structures.Although the challenge can be effectively addressed by introducing a negative stiffness mechanism,the existing structures inevitably have complex configurations.Metastructures,a class of man-made structures with both extraordinary mechanical properties and simple configurations,provide a new insight for low-frequency vibration isolation technology.In this paper,circular metastructure isolators consisting of some simple beams are designed for low-frequency vibration,including a single-layer isolator and a double-layer isolator,and their static and dynamic characteristics are studied,respectively.For the static characteristic,the force–displacement and stiffness–displacement curves are obtained by finite element simulation;for the dynamic characteristic,the vibration transmissibility curves are obtained analytically and numerically.The result shows that the circular nonlinear single-layer isolator has excellent lowfrequency isolation performance,and the isolation frequency band will decrease about 20 Hz when the isolated mass is fixed at 1.535 kg,compared with a similar circular linear isolator.These static and dynamic properties are well verified through experiments.Our work provides an innovative approach for the low-frequency vibration isolation and has wide potential applications in aeronautics.
基金Project supported by the National Natural Science Foundation of China(Nos.12372187,52321003,12302250)the Fundamental Research Funds for the Central Universities(Nos.KY2090000094 and WK2480000010)+2 种基金the Fellowship of China Postdoctoral Science Foundation(Nos.2024M753103 and 2023M733388)the University Synergy Innovation Program of Anhui Province(No.GXXT-2023-024)the CAS Talent Introduction Program(No.KJ2090007006)。
文摘To achieve stability optimization in low-frequency vibration control for precision instruments,this paper presents a quasi-zero stiffness(QZS)vibration isolator with adjustable nonlinear stiffness.Additionally,the stress-magnetism coupling model is established through meticulous theoretical derivation.The controllable QZS interval is constructed via parameter design and magnetic control,effectively segregating the high static stiffness bearing section from the QZS vibration isolation section.Furthermore,a displacement control scheme utilizing a magnetic force is proposed to regulate entry into the QZS working range for the vibration isolation platform.Experimental results demonstrate that the operation within this QZS region reduces the peak-to-peak acceleration signal by approximately 66.7%compared with the operation outside this region,thereby significantly improving the low frequency performance of the QZS vibration isolator.
文摘High-static-low-dynamic stiffness (HSLDS) vibration isolators have been demonstrated to be an effective means of attenuating low-frequency vibrations, and may be utilized for ship shafting applications to mitigate torsional vibration. This paper presents the construction of a highly compact HSLDS torsional vibration isolator by connecting positive and negative stiffness components in paral lel. Based on mechanical model analysis, the restoring torque of negative stiffness components is de rived from their springs and connecting rods, while that of positive stiffness components is obtained through their circular section flexible rods. The quasizero stiffness characteristics of the HSLDS iso lator are achieved through a combination of static structural simulation and experimental test. The tor sional vibration isolation performance is assessed by means of numerical simulation and theory analy sis. Finally, the frequency-sweep vibration test is conducted. The test results indicate that the HSLDS torsional vibration isolator exhibits superior low-frequency isolation performance compared to its linear counterpart, rendering it a promising solution for mitigating low-frequency torsional vi bration in ship shafting.
基金supported by the National Natural Science Foundation of China(Grant Nos.12302003,12272129,and 12122206)Hong Kong Scholars Program(Grant No.XJ2022012).
文摘The quasi-zero-stiffness (QZS) vibration isolators are effective in achieving low-frequency vibration isolation for a designedpayload, but the isolation effect would be substantially reduced by payload mismatch. To tackle such a challenging problem, acompensating QZS (CQZS) vibration isolation system (VIS) is proposed to acquire QZS characteristics under arbitrarypayloads. The dynamic characteristics of the CQZS VIS are analyzed to estimate the performance decline of vibration isolationunder payload mismatch. Moreover, the compensation principle of the CQZS VIS is demonstrated, and then the CQZS VIS isfabricated by combining a passive QZS isolator and a compensation system. Finally, experiments are conducted to evaluate thecompensation capability and vibration isolation performance enhance of the CQZS VIS. It is found that the CQZS VIS is ableto compensate payload mismatch, and thus the QZS characteristic can be regained when the payload deviates from thedesigned one, which enabls the QZS VIS to achieve significant low-frequency vibration isolation under payload mismatch.
基金supported by the National Natural Science Foundation of China(Nos.52241103 and 52322505)the Natural Science Fund for Distinguished Young Scholars of Hunan Province of China(No.2023JJ10055)。
文摘A metamaterial vibration isolator,termed as wave-insulating isolator,is proposed,which preserves enough load-bearing capability and offers ultra-low and broad bandgaps for greatly enhanced wave insulation.It consists of plate-shaped metacells,whose symmetric and antisymmetric local resonant modes offer several low and broad mode bandgaps although the complete bandgap remains high and narrow.The bandgap mechanisms,vibration isolation properties,effects of key parameters,and robustness to complex conditions are clarified.As experimentally demonstrated,the wave-insulating isolator can improve the vibration insulation in the ranges of[50 Hz,180 Hz]and[260 Hz,400 Hz]by 15 dB and 25 dB,respectively,in contrast to the conventional isolator with the same first resonant frequency.
基金Support from the National Natural Science Foundation of China(No.52088102)the Major Scientific and Technological Innovation Project of Shandong Province(No.2019JZZY010820)。
文摘In this paper,a new quasi-zero-stiffness(QZS)nonlinear isolation system using a double-curved beam(DCB)as a negative stiffness structure is proposed,and its performance is investigated.The negative stiffness provided by the DCB to the isolator in the equilibrium position reduces the isolator’s overall dynamic stiffness.Static and dynamic characteristics of the system are investigated.The amplitude-frequency characteristics and force transmissibility equation of the system were derived via the harmonic balance method.The effects of damping ratio and excitation force amplitude on amplitude-frequency and force transmissibility curves are examined,and the isolation performance is compared with that of an equivalent linear isolator supporting the same mass with the same static deflection as nonlinear isolators.Furthermore,MATLAB numerical simulation software is used to perform dynamic time analysis of the nonlinear isolation system.The results indicate that the amplitude-frequency curves of the nonlinear isolation system exhibit bending,accompanied by discontinuous jumps in frequency.The appropriate increase in the damping ratio or reduction in the excitation amplitude benefits the vibration isolation performance of the nonlinear vibration isolation system.Compared with the equivalent linear isolation system,the QZS isolation system exhibits a better low-frequency vibration isolation performance,which provides a theoretical basis for the design of low-frequency nonlinear isolators.
基金supported by the National Natural Science Foundation of China(Grant No.12272293)Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2022A1515010967 and 2023A1515012821).
文摘Vibration isolation for low frequency excitation and the power supply for low power monitoring sensors are important issues in bridge engineering.The main problem is how to effectively combine the vibration isolator with the energy harvester to form a multi-functional structure.In this paper,a system called quasi-zero stiffness energy harvesting isolator(QZS-EHI)with triple negative stiffness(TNS)is proposed.The TNS structure consists of linear springs,rigid links,sliders,and ring permanent magnets.Newton’s second law and Kirchhoff’s law construct dynamic equations of the QZS-EHI,and a comparison is made to contrast it with other QZS and linear isolators.The comparison field includes the QZS range,amplitude-frequency relationship,force transmissibility,and energy harvested power.The isolator can be applied to many engineering fields such as bridges,automobiles,and railway transportation.This paper selects bridge engineering as the main field for the dynamic analysis of this system.Considering the multi-span beam bridge,this paper compares different situations including the bridge with QZS-EHI support,with linear stiffness isolator support,and with single beam support.All results show that the QZS-EHI is not only better than the traditional isolator with linear stiffness under both harmonic and stochastic excitation,but also better than some QZS isolators with double or single negative stiffness in bridge vibration isolation and energy harvesting.Theoretical analysis is verified to correspond to the simulation analysis,which means the proposed QZS-EHI has practical application value.
基金Project supported by the National Natural Science Foundation of China(Nos.12022213,12002329,U23A2066,12272240,and 12002217)。
文摘A novel X-shaped variable stiffness vibration isolator(X-VSVI)is proposed.The Runge-Kutta method,harmonic balance method,and wavelet transform spectra are introduced to evaluate the performance of the X-VSVI under various excitations.The layer number,the installation angle of the X-shaped structure,the stiffness,and the active control parameters are systematically analyzed.In addition,a prototype of the X-VSVI is manufactured,and vibration tests are carried out.The results show that the proposed X-VSVI has a superior adaptability to that of a traditional X-shaped mechanism,and shows excellent vibration isolation performance in response to different amplitudes and forms of excitations.Moreover,the vibration isolation efficiency of the device can be improved by appropriate adjustment of parameters.
基金the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2020R1A2C1A01011131)the Energy Cloud R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT(2019M3F2A1073164).
文摘Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effects.This deterioration of them requires the determination of the maintenance and repair needs and is important for the long-termisolator life.In this study,an artificial intelligence prediction model has been developed to determine the damage and maintenance-repair requirements of isolators as a result of environmental effects and dynamic factors over time.With the developed model,the required damping capacity of the isolator structure was estimated and compared with the previously placed isolator capacity,and the decrease in the damping property was tried to be determined.For this purpose,a data set was created by collecting the behavior of structures with single degrees of freedom(SDOF),different stiffness,damping ratio and natural period isolated from the foundation under far fault earthquakes.The data is divided into 5 different damping classes varying between 10%and 50%.Machine learning model was trained in damping classes with the data on the structure’s response to random seismic vibrations.As a result of the isolator behavior under randomly selected earthquakes,the recorded motion and structural acceleration of the structure against any seismic vibration were examined,and the decrease in the damping capacity was estimated on a class basis.The performance loss of the isolators,which are separated according to their damping properties,has been tried to be determined,and the reductions in the amounts to be taken into account have been determined by class.In the developed prediction model,using various supervised machine learning classification algorithms,the classification algorithm providing the highest precision for the model has been decided.When the results are examined,it has been determined that the damping of the isolator structure with the machine learning method is predicted successfully at a level exceeding 96%,and it is an effective method in deciding whether there is a decrease in the damping capacity.
基金supported by the National Natural Science Foundation of China(No.12172226)。
文摘In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven roads.First,the analytical expressions for the force and displacement of the HFBVI are derived with the Lagrange equation and d'Alembert's principle,and are validated through the prototype restoring force testing.Second,the harmonic balance method(HBM)is used to obtain the dynamic responses under harmonic excitation,and further the influence of pre-stretching on the dynamic characteristics and transmissibility is discussed.Finally,the experimental prototype of the HFBVI is fabricated,and vibration experiments are conducted under harmonic excitation to verify the vibration isolation performance(VIP)of the proposed vibration isolator.The experimental results indicate that the HFBVI can effectively suppress the frequency band(4-8 Hz)to which the human body is sensitive to vertical vibration.In addition,under real random road spectrum excitation,the HFBVI can achieve low-frequency vibration isolation close to 2 Hz,providing new prospects for ensuring the health of heavy-duty truck drivers.
基金The National Natural Science Foundation of China(No50275030)
文摘Based on analysis of the work conditions and structural characteristics of the exterior pipeline of the aero-engine, a kind of cantilever-structure wire-rope isolator fitted to the exterior pipeline of the aero-engine is designed for supporting and damping purposes. By static experiments, the static hysteresis loop, the relationship of stiffness and amplitude, and the relationship between the energy dissipation coefficient and the amplitude are obtained. Analyses show that the wire-rope isolator presents obvious hysteresis characteristics, and the characteristics of the isolator, such as stiffness and damping, behave obviously nonlinearly when the amplitude value of deformation changes. At the same time, by changing the structure parameters of the wire-rope, the wirerope isolators can be made with different functions to satisfy different work conditions. The research results have important reference values for the application of the wire-rope isolator on the exterior pipeline of an aeroengine.