Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,...Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,is a critical choice for such drilling.The dimensions of the PDM are crucial for its performance output.To enhance this,optimization of the motor's profile using a genetic algorithm has been undertaken.The design process begins with the computation of the initial stator and rotor curves based on the equations for a screw cycloid.These curves are then refined using the least squares method for a precise fit.Following this,the PDM's mathematical model is optimized,and motor friction is assessed.The genetic algorithm process involves encoding variations and managing crossovers to optimize objective functions,including the isometric radius coefficient,eccentricity distance parameter,overflow area,and maximum slip speed.This optimization yields the ideal profile parameters that enhance the motor's output.Comparative analyses of the initial and optimized output characteristics were conducted,focusing on the effects of the isometric radius coefficient and overflow area on the motor's performance.Results indicate that the optimized motor's overflow area increased by 6.9%,while its rotational speed reduced by 6.58%.The torque,as tested by Infocus,saw substantial improvements of38.8%.This optimization provides a theoretical foundation for improving the output characteristics of allmetal PDMs and supports the ongoing development and research of PDM technology.展开更多
Bayes统计学能够从空中楼阁的理论广泛地落地于自然科学、经济学和社会学等领域,得益于计算机技术和马尔可夫链蒙特卡洛(Markov chain Monte Carlo,简称MCMC)法的发展。文章介绍了MCMC方法在Bayes推断中的应用,主要讨论了MCMC方法中的...Bayes统计学能够从空中楼阁的理论广泛地落地于自然科学、经济学和社会学等领域,得益于计算机技术和马尔可夫链蒙特卡洛(Markov chain Monte Carlo,简称MCMC)法的发展。文章介绍了MCMC方法在Bayes推断中的应用,主要讨论了MCMC方法中的独立抽样和随机游走抽样的Metropolis-Hastings(M-H)算法,利用可读性较强的Matlab程序来实现两种抽样算法,并给出了详细的程序实施过程,分析了两种抽样的优缺点。模拟分析结果表明:独立抽样M-H算法比较容易实施,但是要求建议分布和后验分布的吻合度较高,否则计算效率低下,而且模拟效果不理想;随机游走抽样的M-H算法不需要建议分布接近后验分布,模拟效果也比较好,因此,克服了独立抽样算法的不足,适用范围更广。展开更多
基金supported by the National Natural Science Foundation of China (No.42172343)。
文摘Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,is a critical choice for such drilling.The dimensions of the PDM are crucial for its performance output.To enhance this,optimization of the motor's profile using a genetic algorithm has been undertaken.The design process begins with the computation of the initial stator and rotor curves based on the equations for a screw cycloid.These curves are then refined using the least squares method for a precise fit.Following this,the PDM's mathematical model is optimized,and motor friction is assessed.The genetic algorithm process involves encoding variations and managing crossovers to optimize objective functions,including the isometric radius coefficient,eccentricity distance parameter,overflow area,and maximum slip speed.This optimization yields the ideal profile parameters that enhance the motor's output.Comparative analyses of the initial and optimized output characteristics were conducted,focusing on the effects of the isometric radius coefficient and overflow area on the motor's performance.Results indicate that the optimized motor's overflow area increased by 6.9%,while its rotational speed reduced by 6.58%.The torque,as tested by Infocus,saw substantial improvements of38.8%.This optimization provides a theoretical foundation for improving the output characteristics of allmetal PDMs and supports the ongoing development and research of PDM technology.
文摘Bayes统计学能够从空中楼阁的理论广泛地落地于自然科学、经济学和社会学等领域,得益于计算机技术和马尔可夫链蒙特卡洛(Markov chain Monte Carlo,简称MCMC)法的发展。文章介绍了MCMC方法在Bayes推断中的应用,主要讨论了MCMC方法中的独立抽样和随机游走抽样的Metropolis-Hastings(M-H)算法,利用可读性较强的Matlab程序来实现两种抽样算法,并给出了详细的程序实施过程,分析了两种抽样的优缺点。模拟分析结果表明:独立抽样M-H算法比较容易实施,但是要求建议分布和后验分布的吻合度较高,否则计算效率低下,而且模拟效果不理想;随机游走抽样的M-H算法不需要建议分布接近后验分布,模拟效果也比较好,因此,克服了独立抽样算法的不足,适用范围更广。