The effects of isocyanate(IA)incorporation on the toughness and volume stability of AAFS were systematically investigated.Various IA dosages were introduced into AAFS,and their influence on mechanical properties,micro...The effects of isocyanate(IA)incorporation on the toughness and volume stability of AAFS were systematically investigated.Various IA dosages were introduced into AAFS,and their influence on mechanical properties,microstructure,and shrinkage behavior was evaluated.The experimental results indicate that,with the incorporation of 5%IA,the 28-day compressive strength reaches 48.6 MPa,the 56-day drying shrinkage decreases by 35.91%,and minimal cracking is observed in the ring test.Microstructural analyses using SEM,XRD,and FTIR reveal that IA reacts with water to form urethane and biuret,which crosslinks into a durable network structure.This network fills pores,reducing internal stresses and improving both toughness and volume stability.These findings offer new insights into optimizing alkali-activated materials for construction applications and provide a potential pathway for the development of more durable and stable geopolymers.展开更多
Zeolite imidazole skeleton(ZIF-8)is a promising option for self-cleaning of building exterior walls due to its large specific surface area,high antibacterial activity and low biotoxicity.However,it suffers from low an...Zeolite imidazole skeleton(ZIF-8)is a promising option for self-cleaning of building exterior walls due to its large specific surface area,high antibacterial activity and low biotoxicity.However,it suffers from low antibacterial efficiency and yield under visible light irradiation.To address the issues,we developed the photocatalytic materials T-ZIF-8-TDI(thermally treated-ZIF-8-toluene 2,4-diisocyanate)by modifying ZIF-8 with thermal oxygen sensitization and chemical bonding.The results show that the yield of T-ZIF-8-TDI photocatalytic antibacterial agent is increased to 11.5 times of that of T-ZIF-8,while maintaining the crystal structure of T-ZIF-8 and thermal stability up to 60℃.Furthermore,T-ZIF-8-TDI exhibits extended optical response range to the nearinfrared region,significantly narrowed band gap,improved photogenerated elec tron-hole separation efficiency,reduced recombination rate,and excellent photocatalytic performance.When the concentration of antibacterial agent is 600 mg·L^(-1),the antibacterial rate of Escherichia coli(E.coli)reaches 99.99%irradiated by visible light for30 min,and when the concentration of antibacterial agent is 200 mg·L^(-1),the antibacterial rate of Staphylococcus aureus(S.aureus)reaches 99.99%irradiated by visible light for 25 min.We also analyzed the reasons in detail from the aspects of bacterial species and antibacterial mechanism,and proposed the antibacterial mechanism of·O_(2)^(-)and h^(+)as the main active species.These findings suggest that T-ZIF-8-TDI photocatalytic antibacterial agent has potential for use in self-cleaning of building exterior walls.展开更多
With the urgent shortage of forest resource in China, using agro-residues as raw materials of composite become increasingly important. Agro-residue is the most potential fiber resource, which is helpful to sustainable...With the urgent shortage of forest resource in China, using agro-residues as raw materials of composite become increasingly important. Agro-residue is the most potential fiber resource, which is helpful to sustainable development of composite industries in China. Based on a great deal of researches, this paper summarized and discussed some problems in using agro-residues as raw materials of composites, including raw material preparation, hot-pressing, bonding technology, preventing composite from going moldy. It is proposed that to manufacture the composite of rice straws or wheat straws, the isocayante resin is a suitable adhesive, and the appropriate technologies, bonding, and treatment measures are also needed.展开更多
Phenyl isocyanate was for the first time successfully polymerized by divalent samarium complex (ArO)2Sm(THF)4. The monomer concentration and temperatur affected the polymerization greatly.
The polymerization of n-hexyl isocyanate(HNCO) was carried out in the presence of a novel single initiator, rare earth tris(2,6-di-tert-butyl-4-methylphenolate)[Ln(OAr)_3]. The influences of reaction conditions such a...The polymerization of n-hexyl isocyanate(HNCO) was carried out in the presence of a novel single initiator, rare earth tris(2,6-di-tert-butyl-4-methylphenolate)[Ln(OAr)_3]. The influences of reaction conditions such as the monomer concentration, the polymerization temperature and time, and the types of solvents on the polymerization of HNCO were studied. Polymerizations of phenyl, i-propyl, p-tolyl, n-butyl and n-octyl isocyanates with La(OAr)_3 were also examined.展开更多
The uncatalyzed reaction of p-tolyl isocyanate(p-TI)with water in N,N-dimethylformamide(DMF)was investigated by high performance liquid chromatography(HPLC).The reactions were carried out at different temperatures fro...The uncatalyzed reaction of p-tolyl isocyanate(p-TI)with water in N,N-dimethylformamide(DMF)was investigated by high performance liquid chromatography(HPLC).The reactions were carried out at different temperatures from 293 K to 323 K,using various molar ratios of water to p-TI.DMF,as a special amide,was proved to be an efficient catalyst for water–isocyanate reaction.Under the reaction conditions in this study,substituted urea was the only final product observed.An appreciable amount of intermediate p-toluidine was detected.Concentrations of the isocyanate group as well as the amine and urea were determined as a function of time.New kinetic equations were deduced for each of the substance on the basis of a multistep mechanism,instead of a simple second order reaction as usual.Kinetic constants were calculated using the software MATLAB.Furthermore,the effects of temperature and concentrations of reactants on the reaction rate and amine content were discussed.The activation energy of each step was also determined.展开更多
A rod-rod diblock copolymer (diBCP), poly(3-hexylthiophene)-block-poly(furfuryl isocyanate)(P3HT-b-PFIC), was synthesized through the anionic polymerization with an oxyanionic macroinitiator of P3HT. The properties of...A rod-rod diblock copolymer (diBCP), poly(3-hexylthiophene)-block-poly(furfuryl isocyanate)(P3HT-b-PFIC), was synthesized through the anionic polymerization with an oxyanionic macroinitiator of P3HT. The properties of the diBCP (molecular weight, dispersity, composition, thermal stability, UV-visible absorption, and thin film morphology) were determined by various analytical methods. P3HT-b-PFIC was blended with C60 in a toluene solution to prepare a thin film of binary electron donor/acceptor system. Such blending enabled partial conjugation of the two components by the Diels-Alder reaction between furan and C60 at 60℃ for 3 h;the mixture was then spin-cast as a thin film, and annealed at 250℃ for 24 h. Tapping-mode atomic force microscopy (AFM) revealed that P3HT and C60 domains had nanoscale interfaces without a large phase segregation. This result indicated that the microphase separation of C60-functionalized P3HT-b-PFIC preserved even at high temperature provided free C60 molecules with channels to diffuse on the sides of P3HT domain, thus preventing the macroscopic crystallization of free C60 through the interfacial stabilization.展开更多
The oligomerization of phenyl isocyanate catalyzed by divalent his (methylcyclopentadienyl)samarium complex was studied. The initiating reaction and the effect of coordination environment around the samarium atom were...The oligomerization of phenyl isocyanate catalyzed by divalent his (methylcyclopentadienyl)samarium complex was studied. The initiating reaction and the effect of coordination environment around the samarium atom were mainly discussed. It is found that the initiation reaction has a great influence on the apparent catalytic activity. The oligomers can be split into two fractions. The methanol insoluble fraction is mainly composed of dimers, while the methanol soluble fraction is mainly composed of trimers. Neither SmI2 nor SmI2(hmpa)(4)(hmpa = hexamethylphosphoric triamide) shows catalytic activity for the oligomerization of phenyl isocyanate.展开更多
Bis (methylcyclopentadienyl) lanthanide amido complex (MeCp) 2YbNPh2 (THF) reacted with n-hexyl isocyanate (n-nexylNCO) in 1:1 molar ratio to give {(MeC5H4)2Yb[OC(NPh2)N(n-hexyl)] }2(1). Complex 1 was...Bis (methylcyclopentadienyl) lanthanide amido complex (MeCp) 2YbNPh2 (THF) reacted with n-hexyl isocyanate (n-nexylNCO) in 1:1 molar ratio to give {(MeC5H4)2Yb[OC(NPh2)N(n-hexyl)] }2(1). Complex 1 was characterized by elemental analyses and X-ray diffraction. The title complex belongs to trigonal system and R-3 space group. Its unit cell parameters are a =2.9533(11) nm, b =2.9533(11) nm, c = 1.5873(6) nm, V= 11.9896(80) nm^3, Z =9, Dc= 1.562 mg·m^-3, μ = 3.536 mm^-1(Mo Kα), F(000) =5670, R =0.034, Rw =0.064. It is a dimeric structure with two symmetrical bridged oxygen atoms. Nitrogen atom is coordinated to the ytterbium atom to form a tricyclic backbone. The coordination number of ytterbium is 9. The whole molecule shows central symmetry.展开更多
Low-valent titanium reagent prepared from titanium tetrachloride and zinc was empolyed to induce the coupling reaction of thiocyanates with tetrahydrofuran yield alkyl 4-hydroxy butyl sulfide and isocyanate yield subs...Low-valent titanium reagent prepared from titanium tetrachloride and zinc was empolyed to induce the coupling reaction of thiocyanates with tetrahydrofuran yield alkyl 4-hydroxy butyl sulfide and isocyanate yield substituted urea.展开更多
Subcutaneous administration of methyl isocyanate (MIC) in 0.5 LDso and 1.0 LD50 to female rabbits resulted in significant increases of hemoglobin concentration, hematocrit and leukocyte count in blood, as well as plas...Subcutaneous administration of methyl isocyanate (MIC) in 0.5 LDso and 1.0 LD50 to female rabbits resulted in significant increases of hemoglobin concentration, hematocrit and leukocyte count in blood, as well as plasma total proteins, urea and cholesterol. A significant decrease in plasma albumin level was only observed in the 1.0 LD50 group. Urine of MIC intoxicated animals showed presence of protein, bilirubin, elevated urea and urobilinogen, while urine volume was reduced. The hematological and biochemical changes induced by MIC are perhaps the result of fluid loss from the vascular compartment as evidenced by the histopathological observations. This study further substantiates the view that acute toxicity of MIC is mediated in vivo by its effects on vascular beds.展开更多
Isothiocyanates(ITCs)are an important class of organic compounds characterized by the functional group R-N=C=S.These functional groups are widely found in multiple natural products and pharmaceutical important drugs.M...Isothiocyanates(ITCs)are an important class of organic compounds characterized by the functional group R-N=C=S.These functional groups are widely found in multiple natural products and pharmaceutical important drugs.Moreover,due to their high and versatile reactivity,they are widely used as an intermediate in organic synthesis.Keeping in view ITCs importance,this review summarizes their synthesis from nitrogen rich raw materials like amines,isocyanides,azides and some other compounds like oximes.Besides their synthesis,their application in organic compound synthesis as an intermediate will also be covered.Future research will likely focus on optimizing the synthesis of multifunctional isothiocyanates,understanding their complex biological mechanisms,exploring new applications,and highlighting the continued importance of isothiocyanates in modern chemistry and biotechnology.展开更多
Cyanide is the most widely used reagent in gold production processes. However, cyanide is highly toxic and poses safety haz-ards during transportation and use. Therefore, it is necessary to develop gold leaching reage...Cyanide is the most widely used reagent in gold production processes. However, cyanide is highly toxic and poses safety haz-ards during transportation and use. Therefore, it is necessary to develop gold leaching reagents that can replace cyanide. This paper intro-duces a method for synthesizing a gold leaching reagent. Sodium cyanate is used as the main raw material, with sodium hydroxide and so-dium ferrocyanide used as additives. The gold leaching reagent can be obtained under the conditions of a mass ratio of sodium cyanate,sodium hydroxide, and sodium ferrocyanide of 15:3:1, synthesis temperature of 600℃, and synthesis time of 1 h. This reagent has a goodrecovery effect on gold concentrate and gold-containing electronic waste. The gold leaching rate of roasted desulfurized gold concentratecan reach 87.56%. For the extraction experiments of three types of gold-containing electronic waste, the gold leaching rate can reach over90% after 2 h. Furthermore, the reagent exhibits good selectivity towards gold. Component analysis indicates that the effective compon-ent in the reagent could be sodium isocyanate.展开更多
Currently, industrial production of isocyanates, or diisocyanates in particular, has been exclusively based on phosgene processes. Phosgene is extremely toxic and large amounts of corrosive HC1 are produced as a side ...Currently, industrial production of isocyanates, or diisocyanates in particular, has been exclusively based on phosgene processes. Phosgene is extremely toxic and large amounts of corrosive HC1 are produced as a side product. In the view of environment protection and society safety, development of non-phosgene processes for isocyanates production will be highly desired, and this should be one of the most important missions for green chemistry and catalysis. In this review, efforts for development of non-phosgene method for syntheses of isocyanates, i.e., catalytic syntheses of N-substituted carbamates from nitro- or amino-compounds with CO, dimethyl carbonate (DMC), urea and even CO2 etc. as carbonyl sources, then thermal cracking of N-substituted carbamates to afford corresponding i socyanates, are summarized, and a brief prospect for non-phosgene syntheses of isocyanates is also addressed.展开更多
The polymerization of alkyl isocyanates catalyzed by rare earth chloride salen complexes/triisobutyl aluminum (Ln(H<sub>2</sub>salen)<sub>2</sub>Cl<sub>3</sub>·2C<sub>2&l...The polymerization of alkyl isocyanates catalyzed by rare earth chloride salen complexes/triisobutyl aluminum (Ln(H<sub>2</sub>salen)<sub>2</sub>Cl<sub>3</sub>·2C<sub>2</sub>H<sub>7</sub>OH/Al(i-Bu)<sub>3</sub>) at room temperature was investigated. The influences of ligand structure, catalyst composition, polymerization temperature, polymerization time, the concentration of catalyst and monomer, and the polymerization solvent on the polymerization of isocyanates were studied. It was found that under the polymerization conditions, examined La(H<sub>2</sub>salen<sub>A</sub>)<sub>2</sub>Cl<sub>3</sub>·2C<sub>2</sub>-H<sub>7</sub>OH/Al(i-Bu)<sub>3</sub> (H<sub>2</sub>salen<sub>A</sub>= N,N′-disalicylideneethylene diamine) is a fairly high efficient catalyst for the polymerization of n-hexyl isocyanate (n-HexNCO) to prepare high molecular weight poly(n-hexyl isocyanate) (PHNCO) with narrower molecular weight distribution at room temperature. PHNCO could be prepared with yield of 74.0%, number-average molecular weight (M <sub>n</sub>) of 40.20×10<sup>4</sup> and MWD of 1.79 under the following optimum conditions: [Al]/[La] = 30 (molar ratio), [n-HexNCO]/[La] = 100 (molar ratio), [n-HexNCO] = 3.43 mol/L polymerization at 20°C for 12 h in toluene. In the same polymerization conditions, poly (n-octyl isocyanate) (PONCO) with yield of 67.3%, and poly(n-butyl isocyanate) (PBNCO) with yield of 45.5%, could be prepared respectively. The kinetics of the polymerization of n-HexNCO was also investigated and found to be first-order with respect to both monomer and catalyst concentrations.展开更多
A series-of lanthanide complexes including (Ind)(3)Sm(THF) (1), [(MeCP)(2)Sm(mu-SPh)(THF)](2),(2), [(MeCp)(2)Y(mu-O-i-Pr)](2) (3), (MeCp)(3)Sm.THF (4), Sm(SPh)(3) (hmpa)(3) (5), [(MeCp)(2)Y(mu-OCH2CF3)](2) (6) and (CF...A series-of lanthanide complexes including (Ind)(3)Sm(THF) (1), [(MeCP)(2)Sm(mu-SPh)(THF)](2),(2), [(MeCp)(2)Y(mu-O-i-Pr)](2) (3), (MeCp)(3)Sm.THF (4), Sm(SPh)(3) (hmpa)(3) (5), [(MeCp)(2)Y(mu-OCH2CF3)](2) (6) and (CF3CH2O)(3)Y(THF)(3) (7) were synthesized and they have good activity for the oligomerization of phenyl isocyanate. Among-them 5 shows,the highest activity. The conversion is as high as 96.2%, with 1/2500 of the molar ratio of cat. / PhNCO. The main components in oligomer were characterized to be a cyclodimer and a cyclotrimer. The ratio of cyclodimer,to cyclotrimer depends on the lanthanide complexes:used. 7 gave 85.2% cyclotrimer with 1/300 of the molar ratio of cat./PhNCO at 40 V for 0.5 h, while 5 gave 77.6% cyclodimer with 1/300 of the molar ratio of cat. /PhNCO at 40 degreesC for 4 h.展开更多
The orientation of the addition of 5-amino-3-benzylthio-1,2,4-triazole and its analogues (pyrazole) (1) with the aryl isocyanate can be directed by controlling the reaction temperature and one of the product, 5-amino-...The orientation of the addition of 5-amino-3-benzylthio-1,2,4-triazole and its analogues (pyrazole) (1) with the aryl isocyanate can be directed by controlling the reaction temperature and one of the product, 5-amino-1-arylaminocarbonyl-3-benzylthio-1,2,4-triazole (pyrazole) (2), can rearrange at 170C to another product, 5-arylureylene-3-benzylthio-1,2,4-triazole (pyrazole) (3). A plausible mechanism explanation for this rearrangement reaction was presented. It was suggested that the rearrangement reaction could be referred to the thermodynamics transposition leading to the predominant 5-arylureylene-3-benzylthio-1,2,4-triazole energy preferentially.展开更多
The reaction of 3-substituted-4-hydroxy-2H-1,2-benzothiazine 1,1-dioxides with aryl isocyanate under different equivalents of strong base NaH was studied. Seventeen of new derivatives were obtained whose structures we...The reaction of 3-substituted-4-hydroxy-2H-1,2-benzothiazine 1,1-dioxides with aryl isocyanate under different equivalents of strong base NaH was studied. Seventeen of new derivatives were obtained whose structures were characterized by H-1 NMR, IR, MS, elementary analysis and FeCl3 test.展开更多
The bimolecular single collision reaction potential energy surface of an isocyanate NCO radical with a ketene CH2CO molecule was investigated by means of B3LYP and QCISD(T) methods. The computed results indicate tha...The bimolecular single collision reaction potential energy surface of an isocyanate NCO radical with a ketene CH2CO molecule was investigated by means of B3LYP and QCISD(T) methods. The computed results indicate that two possible reaction channels exist on the surface. One is an addition-elimination reaction process, in which the CH2CO molecule is attacked by the nitrogen atom at its methylene carbon atom to lead to the formation of the intermediate OCNCH2CO followed by a C-C rupture channel to the products CH2NCO+CO. The other is a direct hydrogen abstraction channel from CHzCO by the NCO radical to afford the products HCCO+HNCO. Because of a higher barrier in the hydrogen abstraction reaction than in the addition-elimination reaction, the direct hydrogen abstraction pathway can only be considered as a secondary reaction channel in the reaction kinetics of NCO+ CH2CO. The predicted results are in good agreement with previous experimental and theoretical investigations.展开更多
The X-ray photoelectron spectroscopy (XPS) technique was used to study the reaction ofphenyl isocyanate and cellulose with different moisture contents (MC). The C1S XPS peak of cellulose isonly one symmetrical contrib...The X-ray photoelectron spectroscopy (XPS) technique was used to study the reaction ofphenyl isocyanate and cellulose with different moisture contents (MC). The C1S XPS peak of cellulose isonly one symmetrical contribution at 285.95 eV. While the C1S XPS peaks of N,N-dibenzylurea, thereaction resultant of phenyl isocyanate and water, have two contributions at 288.6±0.1 eV and 284.7±0.1 eV corresponding to the carbonyl group and phenyl ring group, respectively. Their area ratio isbetween 11.88 and 11.98 that is quite neat to the theoretical value of 12.0. With the moisture content (MC)of cellulose increased, the proportion of isocyanate reacted with water increased. When the MC reaches 9.78%, 92.98% of all consumed isocyanate will react with water. By spattering analysis, it reveals that thereaction resultants of benzyl isocyanate distribute mainly on the surface of cellulose.展开更多
基金Funded by the National Key R&D Program of China(No.2022YFC3803400)。
文摘The effects of isocyanate(IA)incorporation on the toughness and volume stability of AAFS were systematically investigated.Various IA dosages were introduced into AAFS,and their influence on mechanical properties,microstructure,and shrinkage behavior was evaluated.The experimental results indicate that,with the incorporation of 5%IA,the 28-day compressive strength reaches 48.6 MPa,the 56-day drying shrinkage decreases by 35.91%,and minimal cracking is observed in the ring test.Microstructural analyses using SEM,XRD,and FTIR reveal that IA reacts with water to form urethane and biuret,which crosslinks into a durable network structure.This network fills pores,reducing internal stresses and improving both toughness and volume stability.These findings offer new insights into optimizing alkali-activated materials for construction applications and provide a potential pathway for the development of more durable and stable geopolymers.
基金financially supported by the Projects of the Research and Development Project of New Materials and Chemical Engineering Research Institute of Shanxi Zhejiang University(No.2021SX-AT010)the National Natural Science Foundation of China(No.21972103)Innovation and entrepreneurship training program for college students(No.202110112012)。
文摘Zeolite imidazole skeleton(ZIF-8)is a promising option for self-cleaning of building exterior walls due to its large specific surface area,high antibacterial activity and low biotoxicity.However,it suffers from low antibacterial efficiency and yield under visible light irradiation.To address the issues,we developed the photocatalytic materials T-ZIF-8-TDI(thermally treated-ZIF-8-toluene 2,4-diisocyanate)by modifying ZIF-8 with thermal oxygen sensitization and chemical bonding.The results show that the yield of T-ZIF-8-TDI photocatalytic antibacterial agent is increased to 11.5 times of that of T-ZIF-8,while maintaining the crystal structure of T-ZIF-8 and thermal stability up to 60℃.Furthermore,T-ZIF-8-TDI exhibits extended optical response range to the nearinfrared region,significantly narrowed band gap,improved photogenerated elec tron-hole separation efficiency,reduced recombination rate,and excellent photocatalytic performance.When the concentration of antibacterial agent is 600 mg·L^(-1),the antibacterial rate of Escherichia coli(E.coli)reaches 99.99%irradiated by visible light for30 min,and when the concentration of antibacterial agent is 200 mg·L^(-1),the antibacterial rate of Staphylococcus aureus(S.aureus)reaches 99.99%irradiated by visible light for 25 min.We also analyzed the reasons in detail from the aspects of bacterial species and antibacterial mechanism,and proposed the antibacterial mechanism of·O_(2)^(-)and h^(+)as the main active species.These findings suggest that T-ZIF-8-TDI photocatalytic antibacterial agent has potential for use in self-cleaning of building exterior walls.
文摘With the urgent shortage of forest resource in China, using agro-residues as raw materials of composite become increasingly important. Agro-residue is the most potential fiber resource, which is helpful to sustainable development of composite industries in China. Based on a great deal of researches, this paper summarized and discussed some problems in using agro-residues as raw materials of composites, including raw material preparation, hot-pressing, bonding technology, preventing composite from going moldy. It is proposed that to manufacture the composite of rice straws or wheat straws, the isocayante resin is a suitable adhesive, and the appropriate technologies, bonding, and treatment measures are also needed.
文摘Phenyl isocyanate was for the first time successfully polymerized by divalent samarium complex (ArO)2Sm(THF)4. The monomer concentration and temperatur affected the polymerization greatly.
文摘The polymerization of n-hexyl isocyanate(HNCO) was carried out in the presence of a novel single initiator, rare earth tris(2,6-di-tert-butyl-4-methylphenolate)[Ln(OAr)_3]. The influences of reaction conditions such as the monomer concentration, the polymerization temperature and time, and the types of solvents on the polymerization of HNCO were studied. Polymerizations of phenyl, i-propyl, p-tolyl, n-butyl and n-octyl isocyanates with La(OAr)_3 were also examined.
基金Supported by the Key Science and Technology Innovation Team of Zhejiang Province(2011R50007)
文摘The uncatalyzed reaction of p-tolyl isocyanate(p-TI)with water in N,N-dimethylformamide(DMF)was investigated by high performance liquid chromatography(HPLC).The reactions were carried out at different temperatures from 293 K to 323 K,using various molar ratios of water to p-TI.DMF,as a special amide,was proved to be an efficient catalyst for water–isocyanate reaction.Under the reaction conditions in this study,substituted urea was the only final product observed.An appreciable amount of intermediate p-toluidine was detected.Concentrations of the isocyanate group as well as the amine and urea were determined as a function of time.New kinetic equations were deduced for each of the substance on the basis of a multistep mechanism,instead of a simple second order reaction as usual.Kinetic constants were calculated using the software MATLAB.Furthermore,the effects of temperature and concentrations of reactants on the reaction rate and amine content were discussed.The activation energy of each step was also determined.
基金financially supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Science, ICT and Future Planning (Nos. NRF-2015R1A2A1A01002493 and NRF-2018R1A2B6003616)supported by “Nobel Research Project” grant for Grubbs Center for Polymers and Catalysis funded by the GIST in 2019
文摘A rod-rod diblock copolymer (diBCP), poly(3-hexylthiophene)-block-poly(furfuryl isocyanate)(P3HT-b-PFIC), was synthesized through the anionic polymerization with an oxyanionic macroinitiator of P3HT. The properties of the diBCP (molecular weight, dispersity, composition, thermal stability, UV-visible absorption, and thin film morphology) were determined by various analytical methods. P3HT-b-PFIC was blended with C60 in a toluene solution to prepare a thin film of binary electron donor/acceptor system. Such blending enabled partial conjugation of the two components by the Diels-Alder reaction between furan and C60 at 60℃ for 3 h;the mixture was then spin-cast as a thin film, and annealed at 250℃ for 24 h. Tapping-mode atomic force microscopy (AFM) revealed that P3HT and C60 domains had nanoscale interfaces without a large phase segregation. This result indicated that the microphase separation of C60-functionalized P3HT-b-PFIC preserved even at high temperature provided free C60 molecules with channels to diffuse on the sides of P3HT domain, thus preventing the macroscopic crystallization of free C60 through the interfacial stabilization.
文摘The oligomerization of phenyl isocyanate catalyzed by divalent his (methylcyclopentadienyl)samarium complex was studied. The initiating reaction and the effect of coordination environment around the samarium atom were mainly discussed. It is found that the initiation reaction has a great influence on the apparent catalytic activity. The oligomers can be split into two fractions. The methanol insoluble fraction is mainly composed of dimers, while the methanol soluble fraction is mainly composed of trimers. Neither SmI2 nor SmI2(hmpa)(4)(hmpa = hexamethylphosphoric triamide) shows catalytic activity for the oligomerization of phenyl isocyanate.
文摘Bis (methylcyclopentadienyl) lanthanide amido complex (MeCp) 2YbNPh2 (THF) reacted with n-hexyl isocyanate (n-nexylNCO) in 1:1 molar ratio to give {(MeC5H4)2Yb[OC(NPh2)N(n-hexyl)] }2(1). Complex 1 was characterized by elemental analyses and X-ray diffraction. The title complex belongs to trigonal system and R-3 space group. Its unit cell parameters are a =2.9533(11) nm, b =2.9533(11) nm, c = 1.5873(6) nm, V= 11.9896(80) nm^3, Z =9, Dc= 1.562 mg·m^-3, μ = 3.536 mm^-1(Mo Kα), F(000) =5670, R =0.034, Rw =0.064. It is a dimeric structure with two symmetrical bridged oxygen atoms. Nitrogen atom is coordinated to the ytterbium atom to form a tricyclic backbone. The coordination number of ytterbium is 9. The whole molecule shows central symmetry.
文摘Low-valent titanium reagent prepared from titanium tetrachloride and zinc was empolyed to induce the coupling reaction of thiocyanates with tetrahydrofuran yield alkyl 4-hydroxy butyl sulfide and isocyanate yield substituted urea.
文摘Subcutaneous administration of methyl isocyanate (MIC) in 0.5 LDso and 1.0 LD50 to female rabbits resulted in significant increases of hemoglobin concentration, hematocrit and leukocyte count in blood, as well as plasma total proteins, urea and cholesterol. A significant decrease in plasma albumin level was only observed in the 1.0 LD50 group. Urine of MIC intoxicated animals showed presence of protein, bilirubin, elevated urea and urobilinogen, while urine volume was reduced. The hematological and biochemical changes induced by MIC are perhaps the result of fluid loss from the vascular compartment as evidenced by the histopathological observations. This study further substantiates the view that acute toxicity of MIC is mediated in vivo by its effects on vascular beds.
文摘Isothiocyanates(ITCs)are an important class of organic compounds characterized by the functional group R-N=C=S.These functional groups are widely found in multiple natural products and pharmaceutical important drugs.Moreover,due to their high and versatile reactivity,they are widely used as an intermediate in organic synthesis.Keeping in view ITCs importance,this review summarizes their synthesis from nitrogen rich raw materials like amines,isocyanides,azides and some other compounds like oximes.Besides their synthesis,their application in organic compound synthesis as an intermediate will also be covered.Future research will likely focus on optimizing the synthesis of multifunctional isothiocyanates,understanding their complex biological mechanisms,exploring new applications,and highlighting the continued importance of isothiocyanates in modern chemistry and biotechnology.
基金financially supported by the National Natural Science Foundation of China (No.51974016)。
文摘Cyanide is the most widely used reagent in gold production processes. However, cyanide is highly toxic and poses safety haz-ards during transportation and use. Therefore, it is necessary to develop gold leaching reagents that can replace cyanide. This paper intro-duces a method for synthesizing a gold leaching reagent. Sodium cyanate is used as the main raw material, with sodium hydroxide and so-dium ferrocyanide used as additives. The gold leaching reagent can be obtained under the conditions of a mass ratio of sodium cyanate,sodium hydroxide, and sodium ferrocyanide of 15:3:1, synthesis temperature of 600℃, and synthesis time of 1 h. This reagent has a goodrecovery effect on gold concentrate and gold-containing electronic waste. The gold leaching rate of roasted desulfurized gold concentratecan reach 87.56%. For the extraction experiments of three types of gold-containing electronic waste, the gold leaching rate can reach over90% after 2 h. Furthermore, the reagent exhibits good selectivity towards gold. Component analysis indicates that the effective compon-ent in the reagent could be sodium isocyanate.
基金This work was supported by the National Natural Science Foundation of China (No. 21173240).
文摘Currently, industrial production of isocyanates, or diisocyanates in particular, has been exclusively based on phosgene processes. Phosgene is extremely toxic and large amounts of corrosive HC1 are produced as a side product. In the view of environment protection and society safety, development of non-phosgene processes for isocyanates production will be highly desired, and this should be one of the most important missions for green chemistry and catalysis. In this review, efforts for development of non-phosgene method for syntheses of isocyanates, i.e., catalytic syntheses of N-substituted carbamates from nitro- or amino-compounds with CO, dimethyl carbonate (DMC), urea and even CO2 etc. as carbonyl sources, then thermal cracking of N-substituted carbamates to afford corresponding i socyanates, are summarized, and a brief prospect for non-phosgene syntheses of isocyanates is also addressed.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 20304011, 20774078 & 20434020)the Special Funds for Major Basic Research Projects (Grant No. 2005CB623802)
文摘The polymerization of alkyl isocyanates catalyzed by rare earth chloride salen complexes/triisobutyl aluminum (Ln(H<sub>2</sub>salen)<sub>2</sub>Cl<sub>3</sub>·2C<sub>2</sub>H<sub>7</sub>OH/Al(i-Bu)<sub>3</sub>) at room temperature was investigated. The influences of ligand structure, catalyst composition, polymerization temperature, polymerization time, the concentration of catalyst and monomer, and the polymerization solvent on the polymerization of isocyanates were studied. It was found that under the polymerization conditions, examined La(H<sub>2</sub>salen<sub>A</sub>)<sub>2</sub>Cl<sub>3</sub>·2C<sub>2</sub>-H<sub>7</sub>OH/Al(i-Bu)<sub>3</sub> (H<sub>2</sub>salen<sub>A</sub>= N,N′-disalicylideneethylene diamine) is a fairly high efficient catalyst for the polymerization of n-hexyl isocyanate (n-HexNCO) to prepare high molecular weight poly(n-hexyl isocyanate) (PHNCO) with narrower molecular weight distribution at room temperature. PHNCO could be prepared with yield of 74.0%, number-average molecular weight (M <sub>n</sub>) of 40.20×10<sup>4</sup> and MWD of 1.79 under the following optimum conditions: [Al]/[La] = 30 (molar ratio), [n-HexNCO]/[La] = 100 (molar ratio), [n-HexNCO] = 3.43 mol/L polymerization at 20°C for 12 h in toluene. In the same polymerization conditions, poly (n-octyl isocyanate) (PONCO) with yield of 67.3%, and poly(n-butyl isocyanate) (PBNCO) with yield of 45.5%, could be prepared respectively. The kinetics of the polymerization of n-HexNCO was also investigated and found to be first-order with respect to both monomer and catalyst concentrations.
文摘A series-of lanthanide complexes including (Ind)(3)Sm(THF) (1), [(MeCP)(2)Sm(mu-SPh)(THF)](2),(2), [(MeCp)(2)Y(mu-O-i-Pr)](2) (3), (MeCp)(3)Sm.THF (4), Sm(SPh)(3) (hmpa)(3) (5), [(MeCp)(2)Y(mu-OCH2CF3)](2) (6) and (CF3CH2O)(3)Y(THF)(3) (7) were synthesized and they have good activity for the oligomerization of phenyl isocyanate. Among-them 5 shows,the highest activity. The conversion is as high as 96.2%, with 1/2500 of the molar ratio of cat. / PhNCO. The main components in oligomer were characterized to be a cyclodimer and a cyclotrimer. The ratio of cyclodimer,to cyclotrimer depends on the lanthanide complexes:used. 7 gave 85.2% cyclotrimer with 1/300 of the molar ratio of cat./PhNCO at 40 V for 0.5 h, while 5 gave 77.6% cyclodimer with 1/300 of the molar ratio of cat. /PhNCO at 40 degreesC for 4 h.
基金Project supported by the National Natural Science Foundation of China and the Natural Science Foundation of Tianjin.
文摘The orientation of the addition of 5-amino-3-benzylthio-1,2,4-triazole and its analogues (pyrazole) (1) with the aryl isocyanate can be directed by controlling the reaction temperature and one of the product, 5-amino-1-arylaminocarbonyl-3-benzylthio-1,2,4-triazole (pyrazole) (2), can rearrange at 170C to another product, 5-arylureylene-3-benzylthio-1,2,4-triazole (pyrazole) (3). A plausible mechanism explanation for this rearrangement reaction was presented. It was suggested that the rearrangement reaction could be referred to the thermodynamics transposition leading to the predominant 5-arylureylene-3-benzylthio-1,2,4-triazole energy preferentially.
基金Project supported by the National Natural Science Foundation of China.
文摘The reaction of 3-substituted-4-hydroxy-2H-1,2-benzothiazine 1,1-dioxides with aryl isocyanate under different equivalents of strong base NaH was studied. Seventeen of new derivatives were obtained whose structures were characterized by H-1 NMR, IR, MS, elementary analysis and FeCl3 test.
文摘The bimolecular single collision reaction potential energy surface of an isocyanate NCO radical with a ketene CH2CO molecule was investigated by means of B3LYP and QCISD(T) methods. The computed results indicate that two possible reaction channels exist on the surface. One is an addition-elimination reaction process, in which the CH2CO molecule is attacked by the nitrogen atom at its methylene carbon atom to lead to the formation of the intermediate OCNCH2CO followed by a C-C rupture channel to the products CH2NCO+CO. The other is a direct hydrogen abstraction channel from CHzCO by the NCO radical to afford the products HCCO+HNCO. Because of a higher barrier in the hydrogen abstraction reaction than in the addition-elimination reaction, the direct hydrogen abstraction pathway can only be considered as a secondary reaction channel in the reaction kinetics of NCO+ CH2CO. The predicted results are in good agreement with previous experimental and theoretical investigations.
文摘The X-ray photoelectron spectroscopy (XPS) technique was used to study the reaction ofphenyl isocyanate and cellulose with different moisture contents (MC). The C1S XPS peak of cellulose isonly one symmetrical contribution at 285.95 eV. While the C1S XPS peaks of N,N-dibenzylurea, thereaction resultant of phenyl isocyanate and water, have two contributions at 288.6±0.1 eV and 284.7±0.1 eV corresponding to the carbonyl group and phenyl ring group, respectively. Their area ratio isbetween 11.88 and 11.98 that is quite neat to the theoretical value of 12.0. With the moisture content (MC)of cellulose increased, the proportion of isocyanate reacted with water increased. When the MC reaches 9.78%, 92.98% of all consumed isocyanate will react with water. By spattering analysis, it reveals that thereaction resultants of benzyl isocyanate distribute mainly on the surface of cellulose.