期刊文献+
共找到907,523篇文章
< 1 2 250 >
每页显示 20 50 100
区域创新体系整体效能影响因素研究——基于DEMATEL-ISM-MICMAC模型的分析
1
作者 贾春香 《开发研究》 2025年第2期76-86,共11页
区域创新体系是一个复杂系统,其整体效能是系统内各因素综合作用的结果。通过文献分析、实地访谈,首先确定出23项区域创新体系整体效能的影响因素,然后运用DEMATEL-ISM-MICMAC组合模型识别因素间的直接关系,构建因素的层级,并分析各因... 区域创新体系是一个复杂系统,其整体效能是系统内各因素综合作用的结果。通过文献分析、实地访谈,首先确定出23项区域创新体系整体效能的影响因素,然后运用DEMATEL-ISM-MICMAC组合模型识别因素间的直接关系,构建因素的层级,并分析各因素在系统中的作用机制和相互影响的程度。结果表明,区域创新战略是区域创新体系整体效能的根本影响因素,根据区域创新战略制定科技创新平台奖励政策,加大研发经费投入,提高科研仪器设备的配置水平,充分发挥科技服务机构的职能,提高科研机构和高新技术企业的专利产出并促进成果转化,可以有效提升创新体系整体效能。 展开更多
关键词 区域创新体系 整体效能 DEMATEL-ism-micmac模型 区域创新战略
在线阅读 下载PDF
基于Hybrid Model的浙江省太阳总辐射估算及其时空分布特征
2
作者 顾婷婷 潘娅英 张加易 《气象科学》 2025年第2期176-181,共6页
利用浙江省两个辐射站的观测资料,对地表太阳辐射模型Hybrid Model在浙江省的适用性进行评估分析。在此基础上,利用Hybrid Model重建浙江省71个站点1971—2020年的地表太阳辐射日数据集,并分析其时空变化特征。结果表明:Hybrid Model模... 利用浙江省两个辐射站的观测资料,对地表太阳辐射模型Hybrid Model在浙江省的适用性进行评估分析。在此基础上,利用Hybrid Model重建浙江省71个站点1971—2020年的地表太阳辐射日数据集,并分析其时空变化特征。结果表明:Hybrid Model模拟效果良好,和A-P模型计算结果进行对比,杭州站的平均误差、均方根误差、平均绝对百分比误差分别为2.01 MJ·m^(-2)、2.69 MJ·m^(-2)和18.02%,而洪家站的平均误差、均方根误差、平均绝对百分比误差分别为1.41 MJ·m^(-2)、1.85 MJ·m^(-2)和11.56%,误差均低于A-P模型,且Hybrid Model在各月模拟的误差波动较小。浙江省近50 a平均地表总辐射在3733~5060 MJ·m^(-2),高值区主要位于浙北平原及滨海岛屿地区。1971—2020年浙江省太阳总辐射呈明显减少的趋势,气候倾向率为-72 MJ·m^(-2)·(10 a)^(-1),并在1980s初和2000年中期发生了突变减少。 展开更多
关键词 Hybrid model 太阳总辐射 误差分析 时空分布
在线阅读 下载PDF
基于24Model的动火作业事故致因文本挖掘 被引量:1
3
作者 牛茂辉 李威君 +1 位作者 刘音 王璐 《中国安全科学学报》 北大核心 2025年第3期151-158,共8页
为探究工业动火作业事故的根源,提出一种基于“2-4”模型(24Model)的文本挖掘方法。首先,收集整理220篇动火作业事故报告,并作为数据集,构建基于来自变换器的双向编码器表征量(BERT)的24Model分类器,使用预训练模型训练和评估事故报告... 为探究工业动火作业事故的根源,提出一种基于“2-4”模型(24Model)的文本挖掘方法。首先,收集整理220篇动火作业事故报告,并作为数据集,构建基于来自变换器的双向编码器表征量(BERT)的24Model分类器,使用预训练模型训练和评估事故报告数据集,构建分类模型;然后,通过基于BERT的关键字提取算法(KeyBERT)和词频-逆文档频率(TF-IDF)算法的组合权重,结合24Model框架,建立动火作业事故文本关键词指标体系;最后,通过文本挖掘关键词之间的网络共现关系,分析得到事故致因之间的相互关联。结果显示,基于BERT的24Model分类器模型能够系统准确地判定动火作业事故致因类别,通过组合权重筛选得到4个层级关键词指标体系,其中安全管理体系的权重最大,结合共现网络分析得到动火作业事故的7项关键致因。 展开更多
关键词 “2-4”模型(24model) 动火作业 事故致因 文本挖掘 指标体系
原文传递
基于DEMATEL-ISM-MICMAC的装配式建筑成本影响因素研究 被引量:2
4
作者 张贵华 岳庆慧 《哈尔滨商业大学学报(自然科学版)》 2025年第2期242-248,共7页
为准确识别装配式建筑成本影响因素之间的内在联系及关键影响因素,结合成本构成分析、文献分析和专家访谈,从设计、生产、运输、施工等方面确定了17个成本影响因素;运用C-OWA算子改进DEMATEL分析因素的重要性;利用ISM揭示因素间相互作... 为准确识别装配式建筑成本影响因素之间的内在联系及关键影响因素,结合成本构成分析、文献分析和专家访谈,从设计、生产、运输、施工等方面确定了17个成本影响因素;运用C-OWA算子改进DEMATEL分析因素的重要性;利用ISM揭示因素间相互作用关系;使用MICMAC模型对因素属性特征进行深入分析.结果表明,依据DEMATEL因果关系图识别出6个关键影响因素;借助ISM构建的多层递阶结构模型将17个成本影响因素划分为5层3类,其中预制构件生产成本是最重要的直接影响因素,国家政策及相关规范是根本影响因素;运用MICMAC模型将成本影响因素划分为自治、依赖、关联、独立4种属性;最后基于研究结果提出针对性建议. 展开更多
关键词 装配式建筑 成本影响因素 C-OWA算子 DEMATEL模型 ISM模型 MICMAC模型
在线阅读 下载PDF
Prognostic model for esophagogastric variceal rebleeding after endoscopic treatment in liver cirrhosis: A Chinese multicenter study 被引量:2
5
作者 Jun-Yi Zhan Jie Chen +7 位作者 Jin-Zhong Yu Fei-Peng Xu Fei-Fei Xing De-Xin Wang Ming-Yan Yang Feng Xing Jian Wang Yong-Ping Mu 《World Journal of Gastroenterology》 SCIE CAS 2025年第2期85-101,共17页
BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized p... BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized prognostic models that can effectively predict esophagogastric variceal rebleeding in patients with liver cirrhosis are lacking.AIM To construct and externally validate a reliable prognostic model for predicting the occurrence of esophagogastric variceal rebleeding.METHODS This study included 477 EGVB patients across 2 cohorts:The derivation cohort(n=322)and the validation cohort(n=155).The primary outcome was rebleeding events within 1 year.The least absolute shrinkage and selection operator was applied for predictor selection,and multivariate Cox regression analysis was used to construct the prognostic model.Internal validation was performed with bootstrap resampling.We assessed the discrimination,calibration and accuracy of the model,and performed patient risk stratification.RESULTS Six predictors,including albumin and aspartate aminotransferase concentrations,white blood cell count,and the presence of ascites,portal vein thrombosis,and bleeding signs,were selected for the rebleeding event prediction following endoscopic treatment(REPET)model.In predicting rebleeding within 1 year,the REPET model ex-hibited a concordance index of 0.775 and a Brier score of 0.143 in the derivation cohort,alongside 0.862 and 0.127 in the validation cohort.Furthermore,the REPET model revealed a significant difference in rebleeding rates(P<0.01)between low-risk patients and intermediate-to high-risk patients in both cohorts.CONCLUSION We constructed and validated a new prognostic model for variceal rebleeding with excellent predictive per-formance,which will improve the clinical management of rebleeding in EGVB patients. 展开更多
关键词 Esophagogastric variceal bleeding Variceal rebleeding Liver cirrhosis Prognostic model Risk stratification Secondary prophylaxis
暂未订购
基于ISM-MICMAC的铁路隧道钻爆法施工安全风险因素研究
6
作者 康金鹏 李海波 惠佳鑫 《河北建筑工程学院学报》 2025年第1期185-195,202,共12页
明晰铁路隧道钻爆法施工安全风险因素的层级关系和传递路径对提升安全风险管理效能具有重要意义。基于工作分解结构—风险分解结构建立铁路隧道钻爆法施工安全风险因素清单,利用解释结构模型与交叉影响矩阵相乘法构建风险因素的层级结... 明晰铁路隧道钻爆法施工安全风险因素的层级关系和传递路径对提升安全风险管理效能具有重要意义。基于工作分解结构—风险分解结构建立铁路隧道钻爆法施工安全风险因素清单,利用解释结构模型与交叉影响矩阵相乘法构建风险因素的层级结构模型和驱动力—依赖度分布图,厘清风险因素之间的作用关系和传递路径。结果表明:铁路隧道钻爆法施工安全风险因素分为表象层、中间层和根源层三类,根据分析结果提出以完善安全管理制度、强化安全教育培训和优化施工工艺为核心的风险防控措施,为铁路隧道钻爆法施工安全管理提供了科学参考。 展开更多
关键词 铁路隧道 安全风险 钻爆法 WBS-RBS ism-micmac
在线阅读 下载PDF
基于ISM-MICMAC的多式联运协同能力影响因素分析
7
作者 姜泰华 孟建军 +1 位作者 石坤 刘亚彤 《中国储运》 2025年第4期186-187,共2页
一、多式联运协同能力影响因素ISM-MICMAC模型构建过程传统的ISM模型最早由Warfield提出。ISM-MICMAC则是结合了解释结构建模和交叉影响矩阵乘法的优点并应用于因素筛选排序的技术。这种模型构建过程包括:确定系统因素集、建立知识模型... 一、多式联运协同能力影响因素ISM-MICMAC模型构建过程传统的ISM模型最早由Warfield提出。ISM-MICMAC则是结合了解释结构建模和交叉影响矩阵乘法的优点并应用于因素筛选排序的技术。这种模型构建过程包括:确定系统因素集、建立知识模型、明确二元关系形成邻接矩阵A、通过布尔矩阵运算法则建立可达矩阵R、计算可达集和前因集,递阶层次划分,生成层次结构图、制定关系矩阵,识别驱动因素并分类集群。对建模步骤进行详细描述:(一)识别主要影响因素多式联运的协同是一个复杂的系统作业,受众多因素影响。经专家咨询后,结合多式联运及协同既往文献,从管理与协同作业、运输过程控制与优化、客户需求等多个角度,共筛选得到22个多式联运物流协同影响因素,并进行编号。见表1。 展开更多
关键词 邻接矩阵 多式联运 协同能力 ism-micmac
在线阅读 下载PDF
Landslide Susceptibility Mapping Using RBFN-Based Ensemble Machine Learning Models 被引量:1
8
作者 Duc-Dam Nguyen Nguyen Viet Tiep +5 位作者 Quynh-Anh Thi Bui Hiep Van Le Indra Prakash Romulus Costache Manish Pandey Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期467-500,共34页
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear... This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making. 展开更多
关键词 Landslide susceptibility map spatial analysis ensemble modelling information values(IV)
在线阅读 下载PDF
BIM技术与IPD模式集成应用影响因素研究——基于扎根理论的ISM-MICMAC模型实证分析
9
作者 陈琛 沈志锋 +1 位作者 楚新开 王二侠 《建筑施工》 2025年第1期156-161,171,共7页
集成项目交付(IPD)较传统项目交付模式能够有效地促进多方合作、减少资源浪费,特别是在建筑信息模型(BIM)支持下,能够进一步放大IPD模式的优势。然而融入BIM技术的IPD模式发展尚处于摸索阶段,其促进和依赖因素尚不清晰,因此,开展了BIM与... 集成项目交付(IPD)较传统项目交付模式能够有效地促进多方合作、减少资源浪费,特别是在建筑信息模型(BIM)支持下,能够进一步放大IPD模式的优势。然而融入BIM技术的IPD模式发展尚处于摸索阶段,其促进和依赖因素尚不清晰,因此,开展了BIM与IPD集成应用的影响因素研究。首先基于扎根理论,凝练影响BIM与IPD应用发展的18个核心影响因素,并依据编码要求,将其归纳为4个核心范畴;进而采用解释结构模型(ISM)和交叉影响矩阵(MICMAC),分析其影响因素的层级结构及其内在的作用机理,从而形成了BIM与IPD集成应用发展影响因素理论的框架;最后根据研究结果,提出了针对性的建议。 展开更多
关键词 BIM技术 IPD模式 扎根理论 ism-micmac模型
在线阅读 下载PDF
基于DEMATEL-ISM-MICMAC模型的耕地撂荒致因研究——以山西省长治市黎城县为例
10
作者 赵慧蓉 殷海善 《湖北农业科学》 2025年第3期216-223,231,共9页
以山西省长治市黎城县为例,基于文献研究、实地调查与专家访谈方法从自然、经济、人口、生产4个方面提出了耕地撂荒的影响因素,采用DEMATEL-MICMAC-ISM模型对影响因素进行相关性、重要性、层级结构分析及驱动力-依赖性分析。结果表明,1... 以山西省长治市黎城县为例,基于文献研究、实地调查与专家访谈方法从自然、经济、人口、生产4个方面提出了耕地撂荒的影响因素,采用DEMATEL-MICMAC-ISM模型对影响因素进行相关性、重要性、层级结构分析及驱动力-依赖性分析。结果表明,15个耕地撂荒影响因素划分为3个集合,共6层,分别为直接因素(L1)、中间因素(L2、L3、L4、L5)、深层因素(L6)。运用MICMAC模型计算各因素的依赖性值和驱动力值,将驱动因素分为联系型因素、独立型因素、自治型因素、依赖型因素4类。耕地撂荒的关键影响因素为地形坡度、海拔、本底值、农林水事务支出、农业机械总动力、区位条件、耕作便捷度、水源距离。 展开更多
关键词 耕地利用 耕地撂荒 DEMATEL-ism-micmac模型 山西省长治市黎城县
在线阅读 下载PDF
An integrated method of data-driven and mechanism models for formation evaluation with logs 被引量:1
11
作者 Meng-Lu Kang Jun Zhou +4 位作者 Juan Zhang Li-Zhi Xiao Guang-Zhi Liao Rong-Bo Shao Gang Luo 《Petroleum Science》 2025年第3期1110-1124,共15页
We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpr... We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets. 展开更多
关键词 Well log Reservoir evaluation Label scarcity Mechanism model Data-driven model Physically informed model Self-supervised learning Machine learning
原文传递
Predictability Study of Weather and Climate Events Related to Artificial Intelligence Models 被引量:2
12
作者 Mu MU Bo QIN Guokun DAI 《Advances in Atmospheric Sciences》 2025年第1期1-8,共8页
Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather an... Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences. 展开更多
关键词 PREDICTABILITY artificial intelligence models simulation and forecasting nonlinear optimization cognition–observation–model paradigm
在线阅读 下载PDF
Sensorless battery expansion estimation using electromechanical coupled models and machine learning 被引量:1
13
作者 Xue Cai Caiping Zhang +4 位作者 Jue Chen Zeping Chen Linjing Zhang Dirk Uwe Sauer Weihan Li 《Journal of Energy Chemistry》 2025年第6期142-157,I0004,共17页
Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper... Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries. 展开更多
关键词 Sensorless estimation Electromechanical coupling Impedance model Data-driven model Mechanical pressure
在线阅读 下载PDF
A Multi-Level Semantic Constraint Approach for Highway Tunnel Scene Twin Modeling 被引量:1
14
作者 LI Yufei XIE Yakun +3 位作者 CHEN Mingzhen ZHAO Yaoji TU Jiaxing HU Ya 《Journal of Geodesy and Geoinformation Science》 2025年第2期37-56,共20页
As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods ge... As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes. 展开更多
关键词 highway tunnel twin modeling multi-level semantic constraints tunnel vehicles multidimensional modeling
在线阅读 下载PDF
Large language models for robotics:Opportunities,challenges,and perspectives 被引量:3
15
作者 Jiaqi Wang Enze Shi +7 位作者 Huawen Hu Chong Ma Yiheng Liu Xuhui Wang Yincheng Yao Xuan Liu Bao Ge Shu Zhang 《Journal of Automation and Intelligence》 2025年第1期52-64,共13页
Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and langua... Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction. 展开更多
关键词 Large language models ROBOTICS Generative AI Embodied intelligence
在线阅读 下载PDF
Comparative study on the oblique water-entry of high-speed projectile based on rigid-body and elastic-plastic body model 被引量:1
16
作者 Xiangyan Liu Xiaowei Cai +3 位作者 Zhengui Huang Yu Hou Jian Qin Zhihua Chen 《Defence Technology(防务技术)》 2025年第4期133-155,共23页
To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conduc... To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conducted based on the numerical results of two mathematical models,the rigid-body model and fluid-structure interaction model.In addition,the applicable scope of the above two methods,and the structural response characteristics of the projectile have also been investigated.Our results demonstrate that:(1) The impact loads and angular motion of the projectile of the rigid-body method are more likely to exhibit periodic variations due to the periodic tail slap,its range of positive angles of attack is about α<2°.(2) When the projectile undergone significant wetting,a strong coupling effect is observed among wetting,structural deformation,and projectile motion.With the applied projectile shape,it is observed that,when the projectile bends,the final wetting position is that of Part B(cylinder of body).With the occu rrence of this phenomenon,the projectile ballistics beco me completely unstable.(3) The force exerted on the lower surface of the projectile induced by wetting is the primary reason of the destabilization of the projectile traj ectory and structu ral deformation failure.Bending deformation is most likely to appear at the junction of Part C(cone of body) and Part D(tail).The safe angles of attack of the projectile stability are found to be about α≤2°. 展开更多
关键词 Fluid-structure interaction Rigid-body model Elastic-plastic model Structural deformation Impact loads Structural safety of projectile
在线阅读 下载PDF
Dynamic intelligent prediction approach for landslide displacement based on biological growth models and CNN-LSTM 被引量:2
17
作者 WANG Ziqian FANG Xiangwei +3 位作者 ZHANG Wengang WANG Luqi WANG Kai CHEN Chao 《Journal of Mountain Science》 2025年第1期71-88,共18页
Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Reg... Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Regression models and Neural network models,to perform multi-characteristic coupled displacement prediction because they fail to consider landslide creep characteristics.This paper integrates the creep characteristics of landslides with non-linear intelligent algorithms and proposes a dynamic intelligent landslide displacement prediction method based on a combination of the Biological Growth model(BG),Convolutional Neural Network(CNN),and Long ShortTerm Memory Network(LSTM).This prediction approach improves three different biological growth models,thereby effectively extracting landslide creep characteristic parameters.Simultaneously,it integrates external factors(rainfall and reservoir water level)to construct an internal and external comprehensive dataset for data augmentation,which is input into the improved CNN-LSTM model.Thereafter,harnessing the robust feature extraction capabilities and spatial translation invariance of CNN,the model autonomously captures short-term local fluctuation characteristics of landslide displacement,and combines LSTM's efficient handling of long-term nonlinear temporal data to improve prediction performance.An evaluation of the Liangshuijing landslide in the Three Gorges Reservoir Area indicates that BG-CNN-LSTM exhibits high prediction accuracy,excellent generalization capabilities when dealing with various types of landslides.The research provides an innovative approach to achieving the whole-process,realtime,high-precision displacement predictions for multicharacteristic coupled landslides. 展开更多
关键词 Reservoir landslides Displacement prediction CNN LSTM Biological growth model
原文传递
Fast full-color pathological imaging using Fourier ptychographic microscopy via closed-form model-based colorization 被引量:2
18
作者 Yanqi Chen Jiurun Chen +4 位作者 Zhiping Wang Yuting Gao Yonghong He Yishi Shi An Pan 《Advanced Photonics Nexus》 2025年第2期7-16,共10页
Full-color imaging is essential in digital pathology for accurate tissue analysis.Utilizing advanced optical modulation and phase retrieval algorithms,Fourier ptychographic microscopy(FPM)offers a powerful solution fo... Full-color imaging is essential in digital pathology for accurate tissue analysis.Utilizing advanced optical modulation and phase retrieval algorithms,Fourier ptychographic microscopy(FPM)offers a powerful solution for high-throughput digital pathology,combining high resolution,large field of view,and extended depth of field(DOF).However,the full-color capabilities of FPM are hindered by coherent color artifacts and reduced computational efficiency,which significantly limits its practical applications.Color-transferbased FPM(CFPM)has emerged as a potential solution,theoretically reducing both acquisition and reconstruction threefold time.Yet,existing methods fall short of achieving the desired reconstruction speed and colorization quality.In this study,we report a generalized dual-color-space constrained model for FPM colorization.This model provides a mathematical framework for model-based FPM colorization,enabling a closed-form solution without the need for redundant iterative calculations.Our approach,termed generalized CFPM(gCFPM),achieves colorization within seconds for megapixel-scale images,delivering superior colorization quality in terms of both colorfulness and sharpness,along with an extended DOF.Both simulations and experiments demonstrate that gCFPM surpasses state-of-the-art methods across all evaluated criteria.Our work offers a robust and comprehensive workflow for high-throughput full-color pathological imaging using FPM platforms,laying a solid foundation for future advancements in methodology and engineering. 展开更多
关键词 Fourier ptychographic microscopy color transfer dual-color-space constrained model
在线阅读 下载PDF
Solubility and Thermodynamic Modeling of 3⁃Nitro⁃1,2,4⁃triazole⁃5⁃one(NTO)in Different Binary Solvents 被引量:1
19
作者 GUO Hao-qi YANG Yu-lin 《含能材料》 北大核心 2025年第3期295-303,共9页
Using a dynamic laser monitoring technique,the solubility of 3-nitro-1,2,4-triazole-5-one(NTO)was investigated in two different binary systems,namely hydroxylamine nitrate(HAN)-water and boric acid(HB)-water ranging f... Using a dynamic laser monitoring technique,the solubility of 3-nitro-1,2,4-triazole-5-one(NTO)was investigated in two different binary systems,namely hydroxylamine nitrate(HAN)-water and boric acid(HB)-water ranging from 278.15 K to 318.15 K.The solubility in each system was found to be positively correlated with temperature.Furthermore,solubility data were analyzed using four equations:the modified Apelblat equation,Van’t Hoff equation,λh equation and CNIBS/R-K equations,and they provided satisfactory results for both two systems.The average root-mean-square deviation(105RMSD)values for these models were less than 13.93.Calculations utilizing the Van’t Hoff equation and Gibbs equations facilitated the derivation of apparent thermodynamic properties of NTO dissolution in the two systems,including values for Gibbs free energy,enthalpy and entropy.The%ζ_(H)is larger than%ζ_(TS),and all the%ζ_(H)data are≥58.63%,indicating that the enthalpy make a greater contribution than entropy to theΔG_(soln)^(Θ). 展开更多
关键词 3-nitro-l 2 4-triazole-5-one(NTO) SOLUBILITY thermodynamic models apparent thermodynamic analysis
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部