To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content ...To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.展开更多
Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler ...Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects.展开更多
Two novel lanthanide complexes,[Sm_(2)(BA)_(6)(4-OH-terpy)_(2)]·2H_(2)O·2EtOH(1)and[Pr_(2)(BA)_(6)(4-OH-terpy)_(2)(H_(2)O)_(2)]·HBA·H_(2)O(2),where HBA=benzoic acid,4-OH-terpy=4-hydroxy-2,2'∶6...Two novel lanthanide complexes,[Sm_(2)(BA)_(6)(4-OH-terpy)_(2)]·2H_(2)O·2EtOH(1)and[Pr_(2)(BA)_(6)(4-OH-terpy)_(2)(H_(2)O)_(2)]·HBA·H_(2)O(2),where HBA=benzoic acid,4-OH-terpy=4-hydroxy-2,2'∶6',2″-terpyridine,were successfully synthesized using ultrasonic dissolution and the conventional solution method with two mixed ligands HBA and 4-OH-terpy.During the synthesis,4-OH-terpy was involved in the reaction as a neutral ligand,while HBA,in its deprotonated form(BA-),coordinated with the lanthanide ions as an acidic ligand.The crystal structures of these two complexes were precisely determined by single-crystal X-ray diffraction.Elemental analysis,infrared and Raman spectroscopy,and powder X-ray diffraction techniques were also employed to further explore the physicochemical properties of the two complexes.The single-crystal X-ray diffraction data indicate that,despite their structural differences,both complexes belong to the triclinic crystal system P1 space group.The central lanthanide ions have the same coordination number but exhibit different coordination environments.To comprehensively evaluate the thermal stability of these two complexes,comprehensive tests including thermogravimetric analysis,differential thermogravimetric analysis,differential scanning calorimetry,Fourier transform infrared spectroscopy,and mass spectrometry were conducted.Meanwhile,an in-depth investigation was conducted into the 3D infrared stacked images and mass spectra of the gases emitted from the complexes.In addition,studies of the fluorescence properties of complex1 showed that it exhibited fluorescence emission matching the Sm^(3+)characteristic transition.展开更多
γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the ...γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.展开更多
A buckling-restrained steel plate shear wall(BRSPSW)structure with butterfly-shaped links on the lateral sides is introduced to improve the cooperative perfor-mance between the BRSPSW and the boundary frames.A one-spa...A buckling-restrained steel plate shear wall(BRSPSW)structure with butterfly-shaped links on the lateral sides is introduced to improve the cooperative perfor-mance between the BRSPSW and the boundary frames.A one-span two-story concrete-filled steel tube(CFT)column frame specimen equipped with lateral-side butterfly-shaped linked BRSPSWs(LBL-BRSPSWs)is evaluated under low-cycle reversed loading.A finite element(FE)model is developed and validated based on the test results.This FE model accurately simulates the failure modes and load-dis-placement curves.Parametric analyses are conducted on the butterfly-shaped links.The results show that the interactions between the CFT column frame and LBL-BRSPSWs are sig-nificantly influenced by the width ratio of the butterfly-shaped links,while the taper ratio and aspect ratio have relatively minor influences.Compared with traditional steel shear walls with four-sided connections,LBL-BRSPSWs reduce the additional axial forces and bending moments in the frame columns by 28%to 73%and 17%to 87%,respectively,with only a 9%to 30%decrease in the lateral resistance.The experimental and parametric analysis results indicate that setting butterfly-shaped links on the lateral sides of BRSPSWs can significantly enhance their cooperative performance with the boundary frame.The butterfly-shaped link width ratio has a linear relationship with the lateral-resistance performance of the specimens and the additional internal forces in the frame columns.To ensure that LBL-BRSPSW fails prior to the column frames,the link width ratio should be optimized.展开更多
Controlled by the squeezing collision between the Yangtze block and the North China block and the left movement of the Tanlu fault, the Xu-Su region developed into an arc-shaped nappe structure, and many destructive e...Controlled by the squeezing collision between the Yangtze block and the North China block and the left movement of the Tanlu fault, the Xu-Su region developed into an arc-shaped nappe structure, and many destructive earthquakes occurred in its periphery. The geological structure of this area is complex, and there is the possibility of moderate and strong earthquakes. To further explore the crust density structure and identify the main faults and deep structural features in the Xu-Su region, based on the observed seismic data and gravity/GNSS co-site observation data, combined with the EGM2008 global gravity field model, we obtained the density of three-dimensional structure using cross gradient method joint inversion. Based on this, a geological model of the Xu-Su region was established. The results show that the crustal density anomaly amplitude within 0-25 km of the Xu-Su region ranges from-280 to 490 kg/m3, showing a zonal distribution in east-west direction and a segmented north-south direction. There are several density anomalies in the shallow(0-4 km) region at Tongshan, Huaibei, Xiayi, Woyang, etc. The density anomalies are significantly correlated with the distribution of regional faults. The density structure is divided into two large regions by Subei fault, which can be further divided along the eastwest Kouziji-Nanzhao fault and Guzhen-Huaiyuan fault. The earthquakes are obviously related to the regional fault activity and the spatial distribution of abnormal bodies. The earthquake-prone areas(5-15 km) correspond to the abnormal density mutation zone, upper uplift zone, and transformation zone near Xiaoxian, Tongshan, and Xushuanglou faults. The comprehensive results show three weak seismic activity areas in the whole region, which are located near the Huaibei, Xiaoxian, and Wohe faults. The results provide theoretical support for seismic risk analysis in this area, and these three areas should be emphasized in future seismic hazard analysis.展开更多
Pain-induced emotions are the negative moods caused by pain,such as depression and anxiety.Acupunc-ture can effectively relieve pain-induced emotions,and its mechanism is closely related to the regulation of neuroplas...Pain-induced emotions are the negative moods caused by pain,such as depression and anxiety.Acupunc-ture can effectively relieve pain-induced emotions,and its mechanism is closely related to the regulation of neuroplasticity.Neuroplasticity is composed of two types,functional neuroplasticity and structural neuroplasticity.(1)Acupuncture improves functional neuroplasticity by inhibiting the activation of mi-croglia and astrocytes,regulating the expression of neurotransmitters and receptors,modulating cellular signal transduction pathways,and optimizing synaptic transmission efficiency.(2)Acupuncture improves structural neuroplasticity by modulating neuronal synaptic plasticity,inhibiting neuronal apoptosis,and up-regulating the expression of the BDNF/TrKB/CREB signaling pathway.Additionally,acupuncture up-regulates the expression of brain-derived neurotrophic factors to improve both the functional and struc-tural neuroplasticity,thus relieves pain-induced emotions.The above discovery provides an approach to the mechanism research of acupuncture for pain-induced emotions.展开更多
There is a pressing need for high-performance,high-strength low-alloy structural(HSLA)steels in various engineering fields,such as hydraulic components,engineering machinery,bridges,ships,and pressure vessels.In this ...There is a pressing need for high-performance,high-strength low-alloy structural(HSLA)steels in various engineering fields,such as hydraulic components,engineering machinery,bridges,ships,and pressure vessels.In this study,a gradient dislocation-cell structure is introduced into an HSLA steel through ultrasonic severe surface rolling.The cell size is approximately 614 nm at the topmost surface layer,and increases with increasing the depth.Most of the cell walls have a misorientation ranging from 2°to 15°,indicating they belong to low angle grain boundaries(LAGBs),while some cell walls have a misorientation of less than 2°,corresponding to dense dislocation walls(DDWs).This unique gradient structure offers an exceptional combination of strength and ductility,with a high yield strength of 522.3±1.4 MPa and an accepted elongation of 25.5±1.7%.The morphology and size of the dislocation cells remain remarkably stable after uniaxial tension,demonstrating their efficacy as effective barriers hindering dislocation movement and thus enhancing strength and hardness.This gradient dislocation-cell structure facilitates inhomogeneous plastic deformation during uniaxial tensile loading,resulting in a pronounced accumulation of geometrically necessary dislocations(GNDs).These GNDs play a significant role in conferring favorable mechanical properties by inducing hetero-deformation-induced(HDI)strengthening effects and forest hardening effects.This study presents a promising avenue for achieving the desired mechanical properties in HSLA steel.展开更多
In this study,a novel Ce-based metal-organic framework(Ce-OFDC)was synthesized via the hydrothermal method.To enhance its photocatalytic antimicrobial properties,polymeric carbon nitride(PCN)was incorporated into the ...In this study,a novel Ce-based metal-organic framework(Ce-OFDC)was synthesized via the hydrothermal method.To enhance its photocatalytic antimicrobial properties,polymeric carbon nitride(PCN)was incorporated into the Ce-OFDC matrix,forming a CeOFDC/PCN composite material.Antibacterial assays demonstrated that Ce-OFDC/PCN had significant inhibitory effects on both Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus),achieving inhibition rates of 99.5%and 94.3%,respectively.Notably,the antibacterial performance of Ce-OFDC/PCN was superior to that of Ce-OFDC or PCN alone.Furthermore,photocurrent and electrical impedance scanning measurements demonstrated that the Ce-OFDC/PCN composites showed improved photocurrent response and superior efficiency in separating photogenerated electrons and holes.The photocurrent density of Ce-OFDC/PCN reached 120μA cm^(-2),which was 1.5 times higher than that of PCN(80μA cm^(-2))and 12 times higher than that of Ce-OFDC(10μA cm^(-2)).Electron paramagnetic resonance analysis indicated that reactive oxygen species played a crucial role in the antimicrobial process,with super oxide radicals(·O_(2)^(-))and hydroxyl radical(·OH)showing the most prominent influence.We conducted reactive oxygen species(ROS)scavenging experiments to further confirm this view.After adding glutathione(GSH)to remove all ROS,the antibacterial efficiency of Ce-OFDC/PCN decreased by about 40%.Adding D-mannitol to remove·OH reduced the inhibition rate to 54.7%,and adding superoxide dismutase(SOD)to remove·O_(2)^(-)reduced the inhibition rate to 65.4%.The Ce-OFDC/PCN heterostructure increased the separation efficiency of photogenerated electrons and holes,producing increased reactive oxygen species.That,in turn,contributed to the observed superior photocatalytic antibacterial performance.This research significantly advanced the development of metal-organic framework(MOF)-based materials and provided valuable insights into the design of antimicrobial photocatalysts.展开更多
Situated in the southwestern Pacific,the Tonga-Kermadec subduction zone is separated into two parts by the Louisvlle Ridge Seamount Chain(LRSC),i.e.,the Tanga subduction zone and the Kermadec subduction zone.Known for...Situated in the southwestern Pacific,the Tonga-Kermadec subduction zone is separated into two parts by the Louisvlle Ridge Seamount Chain(LRSC),i.e.,the Tanga subduction zone and the Kermadec subduction zone.Known for its vigorous volcanic activity,frequent large earthquakes,rapid plate subduction,and distinctive subducting plate morphology,this subduction zone provides valuable insights into its structures,dynamics,and associated geohazards.This study compiles geological and geophysical datasets in this region,including seismicity,focal mechanisms,seismic reflection and refraction profiles,and seismic tomography,to understand the relationship between lithospheric structures of the subduction system and associated seismicity-volcanic activities.Our analysis suggests that variations in overlying sediment thickness,subduction rate,and subduction angle significantly influence the lithospheric deformation processes within the Tonga-Kermadec subduction system.Furthermore,these factors contribute to the notable differences in seismicity and volcanism observed between the Tonga subduction zone and the Kermadec subduction zone.This study enhances our understanding of plate tectonics by providing insights into the interplay between subduction dynamics and lithospheric deformation,which are crucial for analyzing geological and geophysical behaviors in similar subduction environments.展开更多
Deep-buried tunnels traversing complex hydrogeological zones with clay-sand-filled structures are highly susceptible to water inrush hazards.High ground temperature,high in-situ stress,and highwater pressure render th...Deep-buried tunnels traversing complex hydrogeological zones with clay-sand-filled structures are highly susceptible to water inrush hazards.High ground temperature,high in-situ stress,and highwater pressure render these events a complex thermohydro-mechanical coupling problem.However,current research on water inrush often insufficiently investigates the multi-field coupled instability mechanisms within highly permeable filling media and frequently neglects the influence of temperature.This study aims to investigate the evolutionary mechanism of seepage instability in filling structures that trigger water inrush hazards under the complex conditions of deep-buried tunnels.Laboratory tests were conducted using a large-scale triaxial thermo-hydro-mechanical system,and a DEM-CFD coupled model was established to numerically simulate the seepage process.The influences of temperature,particle size distribution,and confining pressure were analyzed on the seepage characteristics of the filling media.By examining the variations in water inflow rate,discharged clay-sand particle mass,porosity and permeability,we analyzed the entire process of seepage behavior and instability evolution under the thermohydro-mechanical coupling effect.The results show that:(1)Temperature significantly affects water inflow,discharged particle mass,porosity,and permeability.Higher temperatures remarkably increase porosity and permeability,with the maximum permeability coefficient of filling media at 90℃being 1.6 times that at 45℃.(2)The Talbol power index exhibits a positive correlation with water inflow rate and discharged particle mass,while confining pressure is negatively correlated with water inflow rate.(3)For filling materials dominated by clay-sand particles or with favorable gradation,the seepage instability process exhibits distinct phase characteristics,with different stages reflected in changes in water inflow,porosity,and permeability.The experimental results are consistent with the numerical simulation results.(4)In high ground temperature environments,temperature enhances convective heat transfer and energy exchange between water and filling media,thereby accelerating the process of water inrush caused by seepage instability.The findings provide scientific support for risk assessment,early warning,and prevention of water inrush hazards in deep-buried tunnels crossing clay-sand-filled structures.展开更多
Coke is the only solid charge component in the lower part of the blast furnace,and its strength is crucial to its production.Si and Al are the two most abundant elements in coke ash.The influences of these oxides on t...Coke is the only solid charge component in the lower part of the blast furnace,and its strength is crucial to its production.Si and Al are the two most abundant elements in coke ash.The influences of these oxides on the tensile strength of the coke matrix were studied by splitting tests.According to the Weibull analysis,with increasing Si and Al oxide concentrations,the fracture stress range of the coke widened,the upper and lower limits decreased,the probability of fracture under the same stress conditions increased,and the randomness and dispersion of strength increased.These results can be attributed to the inhibitory effect of ash during coal pyrolysis.Ash impedes the growth and contact of mesophase,leading to a decrease in graphitic carbon structures and an increase in edge carbon and aliphatic carbon structures in the resulting coke.Consequently,the overall ordering of the carbon structure is reduced.Moreover,SiO_(2)and Al_(2)O_(3)promoted the development of coke pores,thinned the coke pore wall,and significantly increased the proportion of large pores(>500μm).Moreover,Al_(2)O_(3)had more significant influences on the coke strength,carbon structure and stomatal ratio than SiO_(2).In addition,the position where the ash particles bonded to the carbon matrix easily produced cracks and holes,and the sharp edge of the matrix was likely to produce stress concentration points when subjected to an external force,leading to structural damage.Therefore,controlling the concentration of ash could effectively reduce the number of structural defects inside coke,which is conducive to improving the strength.展开更多
High-overload shocks are very likely to cause damage to the microstructure of MEMS devices, especially the continuous multiple high-overload shocks generated by the penetration of the multilayer target environment pos...High-overload shocks are very likely to cause damage to the microstructure of MEMS devices, especially the continuous multiple high-overload shocks generated by the penetration of the multilayer target environment pose more stringent challenges to its protective structure. In this study, the kinetic response model of the protective structure under single-pulse and continuous double-pulse impact is established,and a continuous double-pulse high overload impact test impact platform based on the sleeve-type bullet is constructed, and the protective performance of the multi-layer structure under multi-pulse is analyzed based on the acceleration decay ratio, and the results show that the protective performance of the structure has a positive correlation with its thickness, and it is not sensitive to the change of the load of the first impact;the first impact under double-pulse impact will cause damage to the microstructure through the superposition of the second impact. The first impact under double-pulse impact will cause an increase in the overload amplitude of the second impact through superposition;compared with the single-layer structure, the acceleration attenuation ratio of the double-layer structure can be increased by up to 26.13%, among which the epoxy-polyurethane combination has the best protection performance, with an acceleration attenuation ratio of up to 44.68%. This work provides a robust theoretical foundation and experimental basis for the reliable operation of MEMS devices, as well as for the design of protective structures in extreme environments.展开更多
The electronic structure,elasticity,and magnetic properties of the Mn_(2)XIn(X=Fe,Co)full-Heusler compounds are comprehensively investigated via first-principles calculations.The calculated elastic constants indicate ...The electronic structure,elasticity,and magnetic properties of the Mn_(2)XIn(X=Fe,Co)full-Heusler compounds are comprehensively investigated via first-principles calculations.The calculated elastic constants indicate that both Mn_(2)FeIn and Mn_(2)Co In possess ductility.At the optimal lattice constants,the magnetic moments are found to be 1.40μB/f.u.for Mn_(2)FeIn and 1.69μB/f.u.for Mn_(2)CoIn.Under the biaxial strain ranging from-2%to 5%,Mn_(2)FeIn demonstrates a remarkable variation in the spin polarization,spanning from-2%to 74%,positioning it as a promising candidate for applications in spintronic devices.Analysis of the electronic structure reveals that the change in spin polarization under strain is due to the shift of the spin-down states at the Fermi surface.Additionally,under biaxial strain,the magnetic anisotropy of Mn_(2)FeIn undergoes a transition of easy-axis direction.Utilizing second-order perturbation theory and electronic structure analysis,the variation in magnetic anisotropy with strain can be attributed to changes of d-orbital states near the Fermi surface.展开更多
The acetylpolyamine oxidase(APAO),spermine oxidase(SMO),and spermidine/spermine N1-acetyltransferase(SSAT)are pivotal enzymes in polyamine metabolism,exerting direct influence on polyamine homeostasis regulation.Dysfu...The acetylpolyamine oxidase(APAO),spermine oxidase(SMO),and spermidine/spermine N1-acetyltransferase(SSAT)are pivotal enzymes in polyamine metabolism,exerting direct influence on polyamine homeostasis regulation.Dysfunctions in these enzymes are intricately linked to inflammatory diseases and cancers.Establishing their three-dimensional structures is essential for exploring enzymatic catalytic mechanisms and designing inhibitors at the atomic level.This article primarily assesses the precision of AlphaFold2 and molecular dynamics simulations in determining the three-dimensional structures of these enzymes,utilizing protein conformation rationality assessment,residue correlation matrix,and other techniques.This provides robust models for subsequent polyamine catabolic metabolism calculations and offers valuable insights for modeling proteins that have yet to acquire crystal structures.展开更多
The coastal region of Fujian contains numerous existing stone masonry structures,many of which are constructed on soft soil sites.Previous studies have shown that the soil-structure interaction(SSI)effect on soft soil...The coastal region of Fujian contains numerous existing stone masonry structures,many of which are constructed on soft soil sites.Previous studies have shown that the soil-structure interaction(SSI)effect on soft soil foundations can prolong the structure's natural vibration period and enhance its seismic response.We develops a soilstructure interaction system model and a comparative rigid foundation model using the finite element software LS-DYNA to investigate the impact of SSI on the dynamic characteristics and seismic response of stone structures.The results indicate that the SSI effect alters stone structures'dynamic properties and seismic response.This alteration is evident in the extended natural vibration period,which reduces overall stiffness,increases interstory displacement angles,and slightly decreases the acceleration response.Under both SSI and FIX systems,the structural failure mode is characterized by the external collapse of the second-story stone walls,which causes the roof stone slabs to lose support and fall,leading to overall collapse.The FIX system demonstrates better structural integrity and stability with slower crack development.In contrast,the SSI system exhibits cracks that appear earlier and develop more rapidly,causing more severe damage.The research findings provide a theoretical basis for the seismic reinforcement of existing stone structures on soft soil foundations.展开更多
As the second most important solid waste produced by coal-fired power plants,the improper management of coal-fired slag has the potential to result in environmental pollution.It is therefore imperative that high-value...As the second most important solid waste produced by coal-fired power plants,the improper management of coal-fired slag has the potential to result in environmental pollution.It is therefore imperative that high-value utilization pathways for coal-fired slag should be developed.In this study,modified magnesium slag(MMS),produced by a magnesium smelter,was selected as the alkali activator.The activated silica-aluminum solid wastes,namely coal-fired slag(CFS)and mineral powder(MP),were employed as pozzolanic materials in the preparation of alkali-activated cementitious materials.The alkali-activated cementitious materials prepared with 50 wt%MMS,40 wt%CFS and 10 wt%MP exhibited favorable mechanical properties,with a compressive strength of 32.804 MPa in the paste sample cured for 28 d.Then,the activated silica-aluminum solid waste consisting of CFS-MP generated a significant amount of C-S(A)-H gels,AFt,and other products,which were observed to occupy the pore structure of the specimen.In addition,the secondary hydration reaction of CFS-MP occurs in high alkalinity environments,resulting in the formation of a mutually stimulated and promoted reaction system between CFS-MP and MMS,this will subsequently accelerate the hydrolysis reaction of MMS.It is important to emphasize that the amount of MMS in alkali-activated cementitious materials must be strictly regulated to avert the potential issue of incomplete depolymerization-repolymerization of active silica-aluminum solid waste containing CFS-MP.This in turn could have a deleterious impact on the late strength of the cementitious materials.The aim of this work is to improve the joint disposal of MMS,CFS and MP and thereby provide a scientific basis for the development of environmentally friendly and low-carbon modified magnesium slag alkali-activated coal-fired slag based cementitious materials for mine backfilling.展开更多
Changes in the intestinal immune micro-environment of the gastrointestinal tract are indispensable in the occurrence and development of gastrointestinal cancer.Tertiary lymphoid structure(TLS)is an immune cell aggrega...Changes in the intestinal immune micro-environment of the gastrointestinal tract are indispensable in the occurrence and development of gastrointestinal cancer.Tertiary lymphoid structure(TLS)is an immune cell aggregation structure found around gastrointestinal cancer in recent years.More and more research proves that tertiary lymphoid structure plays a key biological role and clinical value in disease progression,patient prognosis,and adjuvant treatment.This review aims to explore the research progress,biological significance,and potential clinical applications of TLSs in gastrointestinal tumors.The formation,development,and interaction of TLSs with tumor microenvironment have been reviewed and analyzed in recent years.Meanwhile,this review not only evaluates the clinical value of TLSs as prognostic biomarkers and predictors of treatment response but also explores their role in guiding the formulation of immunotherapy strategies for gastrointestinal tumors.In addition,this review points out the main problems in the current research of TLSs and looks forward to their future development,especially their broad application prospects in the diagnosis,treatment,and prognostic evaluation of gastrointestinal tumors.展开更多
Advanced chemical engineering for simultaneous modulation of nanomaterial morphology, defects, interfaces, and structure to enhance electromagnetic and microwave absorption (MA) performance. However, accurately distin...Advanced chemical engineering for simultaneous modulation of nanomaterial morphology, defects, interfaces, and structure to enhance electromagnetic and microwave absorption (MA) performance. However, accurately distinguishing the MA contributions of different scale factors and tuning the optimal combined effects remains a formidable challenge. This study employs a synergistic approach combining template protection etching and vacuum annealing to construct a controlled system of micrometer-sized cavities and amorphous carbon matrices in metal-organic framework (MOF) derivatives. The results demonstrate that the spatial effects introduced by the hollow structure enhance dielectric loss but significantly weaken impedance matching. By increasing the proportion of amorphous carbon, the balance between electromagnetic loss and impedance matching can be effectively maintained. Importantly, in a suitable graphitization environment, the presence of oxygen vacancies in amorphous carbon can induce significant polarization to compensate for the reduced conductivity loss due to the absence of sp2 carbon. Through the synergistic effects of morphology and composition, the samples exhibit a broader absorption bandwidth (6.28 GHz) and stronger reflection loss (−61.64 dB) compared to the original MOF. In conclusion, this study aims to elucidate the multiscale impacts of macroscopic micro-nano structure and microscopic defect engineering, providing valuable insights for future research in this field.展开更多
On April 3,2024,an M 7.3 earthquake occurred in the offshore area of Hualien County,Taiwan,China.The seismogenic structure at the epicentral location was highly complex,and studying this earthquake is paramount for un...On April 3,2024,an M 7.3 earthquake occurred in the offshore area of Hualien County,Taiwan,China.The seismogenic structure at the epicentral location was highly complex,and studying this earthquake is paramount for understanding regional fault activity.In this study,we employed ascending and descending orbit Sentinel-1 Synthetic Aperture Radar(SAR)data and utilized differential interferometry(InSAR)technique to obtain the co-seismic deformation field of this event.The line-of-sight deformation field revealed that the main deformation caused by this earthquake was predominantly uplift,with maximum uplift values of approximately 38.8 cm and 46.1 cm for the ascending and descending orbits,respectively.By integrating the three-dimensional GNSS coseismic deformation field,we identified the seismogenic fault located in the offshore thrust zone east of Hualien,trending towards the northwest.The fault geometry parameters,obtained through the inversion of an elastic half-space homogeneous model,indicated an optimal fault strike of 196°,a dip angle of 30.9°,and an average strike-slip of 0.4 m and dip-slip of-2.6 m.This suggests that the predominant motion along the seismogenic fault is thrusting.The distribution of post-seismic Coulomb stress changes revealed that aftershocks mainly occurred in stress-loaded regions.However,stress loading was observed along the northern segment of the Longitudinal Valley Fault,with fewer aftershocks.This highlights the importance of closely monitoring the seismic hazard associated with this fault segment.展开更多
基金Supported by the Science and Technology Cooperation and Exchange special project of Cooperation of Shanxi Province(202404041101014)the Fundamental Research Program of Shanxi Province(202403021212333)+3 种基金the Joint Funds of the National Natural Science Foundation of China(U24A20555)the Lvliang Key R&D of University-Local Cooperation(2023XDHZ10)the Initiation Fund for Doctoral Research of Taiyuan University of Science and Technology(20242026)the Outstanding Doctor Funding Award of Shanxi Province(20242080).
文摘To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.
基金National Natural Science Foundation of China(U22A20191)。
文摘Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects.
文摘Two novel lanthanide complexes,[Sm_(2)(BA)_(6)(4-OH-terpy)_(2)]·2H_(2)O·2EtOH(1)and[Pr_(2)(BA)_(6)(4-OH-terpy)_(2)(H_(2)O)_(2)]·HBA·H_(2)O(2),where HBA=benzoic acid,4-OH-terpy=4-hydroxy-2,2'∶6',2″-terpyridine,were successfully synthesized using ultrasonic dissolution and the conventional solution method with two mixed ligands HBA and 4-OH-terpy.During the synthesis,4-OH-terpy was involved in the reaction as a neutral ligand,while HBA,in its deprotonated form(BA-),coordinated with the lanthanide ions as an acidic ligand.The crystal structures of these two complexes were precisely determined by single-crystal X-ray diffraction.Elemental analysis,infrared and Raman spectroscopy,and powder X-ray diffraction techniques were also employed to further explore the physicochemical properties of the two complexes.The single-crystal X-ray diffraction data indicate that,despite their structural differences,both complexes belong to the triclinic crystal system P1 space group.The central lanthanide ions have the same coordination number but exhibit different coordination environments.To comprehensively evaluate the thermal stability of these two complexes,comprehensive tests including thermogravimetric analysis,differential thermogravimetric analysis,differential scanning calorimetry,Fourier transform infrared spectroscopy,and mass spectrometry were conducted.Meanwhile,an in-depth investigation was conducted into the 3D infrared stacked images and mass spectra of the gases emitted from the complexes.In addition,studies of the fluorescence properties of complex1 showed that it exhibited fluorescence emission matching the Sm^(3+)characteristic transition.
基金supported in part by Award 2121063 from National Science Foundation(to YM)AG66986 from the National Institutes of Health(to MSW).
文摘γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.
基金The National Key Research and Development Program of China(No.2023YFC3805005)Shanghai Municipal Science and Technology Commission Research Program(No.22DZ1201404).
文摘A buckling-restrained steel plate shear wall(BRSPSW)structure with butterfly-shaped links on the lateral sides is introduced to improve the cooperative perfor-mance between the BRSPSW and the boundary frames.A one-span two-story concrete-filled steel tube(CFT)column frame specimen equipped with lateral-side butterfly-shaped linked BRSPSWs(LBL-BRSPSWs)is evaluated under low-cycle reversed loading.A finite element(FE)model is developed and validated based on the test results.This FE model accurately simulates the failure modes and load-dis-placement curves.Parametric analyses are conducted on the butterfly-shaped links.The results show that the interactions between the CFT column frame and LBL-BRSPSWs are sig-nificantly influenced by the width ratio of the butterfly-shaped links,while the taper ratio and aspect ratio have relatively minor influences.Compared with traditional steel shear walls with four-sided connections,LBL-BRSPSWs reduce the additional axial forces and bending moments in the frame columns by 28%to 73%and 17%to 87%,respectively,with only a 9%to 30%decrease in the lateral resistance.The experimental and parametric analysis results indicate that setting butterfly-shaped links on the lateral sides of BRSPSWs can significantly enhance their cooperative performance with the boundary frame.The butterfly-shaped link width ratio has a linear relationship with the lateral-resistance performance of the specimens and the additional internal forces in the frame columns.To ensure that LBL-BRSPSW fails prior to the column frames,the link width ratio should be optimized.
基金funded by the National Natural Science Foundation of China(No.42174104,No.42204089)the Hubei Provincial Natural Science Foundation of China(2022CFB350)+1 种基金the Basic Research Fund of Institute of Seismology,China Earthquake Administration(IS202326341)Open Fund ofWuhan,Gravitation and Solid Earth Tides,National Observation and Research Station(WHYWZ202108,WHYWZ202301)。
文摘Controlled by the squeezing collision between the Yangtze block and the North China block and the left movement of the Tanlu fault, the Xu-Su region developed into an arc-shaped nappe structure, and many destructive earthquakes occurred in its periphery. The geological structure of this area is complex, and there is the possibility of moderate and strong earthquakes. To further explore the crust density structure and identify the main faults and deep structural features in the Xu-Su region, based on the observed seismic data and gravity/GNSS co-site observation data, combined with the EGM2008 global gravity field model, we obtained the density of three-dimensional structure using cross gradient method joint inversion. Based on this, a geological model of the Xu-Su region was established. The results show that the crustal density anomaly amplitude within 0-25 km of the Xu-Su region ranges from-280 to 490 kg/m3, showing a zonal distribution in east-west direction and a segmented north-south direction. There are several density anomalies in the shallow(0-4 km) region at Tongshan, Huaibei, Xiayi, Woyang, etc. The density anomalies are significantly correlated with the distribution of regional faults. The density structure is divided into two large regions by Subei fault, which can be further divided along the eastwest Kouziji-Nanzhao fault and Guzhen-Huaiyuan fault. The earthquakes are obviously related to the regional fault activity and the spatial distribution of abnormal bodies. The earthquake-prone areas(5-15 km) correspond to the abnormal density mutation zone, upper uplift zone, and transformation zone near Xiaoxian, Tongshan, and Xushuanglou faults. The comprehensive results show three weak seismic activity areas in the whole region, which are located near the Huaibei, Xiaoxian, and Wohe faults. The results provide theoretical support for seismic risk analysis in this area, and these three areas should be emphasized in future seismic hazard analysis.
基金Supported by 2025 Gansu Provincial College Teachers'Innovation Fund Project:2025A-1042023 Gansu Provincial Key Talent Project:Gan Group General Word[2023]No.20+2 种基金2025 Gansu Postgraduates'"Innovative Star"Project:2025CXZX-9362023 Key Project of Scientific Research and Innovation Fund of Gansu University of Traditional Chinese Medicine:2023KCZD-6Graduate Student Innovation and Entrepreneurship Fund Project of Gansu University of Traditional Chinese Medicine:2025CXCY-001。
文摘Pain-induced emotions are the negative moods caused by pain,such as depression and anxiety.Acupunc-ture can effectively relieve pain-induced emotions,and its mechanism is closely related to the regulation of neuroplasticity.Neuroplasticity is composed of two types,functional neuroplasticity and structural neuroplasticity.(1)Acupuncture improves functional neuroplasticity by inhibiting the activation of mi-croglia and astrocytes,regulating the expression of neurotransmitters and receptors,modulating cellular signal transduction pathways,and optimizing synaptic transmission efficiency.(2)Acupuncture improves structural neuroplasticity by modulating neuronal synaptic plasticity,inhibiting neuronal apoptosis,and up-regulating the expression of the BDNF/TrKB/CREB signaling pathway.Additionally,acupuncture up-regulates the expression of brain-derived neurotrophic factors to improve both the functional and struc-tural neuroplasticity,thus relieves pain-induced emotions.The above discovery provides an approach to the mechanism research of acupuncture for pain-induced emotions.
基金Supported by National Natural Science Foundation of China(Grant No.U1910212)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘There is a pressing need for high-performance,high-strength low-alloy structural(HSLA)steels in various engineering fields,such as hydraulic components,engineering machinery,bridges,ships,and pressure vessels.In this study,a gradient dislocation-cell structure is introduced into an HSLA steel through ultrasonic severe surface rolling.The cell size is approximately 614 nm at the topmost surface layer,and increases with increasing the depth.Most of the cell walls have a misorientation ranging from 2°to 15°,indicating they belong to low angle grain boundaries(LAGBs),while some cell walls have a misorientation of less than 2°,corresponding to dense dislocation walls(DDWs).This unique gradient structure offers an exceptional combination of strength and ductility,with a high yield strength of 522.3±1.4 MPa and an accepted elongation of 25.5±1.7%.The morphology and size of the dislocation cells remain remarkably stable after uniaxial tension,demonstrating their efficacy as effective barriers hindering dislocation movement and thus enhancing strength and hardness.This gradient dislocation-cell structure facilitates inhomogeneous plastic deformation during uniaxial tensile loading,resulting in a pronounced accumulation of geometrically necessary dislocations(GNDs).These GNDs play a significant role in conferring favorable mechanical properties by inducing hetero-deformation-induced(HDI)strengthening effects and forest hardening effects.This study presents a promising avenue for achieving the desired mechanical properties in HSLA steel.
基金financially supported by the Youth Fund of the National Natural Science Foundation of China(No.22406161)“Lvyang Jinfeng Project”Funded by Yangzhou City(No.137013435)+2 种基金the Innovative Science and Technology Platform Project of Cooperation between Yangzhou City and Yangzhou Universitythe Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX23_1910)JST ACT-C program of Japan
文摘In this study,a novel Ce-based metal-organic framework(Ce-OFDC)was synthesized via the hydrothermal method.To enhance its photocatalytic antimicrobial properties,polymeric carbon nitride(PCN)was incorporated into the Ce-OFDC matrix,forming a CeOFDC/PCN composite material.Antibacterial assays demonstrated that Ce-OFDC/PCN had significant inhibitory effects on both Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus),achieving inhibition rates of 99.5%and 94.3%,respectively.Notably,the antibacterial performance of Ce-OFDC/PCN was superior to that of Ce-OFDC or PCN alone.Furthermore,photocurrent and electrical impedance scanning measurements demonstrated that the Ce-OFDC/PCN composites showed improved photocurrent response and superior efficiency in separating photogenerated electrons and holes.The photocurrent density of Ce-OFDC/PCN reached 120μA cm^(-2),which was 1.5 times higher than that of PCN(80μA cm^(-2))and 12 times higher than that of Ce-OFDC(10μA cm^(-2)).Electron paramagnetic resonance analysis indicated that reactive oxygen species played a crucial role in the antimicrobial process,with super oxide radicals(·O_(2)^(-))and hydroxyl radical(·OH)showing the most prominent influence.We conducted reactive oxygen species(ROS)scavenging experiments to further confirm this view.After adding glutathione(GSH)to remove all ROS,the antibacterial efficiency of Ce-OFDC/PCN decreased by about 40%.Adding D-mannitol to remove·OH reduced the inhibition rate to 54.7%,and adding superoxide dismutase(SOD)to remove·O_(2)^(-)reduced the inhibition rate to 65.4%.The Ce-OFDC/PCN heterostructure increased the separation efficiency of photogenerated electrons and holes,producing increased reactive oxygen species.That,in turn,contributed to the observed superior photocatalytic antibacterial performance.This research significantly advanced the development of metal-organic framework(MOF)-based materials and provided valuable insights into the design of antimicrobial photocatalysts.
基金supported by Special Projects in Universities’Key Fields of Guangdong Province(No.2023ZDZX3017)the 2022 Tertiary Education Scientific Research Project of Guangzhou Municipal Education Bureau(No.202234607)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2025A1515012983)the National Natural Science Foundation of China(Nos.52371059 and 52101358).
文摘Situated in the southwestern Pacific,the Tonga-Kermadec subduction zone is separated into two parts by the Louisvlle Ridge Seamount Chain(LRSC),i.e.,the Tanga subduction zone and the Kermadec subduction zone.Known for its vigorous volcanic activity,frequent large earthquakes,rapid plate subduction,and distinctive subducting plate morphology,this subduction zone provides valuable insights into its structures,dynamics,and associated geohazards.This study compiles geological and geophysical datasets in this region,including seismicity,focal mechanisms,seismic reflection and refraction profiles,and seismic tomography,to understand the relationship between lithospheric structures of the subduction system and associated seismicity-volcanic activities.Our analysis suggests that variations in overlying sediment thickness,subduction rate,and subduction angle significantly influence the lithospheric deformation processes within the Tonga-Kermadec subduction system.Furthermore,these factors contribute to the notable differences in seismicity and volcanism observed between the Tonga subduction zone and the Kermadec subduction zone.This study enhances our understanding of plate tectonics by providing insights into the interplay between subduction dynamics and lithospheric deformation,which are crucial for analyzing geological and geophysical behaviors in similar subduction environments.
基金funded by National Natural Science Foundation of China(Grant No.52278404)Taishan Young Scholar Program of Shandong Province(Grant No.tsqn202103002),which collectively funded this project。
文摘Deep-buried tunnels traversing complex hydrogeological zones with clay-sand-filled structures are highly susceptible to water inrush hazards.High ground temperature,high in-situ stress,and highwater pressure render these events a complex thermohydro-mechanical coupling problem.However,current research on water inrush often insufficiently investigates the multi-field coupled instability mechanisms within highly permeable filling media and frequently neglects the influence of temperature.This study aims to investigate the evolutionary mechanism of seepage instability in filling structures that trigger water inrush hazards under the complex conditions of deep-buried tunnels.Laboratory tests were conducted using a large-scale triaxial thermo-hydro-mechanical system,and a DEM-CFD coupled model was established to numerically simulate the seepage process.The influences of temperature,particle size distribution,and confining pressure were analyzed on the seepage characteristics of the filling media.By examining the variations in water inflow rate,discharged clay-sand particle mass,porosity and permeability,we analyzed the entire process of seepage behavior and instability evolution under the thermohydro-mechanical coupling effect.The results show that:(1)Temperature significantly affects water inflow,discharged particle mass,porosity,and permeability.Higher temperatures remarkably increase porosity and permeability,with the maximum permeability coefficient of filling media at 90℃being 1.6 times that at 45℃.(2)The Talbol power index exhibits a positive correlation with water inflow rate and discharged particle mass,while confining pressure is negatively correlated with water inflow rate.(3)For filling materials dominated by clay-sand particles or with favorable gradation,the seepage instability process exhibits distinct phase characteristics,with different stages reflected in changes in water inflow,porosity,and permeability.The experimental results are consistent with the numerical simulation results.(4)In high ground temperature environments,temperature enhances convective heat transfer and energy exchange between water and filling media,thereby accelerating the process of water inrush caused by seepage instability.The findings provide scientific support for risk assessment,early warning,and prevention of water inrush hazards in deep-buried tunnels crossing clay-sand-filled structures.
基金supported by the National Natural Science Foundation of China(No.51974212)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202116)+2 种基金the Science and Technology Major Project of Wuhan(No.2023020302020572)the Postdoctor Project of Hubei Province(No.2024HBBHCXA074)the Foundation of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education(No.FMRUlab23-04).
文摘Coke is the only solid charge component in the lower part of the blast furnace,and its strength is crucial to its production.Si and Al are the two most abundant elements in coke ash.The influences of these oxides on the tensile strength of the coke matrix were studied by splitting tests.According to the Weibull analysis,with increasing Si and Al oxide concentrations,the fracture stress range of the coke widened,the upper and lower limits decreased,the probability of fracture under the same stress conditions increased,and the randomness and dispersion of strength increased.These results can be attributed to the inhibitory effect of ash during coal pyrolysis.Ash impedes the growth and contact of mesophase,leading to a decrease in graphitic carbon structures and an increase in edge carbon and aliphatic carbon structures in the resulting coke.Consequently,the overall ordering of the carbon structure is reduced.Moreover,SiO_(2)and Al_(2)O_(3)promoted the development of coke pores,thinned the coke pore wall,and significantly increased the proportion of large pores(>500μm).Moreover,Al_(2)O_(3)had more significant influences on the coke strength,carbon structure and stomatal ratio than SiO_(2).In addition,the position where the ash particles bonded to the carbon matrix easily produced cracks and holes,and the sharp edge of the matrix was likely to produce stress concentration points when subjected to an external force,leading to structural damage.Therefore,controlling the concentration of ash could effectively reduce the number of structural defects inside coke,which is conducive to improving the strength.
基金supported by Fund of the National Natural Science Foundation of China (Grant No. 52375553)。
文摘High-overload shocks are very likely to cause damage to the microstructure of MEMS devices, especially the continuous multiple high-overload shocks generated by the penetration of the multilayer target environment pose more stringent challenges to its protective structure. In this study, the kinetic response model of the protective structure under single-pulse and continuous double-pulse impact is established,and a continuous double-pulse high overload impact test impact platform based on the sleeve-type bullet is constructed, and the protective performance of the multi-layer structure under multi-pulse is analyzed based on the acceleration decay ratio, and the results show that the protective performance of the structure has a positive correlation with its thickness, and it is not sensitive to the change of the load of the first impact;the first impact under double-pulse impact will cause damage to the microstructure through the superposition of the second impact. The first impact under double-pulse impact will cause an increase in the overload amplitude of the second impact through superposition;compared with the single-layer structure, the acceleration attenuation ratio of the double-layer structure can be increased by up to 26.13%, among which the epoxy-polyurethane combination has the best protection performance, with an acceleration attenuation ratio of up to 44.68%. This work provides a robust theoretical foundation and experimental basis for the reliable operation of MEMS devices, as well as for the design of protective structures in extreme environments.
基金Project supported by the Fundamental Research Funds for the Provincial Universities of Zhejiang Province,China(Grant No.GK229909299001-05)Zhejiang Provincial Public Welfare Projects of China(Grant No.LGG22F030017)。
文摘The electronic structure,elasticity,and magnetic properties of the Mn_(2)XIn(X=Fe,Co)full-Heusler compounds are comprehensively investigated via first-principles calculations.The calculated elastic constants indicate that both Mn_(2)FeIn and Mn_(2)Co In possess ductility.At the optimal lattice constants,the magnetic moments are found to be 1.40μB/f.u.for Mn_(2)FeIn and 1.69μB/f.u.for Mn_(2)CoIn.Under the biaxial strain ranging from-2%to 5%,Mn_(2)FeIn demonstrates a remarkable variation in the spin polarization,spanning from-2%to 74%,positioning it as a promising candidate for applications in spintronic devices.Analysis of the electronic structure reveals that the change in spin polarization under strain is due to the shift of the spin-down states at the Fermi surface.Additionally,under biaxial strain,the magnetic anisotropy of Mn_(2)FeIn undergoes a transition of easy-axis direction.Utilizing second-order perturbation theory and electronic structure analysis,the variation in magnetic anisotropy with strain can be attributed to changes of d-orbital states near the Fermi surface.
基金National Natural Science Foundation of China(22073023)Natural Science Foundation of Henan Province(242300421134)+1 种基金the Young Backbone Teacher in Colleges and Universities of Henan Province(2021GGJS020)Foundation of State Key Laboratory of Antiviral Drugs。
文摘The acetylpolyamine oxidase(APAO),spermine oxidase(SMO),and spermidine/spermine N1-acetyltransferase(SSAT)are pivotal enzymes in polyamine metabolism,exerting direct influence on polyamine homeostasis regulation.Dysfunctions in these enzymes are intricately linked to inflammatory diseases and cancers.Establishing their three-dimensional structures is essential for exploring enzymatic catalytic mechanisms and designing inhibitors at the atomic level.This article primarily assesses the precision of AlphaFold2 and molecular dynamics simulations in determining the three-dimensional structures of these enzymes,utilizing protein conformation rationality assessment,residue correlation matrix,and other techniques.This provides robust models for subsequent polyamine catabolic metabolism calculations and offers valuable insights for modeling proteins that have yet to acquire crystal structures.
基金jointly sponsored by Fujian Province construction science and technology development research project(2023-B-07,2023-K-47,2022-K-118)。
文摘The coastal region of Fujian contains numerous existing stone masonry structures,many of which are constructed on soft soil sites.Previous studies have shown that the soil-structure interaction(SSI)effect on soft soil foundations can prolong the structure's natural vibration period and enhance its seismic response.We develops a soilstructure interaction system model and a comparative rigid foundation model using the finite element software LS-DYNA to investigate the impact of SSI on the dynamic characteristics and seismic response of stone structures.The results indicate that the SSI effect alters stone structures'dynamic properties and seismic response.This alteration is evident in the extended natural vibration period,which reduces overall stiffness,increases interstory displacement angles,and slightly decreases the acceleration response.Under both SSI and FIX systems,the structural failure mode is characterized by the external collapse of the second-story stone walls,which causes the roof stone slabs to lose support and fall,leading to overall collapse.The FIX system demonstrates better structural integrity and stability with slower crack development.In contrast,the SSI system exhibits cracks that appear earlier and develop more rapidly,causing more severe damage.The research findings provide a theoretical basis for the seismic reinforcement of existing stone structures on soft soil foundations.
基金Projects(52222404,52074212)supported by the National Natural Science Foundation of ChinaProject(2023-LL-QY-07)supported by the Two-chain Integration Key Projects in Shaanxi Province,China。
文摘As the second most important solid waste produced by coal-fired power plants,the improper management of coal-fired slag has the potential to result in environmental pollution.It is therefore imperative that high-value utilization pathways for coal-fired slag should be developed.In this study,modified magnesium slag(MMS),produced by a magnesium smelter,was selected as the alkali activator.The activated silica-aluminum solid wastes,namely coal-fired slag(CFS)and mineral powder(MP),were employed as pozzolanic materials in the preparation of alkali-activated cementitious materials.The alkali-activated cementitious materials prepared with 50 wt%MMS,40 wt%CFS and 10 wt%MP exhibited favorable mechanical properties,with a compressive strength of 32.804 MPa in the paste sample cured for 28 d.Then,the activated silica-aluminum solid waste consisting of CFS-MP generated a significant amount of C-S(A)-H gels,AFt,and other products,which were observed to occupy the pore structure of the specimen.In addition,the secondary hydration reaction of CFS-MP occurs in high alkalinity environments,resulting in the formation of a mutually stimulated and promoted reaction system between CFS-MP and MMS,this will subsequently accelerate the hydrolysis reaction of MMS.It is important to emphasize that the amount of MMS in alkali-activated cementitious materials must be strictly regulated to avert the potential issue of incomplete depolymerization-repolymerization of active silica-aluminum solid waste containing CFS-MP.This in turn could have a deleterious impact on the late strength of the cementitious materials.The aim of this work is to improve the joint disposal of MMS,CFS and MP and thereby provide a scientific basis for the development of environmentally friendly and low-carbon modified magnesium slag alkali-activated coal-fired slag based cementitious materials for mine backfilling.
文摘Changes in the intestinal immune micro-environment of the gastrointestinal tract are indispensable in the occurrence and development of gastrointestinal cancer.Tertiary lymphoid structure(TLS)is an immune cell aggregation structure found around gastrointestinal cancer in recent years.More and more research proves that tertiary lymphoid structure plays a key biological role and clinical value in disease progression,patient prognosis,and adjuvant treatment.This review aims to explore the research progress,biological significance,and potential clinical applications of TLSs in gastrointestinal tumors.The formation,development,and interaction of TLSs with tumor microenvironment have been reviewed and analyzed in recent years.Meanwhile,this review not only evaluates the clinical value of TLSs as prognostic biomarkers and predictors of treatment response but also explores their role in guiding the formulation of immunotherapy strategies for gastrointestinal tumors.In addition,this review points out the main problems in the current research of TLSs and looks forward to their future development,especially their broad application prospects in the diagnosis,treatment,and prognostic evaluation of gastrointestinal tumors.
基金supported by the National Natural Science Foundation of China(52172091,52172295)Defense Industrial Technology Development Program(JCKY2023605C002)+4 种基金Frontier Leading Technology Basic Research Major Project of Jiangsu Province(SBK2023050110)the National Key Laboratory on Electromagnetic Environmental Effects and Electro-optical Engineering(NO.61422062301)the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory(ZHD202305)the Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology(ASMA202303)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_0371).
文摘Advanced chemical engineering for simultaneous modulation of nanomaterial morphology, defects, interfaces, and structure to enhance electromagnetic and microwave absorption (MA) performance. However, accurately distinguishing the MA contributions of different scale factors and tuning the optimal combined effects remains a formidable challenge. This study employs a synergistic approach combining template protection etching and vacuum annealing to construct a controlled system of micrometer-sized cavities and amorphous carbon matrices in metal-organic framework (MOF) derivatives. The results demonstrate that the spatial effects introduced by the hollow structure enhance dielectric loss but significantly weaken impedance matching. By increasing the proportion of amorphous carbon, the balance between electromagnetic loss and impedance matching can be effectively maintained. Importantly, in a suitable graphitization environment, the presence of oxygen vacancies in amorphous carbon can induce significant polarization to compensate for the reduced conductivity loss due to the absence of sp2 carbon. Through the synergistic effects of morphology and composition, the samples exhibit a broader absorption bandwidth (6.28 GHz) and stronger reflection loss (−61.64 dB) compared to the original MOF. In conclusion, this study aims to elucidate the multiscale impacts of macroscopic micro-nano structure and microscopic defect engineering, providing valuable insights for future research in this field.
基金supported by Shaanxi Province Natural Science Foundation Research Program[Grant number 2023JC-QN-0296]。
文摘On April 3,2024,an M 7.3 earthquake occurred in the offshore area of Hualien County,Taiwan,China.The seismogenic structure at the epicentral location was highly complex,and studying this earthquake is paramount for understanding regional fault activity.In this study,we employed ascending and descending orbit Sentinel-1 Synthetic Aperture Radar(SAR)data and utilized differential interferometry(InSAR)technique to obtain the co-seismic deformation field of this event.The line-of-sight deformation field revealed that the main deformation caused by this earthquake was predominantly uplift,with maximum uplift values of approximately 38.8 cm and 46.1 cm for the ascending and descending orbits,respectively.By integrating the three-dimensional GNSS coseismic deformation field,we identified the seismogenic fault located in the offshore thrust zone east of Hualien,trending towards the northwest.The fault geometry parameters,obtained through the inversion of an elastic half-space homogeneous model,indicated an optimal fault strike of 196°,a dip angle of 30.9°,and an average strike-slip of 0.4 m and dip-slip of-2.6 m.This suggests that the predominant motion along the seismogenic fault is thrusting.The distribution of post-seismic Coulomb stress changes revealed that aftershocks mainly occurred in stress-loaded regions.However,stress loading was observed along the northern segment of the Longitudinal Valley Fault,with fewer aftershocks.This highlights the importance of closely monitoring the seismic hazard associated with this fault segment.