Xiamen,China-June 22-25,2025-The 2nd International Symposium on AI for Electrochemistry(iSAIEC 2025)was grandly held at Xiamen University.The International Society of Electrochemistry(ISE)first joining as a co-organiz...Xiamen,China-June 22-25,2025-The 2nd International Symposium on AI for Electrochemistry(iSAIEC 2025)was grandly held at Xiamen University.The International Society of Electrochemistry(ISE)first joining as a co-organizer supports"Poster Prize"to honor outstanding contributions from young researchers.展开更多
Quantum integrability provides a unique and powerful framework for accurately understanding quantum magnetism.In this review,we focus specifically on several quantum integrable low-dimensional quantum Ising models.We ...Quantum integrability provides a unique and powerful framework for accurately understanding quantum magnetism.In this review,we focus specifically on several quantum integrable low-dimensional quantum Ising models.We begin with the transverse field Ising chain(TFIC)at quantum critical point and examine how it evolves under perturbations,such as an applied longitudinal field or weak coupling to another quantum critical TFIC.展开更多
Ising superconductivity has garnered much attention in recent years due to its extremely high in-plane upper critical field (B_(c2)).Here,we fabricated 14 multilayer Pb_(1-x)Bi_(x) (0%≤x≤40%) thin films on Si (111)-...Ising superconductivity has garnered much attention in recent years due to its extremely high in-plane upper critical field (B_(c2)).Here,we fabricated 14 multilayer Pb_(1-x)Bi_(x) (0%≤x≤40%) thin films on Si (111)-7×7 reconstructed surface by molecular beam epitaxy.Large B_(c2) beyond the Pauli limit is observed in all the Pb_(1-x)Bi_(x) films,indicating that they may exhibit characteristics of Ising superconductivity.Moreover,the introduction of Bi doping can significantly enhance and effectively tune the in-plane B_(c2) of Pb_(1-x)Bi_(x) films,which will help us better understand Ising superconductivity and provide a new platform for the development of tunable Ising superconductors.展开更多
Phase transitions,as one of the most intriguing phenomena in nature,are divided into first-order phase transitions(FOPTs)and continuous ones in current classification.While the latter shows striking phenomena of scali...Phase transitions,as one of the most intriguing phenomena in nature,are divided into first-order phase transitions(FOPTs)and continuous ones in current classification.While the latter shows striking phenomena of scaling and universality,the former has recently also been demonstrated to exhibit scaling and universal behavior within a mesoscopic,coarse-grained Landau-Ginzburg theory.Here we apply this theory to a microscopic model-the paradigmatic Ising model,which undergoes FOPTs between two ordered phases below its critical temperature-and unambiguously demonstrate universal scaling behavior in such FOPTs.These results open the door for extending the theory to other microscopic FOPT systems and experimentally testing them to systematically uncover their scaling and universal behavior.展开更多
Quantum error correction is essential for realizing fault-tolerant quantum computing,where both the efficiency and accuracy of the decoding algorithms play critical roles.In this work,we introduce the implementation o...Quantum error correction is essential for realizing fault-tolerant quantum computing,where both the efficiency and accuracy of the decoding algorithms play critical roles.In this work,we introduce the implementation of the PLANAR algorithm,a software framework designed for fast and exact decoding of quantum codes with a planar structure.The algorithm first converts the optimal decoding of quantum codes into a partition function computation problem of an Ising spin glass model.Then it utilizes the exact Kac–Ward formula to solve it.In this way,PLANAR offers the exact maximum likelihood decoding in polynomial complexity for quantum codes with a planar structure,including the surface code with independent code-capacity noise and the quantum repetition code with circuit-level noise.Unlike traditional minimumweight decoders such as minimum-weight perfect matching(MWPM),PLANAR achieves theoretically optimal performance while maintaining polynomial-time efficiency.In addition,to demonstrate its capabilities,we exemplify the implementation using the rotated surface code,a commonly used quantum error correction code with a planar structure,and show that PLANAR achieves a threshold of approximately p_(uc)≈0.109 under the depolarizing error model,with a time complexity scaling of O(N^(0.69)),where N is the number of spins in the Ising model.展开更多
Ising problems are critical for a wide range of applications.Solving these problems on a photonic platform takes advantage of the unique properties of photons,such as high speed,low power consumption,and large bandwid...Ising problems are critical for a wide range of applications.Solving these problems on a photonic platform takes advantage of the unique properties of photons,such as high speed,low power consumption,and large bandwidth.Recently,there has been growing interest in using photonic platforms to accelerate the optimization of Ising models,paving the way for the development of ultrafast hardware in machine learning.However,these proposed systems face challenges in simultaneously achieving high spin scalability,encoding flexibility,and low system complexity.We propose a wavelength-domain optical Ising machine that utilizes optical signals at different wavelengths to represent distinct Ising spins for Ising simulation.We design and experimentally validate a chip-scale Ising machine capable of solving classical non-deterministic polynomial-time problems.The proposed Ising machine supports 32 spins and features 2 distinct coupling encoding schemes.Furthermore,we demonstrate the feasibility of scaling the system to 256 spins.This approach verifies the viability of performing Ising simulations in the wavelength dimension,offering substantial advantages in scalability.These advancements lay the groundwork for future large-scale expansion and practical applications in cloud computing.展开更多
Combinatorial optimization problems and ground state problems of spin glasses are crucial in various fields of science and technology.However,they often belong to the computational class of NP-hard,presenting signific...Combinatorial optimization problems and ground state problems of spin glasses are crucial in various fields of science and technology.However,they often belong to the computational class of NP-hard,presenting significant computational challenges.Traditional algorithms inspired by statistical physics like simulated annealing have been widely adopted.Recently,advancements in Ising machines,such as quantum annealers and coherent Ising machines,offer new paradigms for solving these problems efficiently by embedding them into the analog evolution of nonlinear dynamical systems.However,existing dynamics-based algorithms often suffer from low convergence rates and local minima traps.In this work,we introduce the dual mean-field dynamics into Ising machines.The approach integrates the gradient force and the transverse force into the dynamics of Ising machines in solving combinatorial optimization problems,making it easier for the system to jump out of the local minimums and allowing the dynamics to explore wider in configuration space.We conduct extensive numerical experiments using the Sherrington–Kirkpatrick spin glass up to 10000 spins and the maximum cut problems with the standard G-set benchmarks.The numerical results demonstrate that our dual mean-field dynamics approach enhances the performance of base Ising machines,providing a more effective solution for large-scale combinatorial optimization problems.展开更多
本文主要研究在月光型顶点算子代数中满足一定条件的2对Ising向量生成的顶点算子代数的结构,这2对Ising向量分别生成1个3A代数,并且生成的2个3A代数的交包含一个同构于L(4/5, 0)⊕L(4/5, 3)的子顶点算子代数,本文证明了其一共有3种可能...本文主要研究在月光型顶点算子代数中满足一定条件的2对Ising向量生成的顶点算子代数的结构,这2对Ising向量分别生成1个3A代数,并且生成的2个3A代数的交包含一个同构于L(4/5, 0)⊕L(4/5, 3)的子顶点算子代数,本文证明了其一共有3种可能的顶点算子代数结构。In this paper, we mainly study the vertex operator algebra generated by two pairs of Ising vectors in the moonshine type vertex operator algebra. These two pairs of Ising vectors each generate one 3A algebra, and the intersection of the two generated 3A algebras contains a subvertex operator subalgebra that is isomorphic to L(4/5, 0)⊕L(4/5, 3). We have shown that there are three possible structures of vertex operators algebraic.展开更多
Systems with quenched disorder possess complex energy landscapes that are challenging to explore under conventional Monte Carlo methods.In this work,we implement an efficient entropy sampling scheme for accurate compu...Systems with quenched disorder possess complex energy landscapes that are challenging to explore under conventional Monte Carlo methods.In this work,we implement an efficient entropy sampling scheme for accurate computation of the entropy function in low-energy regions.The method is applied to the two-dimensional±J random-bond Ising model,where frustration is controlled by the fraction p of ferromagnetic bonds.We investigate the low-temperature paramagnetic–ferromagnetic phase boundary below the multicritical point at T_(N)=0.9530(4),P_(N)=0.89078(8),as well as the zerotemperature ferromagnetic–spin-glass transition.Finite-size scaling analysis reveals that the phase boundary for T<T_(N) exhibits reentrant behavior.By analyzing the evolution of the magnetizationresolved density of states g(E,M)and ground-state spin configurations against increasing frustration,we provide strong evidence that the zero-temperature transition is a mixed-order.Finite-size scaling conducted on the spin-glass side supports the validity of β=0,whereβis the magnetization exponent,with a correlation length exponentν=1.50(8).Our results provide new insights into the nature of the ferromagnetic-to-spin-glass phase transition in an extensively degenerate ground state.展开更多
We investigate dynamical quantum phase transitions(DQPTs)in Marko-vian open quantum systems using a variational quantum simulation(VQS)algorithm based on quantum state diffusion(QSD).This approach reformulates the Lin...We investigate dynamical quantum phase transitions(DQPTs)in Marko-vian open quantum systems using a variational quantum simulation(VQS)algorithm based on quantum state diffusion(QSD).This approach reformulates the Lindblad master equation as an ensemble of pure-state trajectories,enabling efficient simula-tion of dissipative quantum dynam-ics with effectively reduced quantum resources.Focusing on the one-di-mensional transverse-field Ising mod-el(TFIM),we simulate quench dynamics under both local and global Lindblad dissipation.The QSD-VQS algorithm accurately captures the nonanalytic cusps in the Loschmidt rate function,and reveals their modulation by dissipation strength and system size.Notably,DQPTs are gradually suppressed under strong local dissipation,while they persist under strong global dissipation due to collective environmental effects.Benchmarking against exact Lindblad solutions confirms the high accuracy and scalability of our method.展开更多
We propose an eigen microstate approach(EMA)for analyzing quantum phase transitions in quantum many-body systems,introducing a novel framework that does not require prior knowledge of an order parameter.Using the tran...We propose an eigen microstate approach(EMA)for analyzing quantum phase transitions in quantum many-body systems,introducing a novel framework that does not require prior knowledge of an order parameter.Using the transversefield Ising model(TFIM)as a case study,we demonstrate the effectiveness of EMA by identifying key features of the phase transition through the scaling behavior of eigenvalues and the structure of associated eigen microstates.Our results reveal substantial changes in the ground state of the TFIM as it undergoes a phase transition,as reflected in the behavior of specific componentsξ_(i)^((k))within the eigen microstates.This method is expected to be applicable to other quantum systems where predefining an order parameter is challenging.展开更多
Recent various experiments have provided evidence supporting the emergence of loop-current order in kagome metals. Particularly superconductivity in AV_(3)Sb_(5) is significantly enhanced when this charge order is sup...Recent various experiments have provided evidence supporting the emergence of loop-current order in kagome metals. Particularly superconductivity in AV_(3)Sb_(5) is significantly enhanced when this charge order is suppressed by pressure or doping. Distinct from magnetic order, loop-current order does not couple directly to spin and thus whether such fluctuations can enhance superconductivity remains elusive. We design a sign problem-free bilayer kagome model coupled to quantum Ising spins through bond currents and perform determinant quantum Monte Carlo simulations to explore single-particle properties and superconductivity arising from 2 × 2 loopcurrent fluctuations. We find that this loop-current order induces intriguing band folding, band broadening,and gap opening around saddle points. Remarkably, our pairing susceptibility analysis identifies a dominant enhancement of superconductivity due to loop-current fluctuations, with the dominant pairing being the chiral d-wave channel. This pairing primarily occurs within the intra-sublattice channel and involves third nearestneighbor sites, attributed to the unique sublattice texture associated with van Hove singularities. We also discuss potential experimental implications for kagome superconductors.展开更多
Ising superconductivity, induced by the strong spin–orbit coupling(SOC) and inversion symmetry breaking, can lead to the in-plane upper critical field exceeding the Pauli limit and hold significant potential for adva...Ising superconductivity, induced by the strong spin–orbit coupling(SOC) and inversion symmetry breaking, can lead to the in-plane upper critical field exceeding the Pauli limit and hold significant potential for advancing the study of topological superconductivity. However, the enhancement of Ising superconductivity is still a challenging problem, important for engineering Majorana fermions and exploring topological quantum computing. In this study, we investigated the superconducting properties of a series of van der Waals NbSe_(2-x)Te_(x) nanosheets. The Ising superconductivity in NbSe_(2-x)Te_(x) nanosheets can be significantly enhanced by the substitution of Te, an element with strong SOC. The fitted in-plane upper critical field of Nb Se_(1.5)Te_(0.5) nanosheets at absolute zero temperature reaches up to 3.2 times the Pauli limit. Angular dependence of magnetoresistance measurements reveals a distinct two-fold rotational symmetry in the superconducting transition region, highlighting the role of strong SOC. In addition, the fitting results of the Berezinskii–Kosterlitz–Thouless(BKT) transition and the two-dimensional(2D) Tinkham formula provide strong evidence for 2D superconductivity. These findings offer new perspectives for the design and modulation of the Ising superconducting state and pave the way for their potential applications in topological superconductivity and quantum technologies.展开更多
This paper explores pole placement techniques for the 4th order C1 DC-to-DC Buck converter focusing on optimizing various performance metrics. Refinements were made to existing ITAE (Integral of Time-weighted Absolute...This paper explores pole placement techniques for the 4th order C1 DC-to-DC Buck converter focusing on optimizing various performance metrics. Refinements were made to existing ITAE (Integral of Time-weighted Absolute Error) polynomials. Additionally, metrics such as IAE (Integral Absolute Error), ISE (Integral of Square Error), ITSE (Integral of Time Squared Error), a MaxMin metric as well as LQR (Linear Quadratic Regulator) were evaluated. PSO (Particle Swarm Optimization) was employed for metric optimization. Time domain response to a step disturbance input was evaluated. The design which optimized the ISE metric proved to be the best performing, followed by IAE and MaxMin (with equivalent results) and then LQR.展开更多
文摘Xiamen,China-June 22-25,2025-The 2nd International Symposium on AI for Electrochemistry(iSAIEC 2025)was grandly held at Xiamen University.The International Society of Electrochemistry(ISE)first joining as a co-organizer supports"Poster Prize"to honor outstanding contributions from young researchers.
基金supported by the National Natural Science Foundation of China Grant Nos.12450004,12274288the Innovation Program for Quantum Science and Technology Grant No.2021ZD0301900。
文摘Quantum integrability provides a unique and powerful framework for accurately understanding quantum magnetism.In this review,we focus specifically on several quantum integrable low-dimensional quantum Ising models.We begin with the transverse field Ising chain(TFIC)at quantum critical point and examine how it evolves under perturbations,such as an applied longitudinal field or weak coupling to another quantum critical TFIC.
基金supported by the National Natural Science Foundation of China (Grant Nos. 12374196, 92165201, and 11634011)the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302800)+2 种基金the Chinese Academy of Sciences Project for Young Scientists in Basic Research (Grant No. YSBR-046)the Fundamental Research Funds for the Central Universities (Grant Nos. WK3510000006 and WK3430000003)Anhui Initiative in Quantum Information Technologies (Grant No. AHY170000)。
文摘Ising superconductivity has garnered much attention in recent years due to its extremely high in-plane upper critical field (B_(c2)).Here,we fabricated 14 multilayer Pb_(1-x)Bi_(x) (0%≤x≤40%) thin films on Si (111)-7×7 reconstructed surface by molecular beam epitaxy.Large B_(c2) beyond the Pauli limit is observed in all the Pb_(1-x)Bi_(x) films,indicating that they may exhibit characteristics of Ising superconductivity.Moreover,the introduction of Bi doping can significantly enhance and effectively tune the in-plane B_(c2) of Pb_(1-x)Bi_(x) films,which will help us better understand Ising superconductivity and provide a new platform for the development of tunable Ising superconductors.
基金supported by the National Natural Science Foundation of China(Grant No.12175316).
文摘Phase transitions,as one of the most intriguing phenomena in nature,are divided into first-order phase transitions(FOPTs)and continuous ones in current classification.While the latter shows striking phenomena of scaling and universality,the former has recently also been demonstrated to exhibit scaling and universal behavior within a mesoscopic,coarse-grained Landau-Ginzburg theory.Here we apply this theory to a microscopic model-the paradigmatic Ising model,which undergoes FOPTs between two ordered phases below its critical temperature-and unambiguously demonstrate universal scaling behavior in such FOPTs.These results open the door for extending the theory to other microscopic FOPT systems and experimentally testing them to systematically uncover their scaling and universal behavior.
基金supported by the National Natural Science Foundation of China(Grant Nos.12325501,12047503,and 12247104)the Chinese Academy of Sciences(Grant No.ZDRW-XX-2022-3-02)P.Z.is partially supported by the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301900).
文摘Quantum error correction is essential for realizing fault-tolerant quantum computing,where both the efficiency and accuracy of the decoding algorithms play critical roles.In this work,we introduce the implementation of the PLANAR algorithm,a software framework designed for fast and exact decoding of quantum codes with a planar structure.The algorithm first converts the optimal decoding of quantum codes into a partition function computation problem of an Ising spin glass model.Then it utilizes the exact Kac–Ward formula to solve it.In this way,PLANAR offers the exact maximum likelihood decoding in polynomial complexity for quantum codes with a planar structure,including the surface code with independent code-capacity noise and the quantum repetition code with circuit-level noise.Unlike traditional minimumweight decoders such as minimum-weight perfect matching(MWPM),PLANAR achieves theoretically optimal performance while maintaining polynomial-time efficiency.In addition,to demonstrate its capabilities,we exemplify the implementation using the rotated surface code,a commonly used quantum error correction code with a planar structure,and show that PLANAR achieves a threshold of approximately p_(uc)≈0.109 under the depolarizing error model,with a time complexity scaling of O(N^(0.69)),where N is the number of spins in the Ising model.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB2804203)the National Natural Science Foundation of China(Grant No.U21A20511)the Knowledge Innovation Program of Wuhan-Basic Research(Grant No.2023010201010049).
文摘Ising problems are critical for a wide range of applications.Solving these problems on a photonic platform takes advantage of the unique properties of photons,such as high speed,low power consumption,and large bandwidth.Recently,there has been growing interest in using photonic platforms to accelerate the optimization of Ising models,paving the way for the development of ultrafast hardware in machine learning.However,these proposed systems face challenges in simultaneously achieving high spin scalability,encoding flexibility,and low system complexity.We propose a wavelength-domain optical Ising machine that utilizes optical signals at different wavelengths to represent distinct Ising spins for Ising simulation.We design and experimentally validate a chip-scale Ising machine capable of solving classical non-deterministic polynomial-time problems.The proposed Ising machine supports 32 spins and features 2 distinct coupling encoding schemes.Furthermore,we demonstrate the feasibility of scaling the system to 256 spins.This approach verifies the viability of performing Ising simulations in the wavelength dimension,offering substantial advantages in scalability.These advancements lay the groundwork for future large-scale expansion and practical applications in cloud computing.
基金supported by Projects 12325501,12047503,12247104,and 12322501 of the National Natural Science Foundation of ChinaProject ZDRW-XX-2022-302 of the Chinese Academy of Sciencespartially supported by the Innovation Program for Quantum Science and Technology project 2021ZD0301900。
文摘Combinatorial optimization problems and ground state problems of spin glasses are crucial in various fields of science and technology.However,they often belong to the computational class of NP-hard,presenting significant computational challenges.Traditional algorithms inspired by statistical physics like simulated annealing have been widely adopted.Recently,advancements in Ising machines,such as quantum annealers and coherent Ising machines,offer new paradigms for solving these problems efficiently by embedding them into the analog evolution of nonlinear dynamical systems.However,existing dynamics-based algorithms often suffer from low convergence rates and local minima traps.In this work,we introduce the dual mean-field dynamics into Ising machines.The approach integrates the gradient force and the transverse force into the dynamics of Ising machines in solving combinatorial optimization problems,making it easier for the system to jump out of the local minimums and allowing the dynamics to explore wider in configuration space.We conduct extensive numerical experiments using the Sherrington–Kirkpatrick spin glass up to 10000 spins and the maximum cut problems with the standard G-set benchmarks.The numerical results demonstrate that our dual mean-field dynamics approach enhances the performance of base Ising machines,providing a more effective solution for large-scale combinatorial optimization problems.
文摘本文主要研究在月光型顶点算子代数中满足一定条件的2对Ising向量生成的顶点算子代数的结构,这2对Ising向量分别生成1个3A代数,并且生成的2个3A代数的交包含一个同构于L(4/5, 0)⊕L(4/5, 3)的子顶点算子代数,本文证明了其一共有3种可能的顶点算子代数结构。In this paper, we mainly study the vertex operator algebra generated by two pairs of Ising vectors in the moonshine type vertex operator algebra. These two pairs of Ising vectors each generate one 3A algebra, and the intersection of the two generated 3A algebras contains a subvertex operator subalgebra that is isomorphic to L(4/5, 0)⊕L(4/5, 3). We have shown that there are three possible structures of vertex operators algebraic.
基金supported by NKRDPC-2022YFA1402802,NSFC-92165204the Research Grants Council of the HKSAR under Grant Nos.12304020 and 12301723+2 种基金Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices under Grant No.2022B1212010008Guangdong Fundamental Research Center for Magnetoelectric Physics under Grant No.2024B0303390001Guangdong Provincial Quantum Science Strategic Initiative under Grant No.GDZX2401010。
文摘Systems with quenched disorder possess complex energy landscapes that are challenging to explore under conventional Monte Carlo methods.In this work,we implement an efficient entropy sampling scheme for accurate computation of the entropy function in low-energy regions.The method is applied to the two-dimensional±J random-bond Ising model,where frustration is controlled by the fraction p of ferromagnetic bonds.We investigate the low-temperature paramagnetic–ferromagnetic phase boundary below the multicritical point at T_(N)=0.9530(4),P_(N)=0.89078(8),as well as the zerotemperature ferromagnetic–spin-glass transition.Finite-size scaling analysis reveals that the phase boundary for T<T_(N) exhibits reentrant behavior.By analyzing the evolution of the magnetizationresolved density of states g(E,M)and ground-state spin configurations against increasing frustration,we provide strong evidence that the zero-temperature transition is a mixed-order.Finite-size scaling conducted on the spin-glass side supports the validity of β=0,whereβis the magnetization exponent,with a correlation length exponentν=1.50(8).Our results provide new insights into the nature of the ferromagnetic-to-spin-glass phase transition in an extensively degenerate ground state.
基金supported by the National Natural Science Foundation of China(Nos.22273122,T2350009)the Guangdong Provincial Natural Science Foundation(No.2024A1515011504)computational resources and services provided by the national supercomputer center in Guangzhou.
文摘We investigate dynamical quantum phase transitions(DQPTs)in Marko-vian open quantum systems using a variational quantum simulation(VQS)algorithm based on quantum state diffusion(QSD).This approach reformulates the Lindblad master equation as an ensemble of pure-state trajectories,enabling efficient simula-tion of dissipative quantum dynam-ics with effectively reduced quantum resources.Focusing on the one-di-mensional transverse-field Ising mod-el(TFIM),we simulate quench dynamics under both local and global Lindblad dissipation.The QSD-VQS algorithm accurately captures the nonanalytic cusps in the Loschmidt rate function,and reveals their modulation by dissipation strength and system size.Notably,DQPTs are gradually suppressed under strong local dissipation,while they persist under strong global dissipation due to collective environmental effects.Benchmarking against exact Lindblad solutions confirms the high accuracy and scalability of our method.
基金supported by the National Natural Science Foundation of China(Grant Nos.12475033,12135003,12174194,and 12405032)the National Key Research and Development Program of China(Grant No.2023YFE0109000)+1 种基金supported by the Fundamental Research Funds for the Central Universitiessupport from the China Postdoctoral Science Foundation(Grant No.2023M730299).
文摘We propose an eigen microstate approach(EMA)for analyzing quantum phase transitions in quantum many-body systems,introducing a novel framework that does not require prior knowledge of an order parameter.Using the transversefield Ising model(TFIM)as a case study,we demonstrate the effectiveness of EMA by identifying key features of the phase transition through the scaling behavior of eigenvalues and the structure of associated eigen microstates.Our results reveal substantial changes in the ground state of the TFIM as it undergoes a phase transition,as reflected in the behavior of specific componentsξ_(i)^((k))within the eigen microstates.This method is expected to be applicable to other quantum systems where predefining an order parameter is challenging.
基金supported by the National Natural Science Foundation of China (Grant No. 12447103)financial support from the MERIT-WINGS course provided by the University of Tokyo+10 种基金the Fellowship for Integrated Materials Science and Career Development provided by the Japan Science and Technology Agencysupport from the computational resource of Wisteria/BDEC-01 provided by Information Technology Center, the University of Tokyo, for the Monte Carlo simulationthe support by the National Natural Science Foundation of China (Grant No. 12404275)the Fundamental Research Program of Shanxi Province (Grant No. 202403021212015)support from the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter-ct.qmat (EXC 2147, Project No. 390858490)supported by the National Natural Science Foundation of China (Grant No. 12274289)the National Key R&D Program of China (Grant Nos. 2022YFA1402702 and 2021YFA1401400)the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301902)Yangyang Development Fund, and Startup Funds from SJTUsupported by the National Key R&D Program of China (Grant No. 2023YFA1407300)the National Natural Science Foundation of China (Grant No. 12047503)。
文摘Recent various experiments have provided evidence supporting the emergence of loop-current order in kagome metals. Particularly superconductivity in AV_(3)Sb_(5) is significantly enhanced when this charge order is suppressed by pressure or doping. Distinct from magnetic order, loop-current order does not couple directly to spin and thus whether such fluctuations can enhance superconductivity remains elusive. We design a sign problem-free bilayer kagome model coupled to quantum Ising spins through bond currents and perform determinant quantum Monte Carlo simulations to explore single-particle properties and superconductivity arising from 2 × 2 loopcurrent fluctuations. We find that this loop-current order induces intriguing band folding, band broadening,and gap opening around saddle points. Remarkably, our pairing susceptibility analysis identifies a dominant enhancement of superconductivity due to loop-current fluctuations, with the dominant pairing being the chiral d-wave channel. This pairing primarily occurs within the intra-sublattice channel and involves third nearestneighbor sites, attributed to the unique sublattice texture associated with van Hove singularities. We also discuss potential experimental implications for kagome superconductors.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62488201 and 1240041502)the China Postdoctoral Science Foundation (Grant No. 2024T170990)+2 种基金the National Key R&D Program of China (Grant No. 2022YFA1204100)the Chinese Academy of Sciences (Grant No. XDB33030100)the Innovation Program of Quantum Science and Technology (Grant No. 2021ZD0302700)。
文摘Ising superconductivity, induced by the strong spin–orbit coupling(SOC) and inversion symmetry breaking, can lead to the in-plane upper critical field exceeding the Pauli limit and hold significant potential for advancing the study of topological superconductivity. However, the enhancement of Ising superconductivity is still a challenging problem, important for engineering Majorana fermions and exploring topological quantum computing. In this study, we investigated the superconducting properties of a series of van der Waals NbSe_(2-x)Te_(x) nanosheets. The Ising superconductivity in NbSe_(2-x)Te_(x) nanosheets can be significantly enhanced by the substitution of Te, an element with strong SOC. The fitted in-plane upper critical field of Nb Se_(1.5)Te_(0.5) nanosheets at absolute zero temperature reaches up to 3.2 times the Pauli limit. Angular dependence of magnetoresistance measurements reveals a distinct two-fold rotational symmetry in the superconducting transition region, highlighting the role of strong SOC. In addition, the fitting results of the Berezinskii–Kosterlitz–Thouless(BKT) transition and the two-dimensional(2D) Tinkham formula provide strong evidence for 2D superconductivity. These findings offer new perspectives for the design and modulation of the Ising superconducting state and pave the way for their potential applications in topological superconductivity and quantum technologies.
文摘This paper explores pole placement techniques for the 4th order C1 DC-to-DC Buck converter focusing on optimizing various performance metrics. Refinements were made to existing ITAE (Integral of Time-weighted Absolute Error) polynomials. Additionally, metrics such as IAE (Integral Absolute Error), ISE (Integral of Square Error), ITSE (Integral of Time Squared Error), a MaxMin metric as well as LQR (Linear Quadratic Regulator) were evaluated. PSO (Particle Swarm Optimization) was employed for metric optimization. Time domain response to a step disturbance input was evaluated. The design which optimized the ISE metric proved to be the best performing, followed by IAE and MaxMin (with equivalent results) and then LQR.