随着第六代移动通信网络(6th generation mobile network,6G)的不断发展,通感算一体化技术已成为提升未来网络性能和智能化水平的关键技术之一。通感算一体化网络将通信、感知和计算能力深度融合,实现了对信息的全方位获取、传输和处理...随着第六代移动通信网络(6th generation mobile network,6G)的不断发展,通感算一体化技术已成为提升未来网络性能和智能化水平的关键技术之一。通感算一体化网络将通信、感知和计算能力深度融合,实现了对信息的全方位获取、传输和处理,为各类应用场景提供强有力的技术支撑。全面综述了通感算在6G中的应用及其关键技术,探讨了通感算在低空经济、移动通信系统、智能交通系统、工业互联网与智能制造、智慧城市与环境监测等领域中的广泛应用,并深入讨论了通感算融合技术的核心技术,包括通信感知融合(integrated sensing and communication,ISC)技术、通信计算融合(integrated communication and computation,ICC)技术、感知计算融合(integrated sensing and computation,ISAC)技术、通感算融合(integrated sensing,communication,and computation,ISCC)技术及通感算智融合(integrated sensing,communication,computation and intelligence,ISCCI)技术的最新进展。展望了通感算一体化网络在6G时代的发展趋势,重点分析了未来面临的挑战与研究方向。展开更多
Background Intestinal barrier is a dynamic interface between the body and the ingested food components, however, dietary components or xenobiotics could compromise intestinal integrity, causing health risks to the hos...Background Intestinal barrier is a dynamic interface between the body and the ingested food components, however, dietary components or xenobiotics could compromise intestinal integrity, causing health risks to the host. Gossypol, a toxic component in cottonseed meal(CSM), caused intestinal injury in fish or other monogastric animals. It has been demonstrated that probiotics administration benefits the intestinal barrier integrity, but the efficacy of probiotics in maintaining intestinal health when the host is exposed to gossypol remains unclear. Here, a strain(YC) affiliated to Pediococcus pentosaceus was isolated from the gut of Nile tilapia(Oreochromis niloticus) and its potential to repair gossypol-induced intestinal damage was evaluated.Results A total of 270 Nile tilapia(2.20 ± 0.02 g) were allotted in 3 groups with 3 tanks each and fed with 3 diets including CON(control diet), GOS(control diet containing 300 mg/kg gossypol) and GP(control diet containing 300 mg/kg gossypol and 10^(8) colony-forming unit(CFU)/g P. pentosaceus YC), respectively. After 10 weeks, addition of P. pentosaceus YC restored growth retardation and intestinal injury induced by gossypol in Nile tilapia. Transcriptome analysis and si RNA interference experiments demonstrated that NOD-like receptors(NLR) family caspase recruitment domain(CARD) domain containing 3(Nlrc3) inhibition might promote intestinal stem cell(ISC) proliferation, as well as maintaining gut barrier integrity. 16S r RNA sequencing and gas chromatography-mass spectrometry(GC-MS) revealed that addition of P. pentosaceus YC altered the composition of gut microbiota and increased the content of propionate in fish gut. In vitro studies on propionate's function demonstrated that it suppressed nlrc3 expression and promoted wound healing in Caco-2 cell model.Conclusions The present study reveals that P. pentosaceus YC has the capacity to ameliorate intestinal barrier injury by modulating gut microbiota composition and elevating propionate level. This finding offers a promising strategy for the feed industry to incorporate cottonseed meal into fish feed formulations.展开更多
文摘随着第六代移动通信网络(6th generation mobile network,6G)的不断发展,通感算一体化技术已成为提升未来网络性能和智能化水平的关键技术之一。通感算一体化网络将通信、感知和计算能力深度融合,实现了对信息的全方位获取、传输和处理,为各类应用场景提供强有力的技术支撑。全面综述了通感算在6G中的应用及其关键技术,探讨了通感算在低空经济、移动通信系统、智能交通系统、工业互联网与智能制造、智慧城市与环境监测等领域中的广泛应用,并深入讨论了通感算融合技术的核心技术,包括通信感知融合(integrated sensing and communication,ISC)技术、通信计算融合(integrated communication and computation,ICC)技术、感知计算融合(integrated sensing and computation,ISAC)技术、通感算融合(integrated sensing,communication,and computation,ISCC)技术及通感算智融合(integrated sensing,communication,computation and intelligence,ISCCI)技术的最新进展。展望了通感算一体化网络在6G时代的发展趋势,重点分析了未来面临的挑战与研究方向。
基金supported by the Provincial Science and Technology Innovative Program for Carbon Peak and Carbon neutrality of Jiangsu of China (BE2022422)National Natural Science Foundation of China (32373145)。
文摘Background Intestinal barrier is a dynamic interface between the body and the ingested food components, however, dietary components or xenobiotics could compromise intestinal integrity, causing health risks to the host. Gossypol, a toxic component in cottonseed meal(CSM), caused intestinal injury in fish or other monogastric animals. It has been demonstrated that probiotics administration benefits the intestinal barrier integrity, but the efficacy of probiotics in maintaining intestinal health when the host is exposed to gossypol remains unclear. Here, a strain(YC) affiliated to Pediococcus pentosaceus was isolated from the gut of Nile tilapia(Oreochromis niloticus) and its potential to repair gossypol-induced intestinal damage was evaluated.Results A total of 270 Nile tilapia(2.20 ± 0.02 g) were allotted in 3 groups with 3 tanks each and fed with 3 diets including CON(control diet), GOS(control diet containing 300 mg/kg gossypol) and GP(control diet containing 300 mg/kg gossypol and 10^(8) colony-forming unit(CFU)/g P. pentosaceus YC), respectively. After 10 weeks, addition of P. pentosaceus YC restored growth retardation and intestinal injury induced by gossypol in Nile tilapia. Transcriptome analysis and si RNA interference experiments demonstrated that NOD-like receptors(NLR) family caspase recruitment domain(CARD) domain containing 3(Nlrc3) inhibition might promote intestinal stem cell(ISC) proliferation, as well as maintaining gut barrier integrity. 16S r RNA sequencing and gas chromatography-mass spectrometry(GC-MS) revealed that addition of P. pentosaceus YC altered the composition of gut microbiota and increased the content of propionate in fish gut. In vitro studies on propionate's function demonstrated that it suppressed nlrc3 expression and promoted wound healing in Caco-2 cell model.Conclusions The present study reveals that P. pentosaceus YC has the capacity to ameliorate intestinal barrier injury by modulating gut microbiota composition and elevating propionate level. This finding offers a promising strategy for the feed industry to incorporate cottonseed meal into fish feed formulations.