Dam structure built to store water has failed with resulting loss of life, social, economic and environmental losses due to seismic vibrations. These vibrations are dynamic in nature. These vibrations must be reduced ...Dam structure built to store water has failed with resulting loss of life, social, economic and environmental losses due to seismic vibrations. These vibrations are dynamic in nature. These vibrations must be reduced with proper application of engineering principles and for estimating the behavior of concrete gravity dam dynamic analysis plays an extraordinary role. This paper presents the dynamic time history analysis and response spectrum method of a concrete gravity dam by using STAAD-PRO. Here Finite Element Approach is used to analyze the dam. A concrete gravity dam model is prepared in STAAD-PRO to perform the time history analysis and response spectrum analysis and a comparison is done between both these methods. Concrete gravity dam is a large structure which retains a very large amount of water on its upstream side and it is very crucial for a dam to survive against vibrations of earthquake. So it is a matter of study to check the behaviour of a dam during and after the application of the loading.展开更多
Low-density parity-check (LDPC) codes are very efficient for communicating reliably through a noisy channel. N.Sourlas [1] showed that LDPC codes, which revolutionize the codes domain and used in many communications s...Low-density parity-check (LDPC) codes are very efficient for communicating reliably through a noisy channel. N.Sourlas [1] showed that LDPC codes, which revolutionize the codes domain and used in many communications standards, can be mapped onto an Ising spin systems. Besides, it has been shown that the Belief-Propagation (BP) algorithm, the LDPC codes decoding algorithm, is equivalent to the Thouless- Anderson-Palmer (TAP) approach [2]. Unfortunately, no study has been made for the other decoding algorithms. In this paper, we develop the Log-Likelihood Ratios-Belief Propagation (LLR-BP) algorithm and its simplifications the BP-Based algorithm and the λ-min algorithm with the TAP approach. We present the performance of these decoding algorithms using statistical physics argument i.e., we present the performance as function of the magnetization.展开更多
文摘Dam structure built to store water has failed with resulting loss of life, social, economic and environmental losses due to seismic vibrations. These vibrations are dynamic in nature. These vibrations must be reduced with proper application of engineering principles and for estimating the behavior of concrete gravity dam dynamic analysis plays an extraordinary role. This paper presents the dynamic time history analysis and response spectrum method of a concrete gravity dam by using STAAD-PRO. Here Finite Element Approach is used to analyze the dam. A concrete gravity dam model is prepared in STAAD-PRO to perform the time history analysis and response spectrum analysis and a comparison is done between both these methods. Concrete gravity dam is a large structure which retains a very large amount of water on its upstream side and it is very crucial for a dam to survive against vibrations of earthquake. So it is a matter of study to check the behaviour of a dam during and after the application of the loading.
文摘Low-density parity-check (LDPC) codes are very efficient for communicating reliably through a noisy channel. N.Sourlas [1] showed that LDPC codes, which revolutionize the codes domain and used in many communications standards, can be mapped onto an Ising spin systems. Besides, it has been shown that the Belief-Propagation (BP) algorithm, the LDPC codes decoding algorithm, is equivalent to the Thouless- Anderson-Palmer (TAP) approach [2]. Unfortunately, no study has been made for the other decoding algorithms. In this paper, we develop the Log-Likelihood Ratios-Belief Propagation (LLR-BP) algorithm and its simplifications the BP-Based algorithm and the λ-min algorithm with the TAP approach. We present the performance of these decoding algorithms using statistical physics argument i.e., we present the performance as function of the magnetization.