无线供电通信网络(Wireless-powered Communication Network,WPCN)不仅可以实现远程无线充电而且能够提供无线通信服务,因此受到了学术界和工业界的广泛关注。然而,低效率的能量收集和信息传输会限制WPCN的性能,并且在WPCN中的双重远近...无线供电通信网络(Wireless-powered Communication Network,WPCN)不仅可以实现远程无线充电而且能够提供无线通信服务,因此受到了学术界和工业界的广泛关注。然而,低效率的能量收集和信息传输会限制WPCN的性能,并且在WPCN中的双重远近效应会导致物联网设备收集的能量与消耗的能量之间的不平衡。为了解决这些问题,提出基于能量回收的主动智能反射面(Intelligent Reflecting Surface,IRS)辅助WPCN波束成形算法,其中物联网设备既能从功率站端收集能量,还能从其他物联网设备的上行信息传输中回收能量。考虑能量收集、吞吐量、时间分配,以及功率站和主动IRS的最大功率等约束,基于能量回收机制,建立了系统总吞吐量最大化的资源分配模型;然后,提出一种基于内层近似和双线性变换的交替优化算法进行求解。仿真结果表明,在相应的参数配置下,能量回收机制的应用能够提升约8.13%的吞吐量,而主动IRS的应用能够提升约61.1%的吞吐量。展开更多
This paper proposes a hybrid wireless communication framework that integrates an active intelligent reflecting surface(IRS)with a decode-andforward(DF)relay to enhance spectral efficiency in extended-range scenarios.B...This paper proposes a hybrid wireless communication framework that integrates an active intelligent reflecting surface(IRS)with a decode-andforward(DF)relay to enhance spectral efficiency in extended-range scenarios.By combining the amplification capability of the active IRS and the signal regeneration function of the DF relay,the proposed system effectively mitigates path loss and fading.We derive closed-form upper bounds on the achievable rate and develop an optimal power allocation strategy under a total power constraint.Numerical results demonstrate that the hybrid scheme significantly outperforms conventional passive IRS-assisted or active IRS-only configurations,particularly under conditions of limited reflecting elements or moderate signal-to-noise ratios.展开更多
To improve the quality of the illumination distribution,one novel indoor visible light communication(VLC)system,which is jointly assisted by the angle-diversity transceivers and simultaneous transmission and reflectio...To improve the quality of the illumination distribution,one novel indoor visible light communication(VLC)system,which is jointly assisted by the angle-diversity transceivers and simultaneous transmission and reflection-intelligent reflecting surface(STAR-IRS),has been proposed in this work.A Harris Hawks optimizer algorithm(HHOA)-based two-stage alternating iteration algorithm(TSAIA)is presented to jointly optimize the magnitude and uniformity of the received optical power.Besides,to demonstrate the superiority of the proposed strategy,several benchmark schemes are simulated and compared.Results showed that compared to other optimization strategies,the TSAIA scheme is more capable of balancing the average value and variance of the received optical power,when the maximal ratio combining(MRC)strategy is adopted at the receiver.Moreover,as the number of the STAR-IRS elements increases,the optical power variance of the system optimized by TSAIA scheme would become smaller while the average optical power would get larger.This study will benefit the design of received optical power distribution for indoor VLC systems.展开更多
为提升认知无线网络能效,构建了一个包含认知基站(cognitive base station,CBS)、主基站(primary base station,PBS)及双智能反射面(intelligent reflector surface,IRS)的模型,提出了一种主被动波束成形联合优化方案,并通过仿真实验验...为提升认知无线网络能效,构建了一个包含认知基站(cognitive base station,CBS)、主基站(primary base station,PBS)及双智能反射面(intelligent reflector surface,IRS)的模型,提出了一种主被动波束成形联合优化方案,并通过仿真实验验证所提方案的有效性。结果表明,通过协同优化双IRS的反射相位,能够显著提升认知无线网络频谱效率和能效,在增加IRS反射单元数量时效果更为明显。随着用户数量的增加,认知无线网络能效呈现上升趋势,但增长速度放缓,因此实际部署时需要综合考虑用户数量、网络复杂度和能效之间的关系。展开更多
Intelligent reflecting surface(IRS)is a newly emerged and promising paradigm to substantially improve the performance of wireless communications by constructing favorable communication channels via properly tuning mas...Intelligent reflecting surface(IRS)is a newly emerged and promising paradigm to substantially improve the performance of wireless communications by constructing favorable communication channels via properly tuning massive reflecting elements.This paper considers a distributed IRS aided decode-and-forward(DF)relaying system over Nakagami-m fading channels.Based on a tight approximation for the distribution of the received signalto-noise ratio(SNR),we first derive exact closed-form expressions of the outage probability,ergodic capacity,and energy efficiency for the considered system.Moreover,we propose the optimal IRS configuration considering the energy efficiency and pilot overhead.Finally,we compare the performance between the distributed IRS-aided DF relaying and multi-IRS-only systems,and verify the analytical results by using monte carlo simulations.展开更多
In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of ...In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of UAV,the transmitting beamforming of users,and the phase shift matrix of IRS.The original problem is strong non-convex and difficult to solve.We first propose two basic modes of the proactive eavesdropper,and obtain the closed-form solution for the boundary conditions of the two modes.Then we transform the original problem into an equivalent one and propose an alternating optimization(AO)based method to obtain a local optimal solution.The convergence of the algorithm is illustrated by numerical results.Further,we propose a zero forcing(ZF)based method as sub-optimal solution,and the simulation section shows that the proposed two schemes could obtain better performance compared with traditional schemes.展开更多
文摘无线供电通信网络(Wireless-powered Communication Network,WPCN)不仅可以实现远程无线充电而且能够提供无线通信服务,因此受到了学术界和工业界的广泛关注。然而,低效率的能量收集和信息传输会限制WPCN的性能,并且在WPCN中的双重远近效应会导致物联网设备收集的能量与消耗的能量之间的不平衡。为了解决这些问题,提出基于能量回收的主动智能反射面(Intelligent Reflecting Surface,IRS)辅助WPCN波束成形算法,其中物联网设备既能从功率站端收集能量,还能从其他物联网设备的上行信息传输中回收能量。考虑能量收集、吞吐量、时间分配,以及功率站和主动IRS的最大功率等约束,基于能量回收机制,建立了系统总吞吐量最大化的资源分配模型;然后,提出一种基于内层近似和双线性变换的交替优化算法进行求解。仿真结果表明,在相应的参数配置下,能量回收机制的应用能够提升约8.13%的吞吐量,而主动IRS的应用能够提升约61.1%的吞吐量。
基金supported in part by National Key R&D Program of China(2022YFB2903500)NSFC Grant 62331022,Grant 62371289+4 种基金Grant 624B2094in part by the Shanghai Jiao Tong University 2030 Initiative,and the Guangdong Science and Technology program under grant 2022A0505050011in part by the Outstanding Doctoral Graduates Development Scholarship of Shanghai Jiao Tong Universityin part by Shanghai Kewei under Grant 22JC1404000Grant 24DP1500500.
文摘This paper proposes a hybrid wireless communication framework that integrates an active intelligent reflecting surface(IRS)with a decode-andforward(DF)relay to enhance spectral efficiency in extended-range scenarios.By combining the amplification capability of the active IRS and the signal regeneration function of the DF relay,the proposed system effectively mitigates path loss and fading.We derive closed-form upper bounds on the achievable rate and develop an optimal power allocation strategy under a total power constraint.Numerical results demonstrate that the hybrid scheme significantly outperforms conventional passive IRS-assisted or active IRS-only configurations,particularly under conditions of limited reflecting elements or moderate signal-to-noise ratios.
基金supported by the National Natural Science Foundation of China(No.62071365)the Key Research and Development Program of Shaanxi Province(No.2017ZDCXL-GY-06-02).
文摘To improve the quality of the illumination distribution,one novel indoor visible light communication(VLC)system,which is jointly assisted by the angle-diversity transceivers and simultaneous transmission and reflection-intelligent reflecting surface(STAR-IRS),has been proposed in this work.A Harris Hawks optimizer algorithm(HHOA)-based two-stage alternating iteration algorithm(TSAIA)is presented to jointly optimize the magnitude and uniformity of the received optical power.Besides,to demonstrate the superiority of the proposed strategy,several benchmark schemes are simulated and compared.Results showed that compared to other optimization strategies,the TSAIA scheme is more capable of balancing the average value and variance of the received optical power,when the maximal ratio combining(MRC)strategy is adopted at the receiver.Moreover,as the number of the STAR-IRS elements increases,the optical power variance of the system optimized by TSAIA scheme would become smaller while the average optical power would get larger.This study will benefit the design of received optical power distribution for indoor VLC systems.
文摘为提升认知无线网络能效,构建了一个包含认知基站(cognitive base station,CBS)、主基站(primary base station,PBS)及双智能反射面(intelligent reflector surface,IRS)的模型,提出了一种主被动波束成形联合优化方案,并通过仿真实验验证所提方案的有效性。结果表明,通过协同优化双IRS的反射相位,能够显著提升认知无线网络频谱效率和能效,在增加IRS反射单元数量时效果更为明显。随着用户数量的增加,认知无线网络能效呈现上升趋势,但增长速度放缓,因此实际部署时需要综合考虑用户数量、网络复杂度和能效之间的关系。
基金supported in part by National Natural Science Foundation of China under Grant 62371262 and 61971467in part by the Key Research and Development Program of Jiangsu Province of China under Grant BE2021013-1+1 种基金in part by the Qinlan Project of Jiangsu Provincein part by the Scientific Research Program of Nantong under Grant JC22022026
文摘Intelligent reflecting surface(IRS)is a newly emerged and promising paradigm to substantially improve the performance of wireless communications by constructing favorable communication channels via properly tuning massive reflecting elements.This paper considers a distributed IRS aided decode-and-forward(DF)relaying system over Nakagami-m fading channels.Based on a tight approximation for the distribution of the received signalto-noise ratio(SNR),we first derive exact closed-form expressions of the outage probability,ergodic capacity,and energy efficiency for the considered system.Moreover,we propose the optimal IRS configuration considering the energy efficiency and pilot overhead.Finally,we compare the performance between the distributed IRS-aided DF relaying and multi-IRS-only systems,and verify the analytical results by using monte carlo simulations.
基金This work was supported by the Key Scientific and Technological Project of Henan Province(Grant Number 222102210212)Doctoral Research Start Project of Henan Institute of Technology(Grant Number KQ2005)Key Research Projects of Colleges and Universities in Henan Province(Grant Number 23B510006).
文摘In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of UAV,the transmitting beamforming of users,and the phase shift matrix of IRS.The original problem is strong non-convex and difficult to solve.We first propose two basic modes of the proactive eavesdropper,and obtain the closed-form solution for the boundary conditions of the two modes.Then we transform the original problem into an equivalent one and propose an alternating optimization(AO)based method to obtain a local optimal solution.The convergence of the algorithm is illustrated by numerical results.Further,we propose a zero forcing(ZF)based method as sub-optimal solution,and the simulation section shows that the proposed two schemes could obtain better performance compared with traditional schemes.