期刊文献+
共找到1,147篇文章
< 1 2 58 >
每页显示 20 50 100
Effects of Alternate Moistube Irrigation on the Growth of Spinach(Spinacia oleracea)and Water Spinach(Ipomoea aquatica)under Controlled Conditions
1
作者 Lixia SHEN Ronghao LIU Shuhui LIU 《Agricultural Biotechnology》 2025年第4期31-36,41,共7页
Moistube irrigation is a newly-developed irrigation technique that utilizes a semipermeable membrane to release water slowly and continuously into the plant root zone.Alternate Moistube Irrigation(AMI)is a combination... Moistube irrigation is a newly-developed irrigation technique that utilizes a semipermeable membrane to release water slowly and continuously into the plant root zone.Alternate Moistube Irrigation(AMI)is a combination of alternative irrigation and moistube irrigation.In order to investigate the effects of AMI on plant growth,greenhouse experiments were conducted on spinach(Spinacia oleracea)and water spinach(Ipomoea aquatica)plants at different time.We measured soil water content at a depth of 20 cm in the planting boxes,and also determined seed emergence rate,plant height,largest leaf area,fresh weight per plant,yield,and irrigation water productivity(IWP)for both spinach and water spinach.The results showed that the AMI treatments had significantly higher soil water content than the conventional surface irrigation control(CK).The emergence rates of spinach and water spinach were significantly higher in the AMI treatments than in the CK,and the plant height,largest leaf area,and fresh weight during the middle and late stages of spinach and water spinach growth were also significantly higher than those of the CK.Both spinach and water spinach grew well and produced high yield with high IWP under AMI with a high water head pressure of 1.5 m at tube spacing of 20 or 30 cm.We found that AMI with a suitable combination of head pressure and tube spacing can promote plant growth and increase yield and IWP under controlled conditions. 展开更多
关键词 Alternate Moistube irrigation SPINACH Water spinach Soil moisture YIELD irrigation water productivity
在线阅读 下载PDF
Improving water productivity of sprinkler-irrigated cumin through deficit irrigation in arid areas
2
作者 Hari Mohan MEENA Deepesh MACHIWAL +2 位作者 Priyabrata SANTRA Vandita KUMARI Saurabh SWAMI 《Journal of Arid Land》 2025年第6期791-807,共17页
Integrating sprinkler with deficit irrigation system is a new approach to improve crop water productivity and ensure water and food security in arid areas of India.This study undertook a field experiment of sprinkler-... Integrating sprinkler with deficit irrigation system is a new approach to improve crop water productivity and ensure water and food security in arid areas of India.This study undertook a field experiment of sprinkler-irrigated cumin(variety GC-4)with a mini-lysimeter setup at an experimental research farm in Jodhpur,India during 2019-2022.Four irrigation treatments T_(1),T_(2),T_(3),and T4 were designed at irrigation water/cumulative pan evaporation(IW/CPE)of 1.0,0.8,0.6,and 0.4,respectively,with three replications.Daily actual crop evapotranspiration(ETc)was recorded and weekly soil moisture was monitored over the crop growth period.Quantities of applied water and drainage from mini-lysimeters were also measured at every irrigation event.Yield of cumin was recorded at crop maturity.Furthermore,change in farmer's net income from 1-hm2 land was computed based on the cost of applying irrigation water and considering yield variations among the treatments.Results indicated the highest mean seasonal actual ETc(371.7 mm)and cumin yield(952.47 kg/hm2)under T_(1)(with full irrigation).Under T_(2),T_(3),and T4,the seasonal actual ETc decreased by 10.4%,27.6%,and 41.3%,respectively,while yield declined by 5.0%,28.4%,and 50.8%,respectively,as compared to the values under T_(1).Furthermore,crop water productivity of 0.272(±0.068)kg/m3 under T_(2)was found relatively higher in comparison to other irrigation treatments,indicating that T_(2)can achieve improved water productivity of cumin in arid areas at an optimum level of deficit irrigation.The results of cost-economics indicated that positive change in farmer's net income from 1-hm2 land was 108.82 USD under T_(2),while T_(3)and T4 showed net losses of 5.33 and 209.67 USD,respectively.Moreover,value of yield response factor and ratio of relative yield reductions to relative ETc deficits were found to be less than 1.00 under T_(2)(0.48),and more than 1.00 under T_(3)(1.07)and T4(1.23).This finding further supports that T_(2)shows the optimized level of deficit irrigation that saves 20.0%of water with sacrificing 5.0%yield in the arid areas of India.Findings of this study provide useful strategies to save irrigation water,bring additional area under irrigation,and improve crop water productivity in India and other similar arid areas in the world. 展开更多
关键词 cumin crop crop water productivity crop evapotranspiration deficit irrigation mini-sprinkler irrigation yield response factor
在线阅读 下载PDF
Response of Saline-alkali Cropland Soil CO_(2)Fluxes to Nitrogen Fertilization,Irrigation and Temperature via DAYCENT Modeling
3
作者 Peng ZHANG Hanxiao FENG +2 位作者 Liming LAI Haiwei WANG Yang YANG 《Agricultural Biotechnology》 2025年第3期56-63,共8页
A growing global demand exists to formulate plans to lessen the greenhouse gas emissions produced by agricultural activities.The purpose of this study was to uncovered the changes in soil CO_(2)fluxes under varying sc... A growing global demand exists to formulate plans to lessen the greenhouse gas emissions produced by agricultural activities.The purpose of this study was to uncovered the changes in soil CO_(2)fluxes under varying scenarios including nitrogen fertilization rates,irrigation rates,and air temperatures in the Hetao Irrigation District(HID)over the 38-year period.DAYCENT model was used to predict carbon dioxide(CO_(2))fluxes from cultivated soils in the HID,Inner Mongolia from^(2)023 to 2060(the year of achieving the"carbon neutrality"goal)in this study.Results showed that mean soil CO_(2)fluxes in the sunflower field[1035.13 g/(m^(2).yr)]were significantly lower than those in the maize field[1405.54 g/(m^(2).yr)].An increase in nitrogen fertilization rate led to a significant escalation in soil CO_(2)fluxes.Moreover,elevating irrigation rates for washing salts by irrigation(WSBI)diminished soil CO_(2)fluxes in the sunflower field while amplifying them in the maize field.A rise in air temperature resulted in an increase in soil CO_(2)fluxes from the maize field,with annual increases observed,but a reduction in soil CO_(2)fluxes from the sunflower field.The sunflower fields in the HID have a more substantial advantage than the corn fields in mitigating soil CO_(2)emissions. 展开更多
关键词 Soil CO_(2)flux Nitrogen fertilization rate SUNFLOWER Washing salts by irrigation Rising temperature DAYCENT model Hetao irrigation District
在线阅读 下载PDF
Enhancing the yield and water use efficiency of processing tomatoes (Lycopersicon esculentum Miller) through optimal irrigation and salinity management under mulched drip irrigation
4
作者 Jiaying Ma Jian Liu +6 位作者 Yue Wen Zhanli Ma Jinzhu Zhang Feihu Yin Tehseen Javed Jihong Zhang Zhenhua Wang 《Journal of Integrative Agriculture》 2025年第6期2410-2424,共15页
In recent years, the rational utilization of saline water resources for agricultural irrigation has emerged as an effective strategy to alleviate water scarcity. To safely and efficiently exploit saline water resource... In recent years, the rational utilization of saline water resources for agricultural irrigation has emerged as an effective strategy to alleviate water scarcity. To safely and efficiently exploit saline water resources over the long term, it is crucial to understand the effects of salinity on crops and develop optimal water-salinity irrigation strategies for processing tomatoes. A two-year field experiment was conducted in 2018 and 2019 to explore the impact of water salinity levels(S1: 1 g L^(–1), S2: 3 g L^(–1), and S3: 5 g L^(–1)) and irrigation amounts(W1: 305 mm, W2: 485 mm, and W3: 611 mm) on the soil volumetric water content and soil salinity, as well as processing tomato growth, yield, and water use efficiency. The results showed that irrigation with low to moderately saline water(<3 g L^(–1)) enhanced plant wateruptake and utilization capacity, with the soil water content(SWC) reduced by 6.5–7.62% and 10.52–13.23% for the S1 and S2 levels, respectively, compared to the S3 level in 2018. Under S1 condition, the soil salt content(SSC) accumulation rate gradually declined with an increase in the irrigation amount. For example, W3 decreased by 85.00 and 77.94% compared with W1 and W2 in 2018, and by 82.60 and 73.68% in 2019, respectively. Leaching effects were observed at the W3 level under S1, which gradually diminished with increasing water salinity and duration. In 2019, the salt contents of soil under each of the treatments increased by 10.81–89.72% compared with the contents in 2018. The yield of processing tomatoes increased with an increasing irrigation amount and peaked in the S1W3 treatment for the two years, reaching 125,304.85 kg ha^(–1)in 2018 and 128,329.71 kg ha^(–1)in 2019. Notably, in the first year, the S2W3 treatment achieved relatively high yields, exhibiting only a 2.85% reduction compared to the S1W3 treatment. However, the yield of the S2W3 treatment declined significantly in two years, and it was 15.88% less than that of the S1W3 treatment. Structural equation modeling(SEM) revealed that soil environmental factors(SWC and SSC) directly influence yield while also exerting indirect impacts on the growth indicators of processing tomatoes(plant height, stem diameter, and leaf area index). The TOPSIS method identified S1W3, S1W2, and S2W2 as the top three treatments. The single-factor marginal effect function also revealed that irrigation water salinity contributed to the composite evaluation scores(CES) when it was below 0.96 g L^(–1). Using brackish water with a salinity of 3 g L^(–1)at an irrigation amount of 485 mm over one year ensured that processing tomatoes maintained high yields with a relatively high CES(0.709). However, using brackish water for more than one year proved unfeasible. 展开更多
关键词 processing tomatoes soil water and salt transport YIELD water use efficiency irrigation water salinity mulcheddrip irrigation
在线阅读 下载PDF
Effects of straw incorporation on biological nitrogen fixation under continuous and intermittent flooding irrigation in a rice cropping system 被引量:2
5
作者 Yanhui ZHANG Jing WANG +7 位作者 Qi LIU Haihou WANG Tianlong HU Hui WANG Zhe CHEN Liangzuo SHU Elrys S.AHMED Zubin XIE 《Pedosphere》 2025年第2期364-372,共9页
Both straw incorporation and irrigation practices affect biological nitrogen(N)fixation(BNF),but it is still unclear how straw incorporation impacts BNF under continuous(CFI)or intermittent(IFI)flooding irrigation in ... Both straw incorporation and irrigation practices affect biological nitrogen(N)fixation(BNF),but it is still unclear how straw incorporation impacts BNF under continuous(CFI)or intermittent(IFI)flooding irrigation in a rice cropping system.A15N2-labeling chamber system was placed in a rice field to evaluate BNF with straw incorporation under CFI or IFI for 90 d.The nif H(gene encoding the nitrogenase reductase subunit)DNA and c DNA in soil were amplified using real-time quantitative polymerase chain reaction,and high-throughput sequencing was applied to the nif H gene.The total fixed N in the straw incorporation treatment was 14.3 kg ha^(-1)under CFI,being 116%higher than that under IFI(6.62 kg ha^(-1)).Straw incorporation and CFI showed significant interactive effects on the total fixed N and abundances of nif H DNA and c DNA.The increase in BNF was mainly due to the increase in the abundances of heterotrophic diazotrophs such as Desulfovibrio,Azonexus,and Azotobacter.These results indicated that straw incorporation stimulated BNF under CFI relative to IFI,which might ultimately lead to a rapid enhancement of soil fertility. 展开更多
关键词 heterotrophic diazotrophs irrigation practices 15N2-labeling experiment nifH cDNA nifH DNA soil fertility water management
原文传递
Investigation of clogging mechanism and hydrodynamic behavior of sediment movement in patch-type drip irrigation emitters
6
作者 ZHU Ximao YU Liming +1 位作者 LI Na WANG Dan 《排灌机械工程学报》 北大核心 2025年第7期749-756,共8页
Sediment particles,as one of the key components of drip irrigation technology,significantly affect the service life of emitters and restrict the popularization of drip irrigation technology.Hence,two types of patch dr... Sediment particles,as one of the key components of drip irrigation technology,significantly affect the service life of emitters and restrict the popularization of drip irrigation technology.Hence,two types of patch drip irrigation emitters,focusing on the anti-clogging performance through the experiment,were investigated.The dynamic variations in the clogging characteristics of emitters,specifically were subjected to statistical analysis.The movement mechanism of emitter clogging and discharging sediment was studied.The effects of emitter structure and position factors on emitter clogging were analyzed.The results show that the pressure-compensated emitter exhibits superior anti-clogging perfor-mance,with a service life that is 227.8%greater than that of the labyrinth channel emitter.A single structural factor cannot completely evaluate the anti-clogging performance of emitters.All factors causing emitter clogging should be considered comprehensively.Emitters contain sensitive sediment prone to clogging,however,significant blockage occurs primarily when the sediment content is elevated.The discharge of sediment,denoted as V90,from the emitter is affected by the accumulative effect of clogged sediment.These results may offer valuable insights for the application and advancement of drip irrigation technology. 展开更多
关键词 drip irrigation EMITTER physical blockage blockage pattern sensitive sediment
在线阅读 下载PDF
Mechanisms of irrigation water recharge in the Kongque River Irrigation District of Xinjiang,China
7
作者 Bin Ran Wan-yu Zhang +1 位作者 Zai-yong Zhang Ze-yu Wu 《Journal of Groundwater Science and Engineering》 2025年第3期225-236,共12页
Understanding the infiltration process and quantifying recharge are critical for effective water resources management,particularly in arid and semi-arid regions.However,factors influencing on recharge process under di... Understanding the infiltration process and quantifying recharge are critical for effective water resources management,particularly in arid and semi-arid regions.However,factors influencing on recharge process under different land use types in irrigation districts remain unclear.In this study,a Brilliant Blue FCF dye tracer experiment was conducted to investigate infiltration pathways under the cotton field,pear orchard,and bare land conditions in the Kongque Rive Irrigation District of Xinjiang,China.Recharge rates were estimated using the chloride mass balance method.The results show that the average preferential flow ratio was highest in the bare land(50.42%),followed by the cotton field(30.09%)and pear orchard(23.59%).Matrix flow was the dominant infiltration pathway in the pear orchard and cotton field.Irrigation method was a primary factor influencing recharge rates,with surface irrigation promoting deeper infiltration compared to drip irrigation.Under the drip irrigation mode,the recharge of cotton fields ranged from 23.47 mm/a to 59.16 mm/a.In comparison,the recharge of surface irrigation in pear orchards contributed between 154.30 mm/a and 401.65 mm/a.These findings provide valuable insights into soil water infiltration and recharge processes under typical land use conditions in the Kongque River Irrigation District,supporting improved irrigation management and sustainable water resource utilization. 展开更多
关键词 INFILTRATION Matrix flow Chloride mass balance RECHARGE Kongque River irrigation District Aridregions
在线阅读 下载PDF
AI-Augmented Smart Irrigation System Using IoT and Solar Power for Sustainable Water and Energy Management
8
作者 Siwakorn Banluesapy Mahasak Ketcham Montean Rattanasiriwongwut 《Energy Engineering》 2025年第10期4261-4296,共36页
Traditional agricultural irrigation systems waste significant amounts of water and energy due to inefficient scheduling and the absence of real-time monitoring capabilities.This research developed a comprehensive IoT-... Traditional agricultural irrigation systems waste significant amounts of water and energy due to inefficient scheduling and the absence of real-time monitoring capabilities.This research developed a comprehensive IoT-based smart irrigation control systemto optimize water and energy management in agricultural greenhouses while enhancing crop productivity.The system employs a sophisticated four-layer Internet ofThings(IoT)architecture based on an ESP32 microcontroller,integrated with multiple environmental sensors,including soil moisture,temperature,humidity,and light intensity sensors,for comprehensive environmental monitoring.The system utilizes the Message Queuing Telemetry Transport(MQTT)communication protocol for reliable data transmission and incorporates a Random Forest machine learning algorithm for automated irrigation decision-making processes.The Random Forest model achieved exceptional performance with 99.3%overall accuracy,demonstrating high model reliability.Six operational modules were developed and implemented with three distinct control methods:manual operation,condition-based automatic control,and AI-driven intelligent control systems.A comprehensive one-month comparative analysis demonstrated remarkable improvements across multiple performance metrics:a 50%reduction in both water consumption(from 140 to 70 L/day)and energy usage(from 7.00 to 3.50 kWh/day),a substantial 130%increase in water use efficiency,and a significant 50%decrease in CO_(2) emissions.Furthermore,detailed factor importance analysis revealed soil moisture as the primary decision factor(38.6%),followed by temporal factors(20.3%)and light intensity(18.4%).The system demonstrates exceptional potential for annual energy conservation of 1277.5 kWh and CO_(2) emission reduction of 638.75 kg,contributing substantially to sustainable development goals and advancing smart agriculture technologies. 展开更多
关键词 Smart irrigation precision agriculture water conservation energy efficiency sustainable farming agricultural automation sensor networks
在线阅读 下载PDF
Optimal drip irrigation leaching amount and timing enhanced cotton fiber yield, quality and nitrogen uptake by regulating soil salinity and nitrate nitrogen in saline-alkaline fields
9
作者 Xiaoqiang Liu Mingqi Li +4 位作者 Dong Xue Shuai He Junliang Fan Fucang Zhang Feihu Yin 《Journal of Integrative Agriculture》 2025年第6期2389-2409,共21页
Improving cotton fiber quality can increase the economic income of cotton farmers, but achieving high fiber quality without decreasing cotton fiber yield remains a major challenge in saline-alkaline cotton fields. A f... Improving cotton fiber quality can increase the economic income of cotton farmers, but achieving high fiber quality without decreasing cotton fiber yield remains a major challenge in saline-alkaline cotton fields. A field experiment was conducted in 2020 and 2021 on saline-alkaline soil with cotton under drip irrigation to examine how amount and timing of leaching affected soils salinity, cotton fiber yield and quality. There were five leaching amounts(CK: 0 mm, W1: 75 mm, W2: 150 mm, W3: 225 mm and W4: 300 mm) and three leaching timings(T1: once at the seedling stage, T2: twice at the seedling and budding stages, and T3: thrice at the seedling, budding and pollen-setting stages). Soil salinity, soil nitrate nitrogen(NO_(3)-N), cotton nitrogen(N) uptake, irrigation water productivity(IWP), cotton fiber yield, fiber length, fiber uniformity, fiber strength, fiber elongation, micronaire and fiber quality index(FQI) were investigated. The results indicated that soil salinity and NO_(3)-N reduced with increasing leaching amount. The N uptake of cotton bolls was greater than in cotton leaves, stems and roots, and total N accumulation increased with increasing leaching amount. The optimal cotton fiber yield and IWP occurred in treatment W3T2, and were 3,199 and 2,771 kg ha^(-1), and 0.5482 and 0.4912 kg m-3in 2020 and 2021, respectively. Fiber length, strength, elongation, and uniformity increased with increasing leaching amount, while there was a negative relationship between fiber micronaire and leaching amount. Soil salinity, NO_(3)-N and fiber micronaire were negatively correlated with fiber quality(i.e., length, strength, elongation and uniformity) and yield, nitrogen uptake of various organs(i.e., root, stems and leaves) and whole plant nitrogen uptake. Pearson correlation analysis revealed that fiber elongation was most sensitive to soil salinity. The method of Entropy–Order Preference by Similarity to Ideal Solution(EM–TOPSIS) indicated that leaching of 300 mm of water applied equally at the seedling and budding periods was the optimal treatment to maintain soil salinity and nutrient levels and achieve high cotton fiber yield and quality. In conclusion, the optimal level of leaching treatment decreased soil salinity and improved nitrogen uptake and was beneficial to achieve high fiber yield and quality. Our results will be significant for guiding drip irrigation practice of leaching on saline-alkaline soils for sustainable cotton fiber production. 展开更多
关键词 fiber yield fiber quality LEACHING soil salinity drip irrigation
在线阅读 下载PDF
Biochar amendment modulates xylem ionic constituents and ABA signaling:Its implications in enhancing water-use efficiency of maize(Zea mays L.)under reduced irrigation regimes
10
作者 Heng Wan Zhenhua Wei +3 位作者 Chunshuo Liu Xin Yang Yaosheng Wang Fulai Liu 《Journal of Integrative Agriculture》 2025年第1期132-146,共15页
While biochar amendment enhances plant productivity and water-use efficiency(WUE),particularly under waterlimited conditions,the specific mechanisms driving these benefits remain unclear.Thus,the present study aims to... While biochar amendment enhances plant productivity and water-use efficiency(WUE),particularly under waterlimited conditions,the specific mechanisms driving these benefits remain unclear.Thus,the present study aims to elucidate the synergistic effects of biochar and reduced irrigation on maize(Zea mays L.)plants,focusing on xylem composition,root-to-shoot signaling,stomatal behavior,and WUE.Maize plants were cultivated in splitroot pots filled with clay loam soil,amended by either wheat-straw biochar(WSB)or softwood biochar(SWB)at 2%(w/w).Plants received full irrigation(FI),deficit irrigation(DI),or partial root-zone drying rrigation(PRD)from the 4-leaf to the grain-filling stage.Our results revealed that the WSB amendment significantly enhanced plant water status,biomass accumulation,and WUE under reduced irrigation,particularly when combined with PRD.Although reduced irrigation inhibited photosynthesis,it enhanced WUE by modulating stomatal morphology and conductance.Biochar amendment combined with reduced rrigation significantly increased xylem K^(+),Ca^(2+),Mg^(2+),NO_(3)^(-),Cl^(-),PO_(4)^(3-),and SO_(4)^(2-)-but decreased Na+,which in turn lowered xylem pH.Moreover,biochar amendment and especially WSB amendment further increased abscisic acid(ABA)contents in both leaf and xylem sap under reduced irrigation conditions due to changes in xylem ionic constituents and pH.The synergistic interactions between xylem components and ABA led to refined adjustments in stomatal size and density,thereby affecting stomatal conductance and ultimately improving the WUE of maize plants at different scales.The combined application of WSB and PRD can,therefore,emerge as a promising approach for improving the overall plant performance of maize plants with increased stomatal adaptations and WUE,especially under water-limited conditions. 展开更多
关键词 BIOCHAR alternate partial root-zone drying irrigation xylem composition abscisic acid stomatal morphology stomatalconductance
在线阅读 下载PDF
Water diffusion characteristics of vegetation concrete under buried infiltration irrigation
11
作者 WANG Chenyuan CHEN Jiangang +4 位作者 YOU Yong ZHOU Mingtao Abrar HUSSAIN WANG Xi-an WANG Jinshui 《Journal of Mountain Science》 2025年第4期1189-1204,共16页
Numerous steep slopes resulting from infrastructure construction drastically affect ecological landscapes.The vegetation concrete(VC)ecological slope protection method efficiently rehabilitates slope ecosystems.Despit... Numerous steep slopes resulting from infrastructure construction drastically affect ecological landscapes.The vegetation concrete(VC)ecological slope protection method efficiently rehabilitates slope ecosystems.Despite advancements in the construction process,the standard irrigation maintenance method for slope vegetation remains unspecified.Three principal factors affecting VC water diffusion from production to application are:site conditions,irrigation design parameters,and substrate preparation standards.This study employed an energy-efficient porous ceramic emitter in buried irrigation equipment to investigate the effect of slope,water head,and bulk density on water diffusion patterns,analyzing both apparent and fine-scale dynamics through laboratory experiments and numerical simulations.The results demonstrated a positive correlation between slope and water head with the distance of wetted front.However,bulk density showed a negative correlation.The power function exhibited optimal fitting for wetted front advancement over time,with the'power0-type'function most precisely representing the VC wetted front movement(R2>0.99).The water content,utilized to assess the precision of the HYDRUS simulation grounded in the van Genuchten model and the centrifuge method(p<0.05),exhibited discrepancies with the wetted front while revealing a robust logistic correlation with irrigation duration.The root-mean-square error,mean absolute error,and percent bias between the observed and simulated water contents were 0.85%,0.74%,and-3.50%,respectively.The VC soil hydrodynamic parameters,specifically the inverse of the intake suction,the pore-size distribution exponent,and the shape factor,were quantified as 0.019,1.329,and 0.248,respectively.Water head significantly influenced water transport more than slope;yet,irrespective of their combination,extended irrigation generally intensified the'instability'of water diffusion.To regulate slope substrate moisture through water diffusion in practical conditions,it is advisable to prioritize the modification of VC preparations,followed by the design of an appropriate irrigation pressure,and finally the selection of an optimal location for the irrigator's deployment.The findings of water diffusion through a semi-rigid composite substrate broaden the applicability of soil hydrodynamics theory to composite soils and enhance its implications through conceptual and practical advice. 展开更多
关键词 Slope ecological restoration Water diffusion Vegetation concrete Numerical simulation irrigation
原文传递
Effect of cumin intercropping density on cotton growth and system economic benefits under subsurface drip irrigation
12
作者 DENG Shijie ZHANG Humei +6 位作者 SHI Feng LIU Xuan SHI Xiaojuan LI Nannan ZHAO Houxiu LUO Honghai TIAN Yu 《Journal of Cotton Research》 2025年第2期256-269,共14页
Background The mulch-free subsurface drip irrigation system demonstrated water-saving potential as an alternative to traditional mulch-based drip irrigation while also eliminating residual film pollution at source.How... Background The mulch-free subsurface drip irrigation system demonstrated water-saving potential as an alternative to traditional mulch-based drip irrigation while also eliminating residual film pollution at source.However,delayed sowing is unavoidable in mulch-free cultivation in ecological regions with a short frost-free period.Intercropping with cumin,which has a shorter growth period,served as an effective strategy to improve land use efficiency during the early growth stages of cotton.Therefore,a two-year field experiment was conducted to study the effects of intercropping cumin at the seeding rate of 2.5(ID1),3.85(ID2),and 5.2(ID3)kg・hm−2 on cotton growth,interspecies competition,fiber quality,and water use efficiency(WUE),as well as system economic benefits under subsurface drip irrigation.Monocropping cotton was used as the control(CK)treatment.Results At the initial flowering(IF)stage(the end of the co-growth period of cotton and cumin),cotton plant height in ID2 and ID3 treatments decreased by 5.93%–16.53%and 10.87%–31.11%,respectively,cotton stem diameter by 11.41%–14.25%and 3.37%–26.49%,respectively,and vegetative biomass by 14.46%–30.65%and 22.59%–49.91%,respectively,compared with CK treatment.With the increase in cumin density,the crop growth rate(CGR)and compensation effect in cotton tended to significantly decrease at the IF stage regardless of organs considered.For the non-co-growth period(after harvesting cumin),cotton reproductive organ biomass in ID2 and ID3 treatments increased by 4.09%‒14.61%at the boll opening stage,crop growth rate in reproductive organs by 20.74%and 74.26%from peak boll to boll opening stages compared with CK treatment,due to an enhancement of 19.09%and 49.30%in the compensation effect.Compared with ID1,the aggressivity treated by ID2 and ID3 decreased by 12.82%–46.34%and 17.95%–31.71%,respectively.However,owing to a greater number of green bolls in the upper canopy at the harvest stages in the ID3 treatment,the system production value(closely related to yield)treated by ID2 was 11.69%–16.89%,6.56%–20.02%,and 16.48%–59.83%greater than that of the ID1,ID3,and CK treatments,respectively.This also led to the highest WUE and net profit under the ID2 treatment.Conclusion Intercropping cumin with medium density improved the cotton biomass accumulation characteristics and increased resources such as land and water utilization efficiency and economic benefits through a stronger compensation effect after harvesting cumin under subsurface drip irrigation without mulch.This study not only provides alternatives to residual film pollution in arid cotton fields but also establishes a sustainable agro-ecological-economic planting paradigm by reducing plastic use and enhancing water and fertilizer use efficiency,holding significant implications for advancing resource-efficient agricultural systems. 展开更多
关键词 Cotton intercropping with cumin Subsurface drip irrigation BIOMASS Interspecific competition Economic efficiency Resource competition
在线阅读 下载PDF
Small-Scale Irrigation in the Highlands of Western Cameroon: A Diagnostic Study of the Southern Slope of the Bamboutos Mountains
13
作者 Sibelle Tsague Mouafo Nasse Fetio Ngoune +1 位作者 Roger Ntankouo Njila Barthelemy Ndongo 《Agricultural Sciences》 2025年第2期256-279,共24页
Irrigated agriculture in Cameroon is practiced on a large scale by large private firms and parastatals, and on a small scale by individual producers in different production areas of the country. Although small-scale i... Irrigated agriculture in Cameroon is practiced on a large scale by large private firms and parastatals, and on a small scale by individual producers in different production areas of the country. Although small-scale irrigation can supply local and sub-regional markets with food in the off-season, it has received little research and its challenges are therefore rarely addressed. In order to contribute to the knowledge of these small-scale irrigation systems, with a view to improving their structure and the management of irrigation water and energy, an assessment of small-scale irrigation in the southern slopes of the Bamboutos Mountains has been done. After direct observations, field measurements, surveys of 100 irrigators with questionnaires and interviews with administrative managers, analyses were carried out using Xlstat software. It was found out that about 226 small-scale irrigation systems designed and managed by producers have been installed on this slope between the end of December 2022 and mid-March 2023. Intended for market garden crops, 84.96% of these irrigation systems use sprinklers and 15.04% surface irrigation (furrow irrigation). Surface or underground water is mobilized using gravity (50%), fossil fuels (34.51%), electricity (14.6%) or solar energy (0.9%). Sprinkler irrigation is mainly carried out using locally manufactured hydraulic turnstiles. There is a lack of formal associations of irrigators in an environment marked by conflicts between water users, when there is not allocation for water withdrawal. Apart from the high cost of pumping energy ($1.32 per liter of fuel), the main constraint identified, which has become more acute over the years, is the lack of irrigation water during the water shortage period (from mid-January to mid-March). These constraints have led to a transition from surface irrigation to sprinkler irrigation, and the adoption of new energy supply and water mobilization technologies. The construction of collective surface and groundwater catchment structures with solar-powered pumping systems, the setting up of formal irrigators’ associations and an irrigation support service, could improve the availability of water throughout the irrigation season, thereby helping to improve the income generated by irrigated market-garden farming on the southern slopes of the Bamboutos Mountains. 展开更多
关键词 Market Gardening Water Energy Small-Scale irrigation Southern Slope of the Bamboutos Mountains
在线阅读 下载PDF
Correlation between laparoscopic radical resection and tumor markers in peritoneal irrigation fluid
14
作者 Jin-Feng Zhou Wei Qiu +4 位作者 Jian-Sheng Chen Bao-Quan Yan Xiao-Hui Feng Mei-Zhen Xu Ji-Ping Yang 《World Journal of Gastrointestinal Surgery》 2025年第8期362-378,共17页
BACKGROUND Gastric cancer(GC)is one of the most common malignancies and types of cancer worldwide.AIM To compare the differences in tumor markers of GC with GC dissection,we evaluated the efficacy of recent tumor remo... BACKGROUND Gastric cancer(GC)is one of the most common malignancies and types of cancer worldwide.AIM To compare the differences in tumor markers of GC with GC dissection,we evaluated the efficacy of recent tumor removal.METHODS A prospective cohort study was conducted to analyze the clinical data of patients with GC.Patients were divided into two groups based on the surgical approach:The membrane dissection(MD)group,which underwent membrane-guided laparoscopic radical gastrectomy with D2 lymph node dissection plus complete mesocolic excision,and the D2 group,which underwent traditional laparoscopic radical gastrectomy with D2 lymph node dissection.Abdominal lavage fluid was collected pre-and postoperatively from patients in both groups.The expression of carcinoembryonic antigen(CEA)and cytokeratin-19(CK-19)message RNAs in the abdominal lavage fluid was detected using reverse transcription polymerase chain reaction.The factors influencing the increase of the tumor markers were analyzed,and the short-term efficacy of the two surgery types was compared.RESULTS In total,135 eligible patients were included in this study,with 69 and 66 cases in the MD and D2 groups,respectively.Fourteen patients with benign gastric lesions were selected to detect tumor marker expression.After excluding patients positive for preoperative cancer leakage,we found that 9.52%and 26.67%of patients in the MD and D2 groups developed postoperative CEA positivity,respectively.Multivariate analysis revealed that the degree of differentiation and surgical approach were independent risk factors for postoperative CEA positivity.The surgical approach was an independent risk factor affecting postoperative CK-19 positivity and postoperative CEA and CK-19 positivity.Surgical time,intraoperative blood loss,number of lymph nodes dissected,time to first postoperative flatus,and time to first liquid intake were all significantly different between the two surgical approaches.There were no significant differences in the incision length,duration of postoperative hospital stays,or postoperative complications.CONCLUSION MD is a better radical surgical treatment than traditional D2 surgery and is worthy of further clinical promotion and application. 展开更多
关键词 Gastric cancer Membrane anatomy Abdominal irrigation fluid Tumor markers Cancer leakage
暂未订购
Physiological and agronomic effects of regulated-deficit irrigation on soybean grown under arid climatic conditions
15
作者 Bouthayna El Amine Fatema Mosseddaq +3 位作者 Abdelhadi Ait Houssa Ahmed Bouaziz Lhoussaine Moughli Abdallah Oukarroum 《The Crop Journal》 2025年第1期281-291,共11页
Drought is one of the most severe environmental stresses affecting soybean growth and development,especially in arid and semi-arid areas.The aim of this experiment is to evaluate the effect of regulated deficit irriga... Drought is one of the most severe environmental stresses affecting soybean growth and development,especially in arid and semi-arid areas.The aim of this experiment is to evaluate the effect of regulated deficit irrigation during the vegetative stages on soybean plants and determine the amount irrigation water can be reduced without affecting the physiological parameters,the crop phenology,and the yield of the soybean crop.The field experiments were conducted during two irrigation crop seasons(2021 and 2022)in Louata,Morocco.The results showed that regulated deficit irrigation regimes during the vegetative stages was combined with high temperatures and low air humidities during the beginning of flowering and the pod filling stage during 2021 in comparison with 2022,especially for 25%CWR(crop water requirements).Regulated deficit irrigation regimes reduced the stomatal conductance by 46%and 52%respectively during the first and second growing seasons by limiting CO_(2) intake for the Calvin cycle.The stomata closure increased the leaf temperature and affected the functioning of the photosynthetic apparatus by damaging the chlorophyll pigments and impairment of electron transport chains in chloroplasts.The transition from regulated deficit irrigation to 100%CWR at the beginning of flowering(R1)compensated for the photosynthetic loss,improved the growth and development of soybean plants and enhanced the yield and its components for 50%and 75%CWR.The adaptative mechanism such as the remobilization of the carbon reserved in the stems and leaves(vegetative tissues)to the grains improved the grain yield by 36.7%during 2021 and by 32.2%during 2022 and.This consequently improved the water use efficiency,the water productivity of soybean for 50%and 75%CWR and contributed to water saving with an average of 60 mm per growing season. 展开更多
关键词 SOYBEAN Regulated-deficit irrigation Vegetative phase Soil water content Plant physiology and yield
在线阅读 下载PDF
Integrating hydrologic modeling and satellite remote sensing to assess the performance of sprinkler irrigation
16
作者 Chaolei Zheng Li Jia +6 位作者 Massimo Menenti Guangcheng Hu Jing Lu Qiting Chen Min Jiang Marco Mancini Chiara Corbari 《Geo-Spatial Information Science》 CSCD 2024年第3期934-952,共19页
Improving irrigation water management is a key concern for the agricultural sector,and it requires extensive and comprehensive tools that provide a complete knowledge of crop water use and requirements.This study pres... Improving irrigation water management is a key concern for the agricultural sector,and it requires extensive and comprehensive tools that provide a complete knowledge of crop water use and requirements.This study presents a novel methodology to explicitly estimate daily gross and net crop water requirements,actual crop water use,and irrigation efficiency of center pivot irrigation systems,by mainly utilizing the Sentinel-2 MultiSpectral Instrument(MSI)imagery at the farm scale.ETMonitor model is adapted to estimate actual water use(as the sum of canopy transpiration and evaporation of water intercepted by canopy and evaporation from soil)at daily/10-m resolution,benefiting from the high-resolution Sentinel-2 data and thus to assess the irrigation efficiency at the farm scale.The gross irrigation water requirement is estimated from the net crop water requirement and the water loss,including the water droplet evaporation directly into the air during application before droplets fall on the canopy and canopy interception loss.The method was applied to a pilot farmland with two major crops(wheat and potato)in the Inner Mongolia Autonomous Region of China,where modern equipment and appropriate irrigation methods are deployed for efficient water use.The estimated actual crop water use showed good agreement with the ground observations,e.g.the determination coefficients range from 0.67 to 0.81 and root mean square errors range from 0.56 mm/day to 1.24 mm/day for wheat and potato when comparing the estimated evapotranspiration with the measurement by the eddy covariance system.It also showed that the losses of total irrigated volume were 25.4%for wheat and 23.7%for potato,respectively,and found that the water allocation was insufficient to meet the water requirement in this irrigated area.This suggests that the amount of water applied was insufficient to meet the crop water requirement and the inherent water losses in the center pivot irrigation system,which imply the necessity to improve the irrigation practice to use the water more efficiently. 展开更多
关键词 Net irrigation water requirement crop water requirement consumptive water use gross irrigation water use irrigation performance center pivot irrigation systems ETMonitor
原文传递
Aerated irrigation increases tomato production by improving soil nitrogen availability
17
作者 Chuandong Tan Yadan Du +4 位作者 Xiaobo Gu Wenquan Niu Jinbo Zhang Christoph Muller Xuesong Cao 《Journal of Integrative Agriculture》 2025年第1期322-338,共17页
Soil nitrogen(N)is the main limiting nutrient for plant growth,which is sensitive to variations in the soil oxygen environment.To provide insights into plant N accumulation and yield under aerated and drip irrigation,... Soil nitrogen(N)is the main limiting nutrient for plant growth,which is sensitive to variations in the soil oxygen environment.To provide insights into plant N accumulation and yield under aerated and drip irrigation,a greenhouse tomato experiment was conducted with six treatments,including three fertilization types:inorganic fertilizer(NPK);organic fertilizer(OM);chemical(75%of applied N)+organic fertilizer(25%)(NPK+OM)under drip irrigation(DI)and aerated irrigation(AI)methods.Under Al,total soil carbon mineralization(C_(min))was significantly higher(by 5.7-7.0%)than under DI irrigation.C_(min)in the fertilizer treatments followed the order NPK+OM>OM>NPK under both AI and DI.Potentially mineralizable C(C_(0))and N(N_(0))was greater under AI than under DI.Gross N mineralization,gross nitrification,and NH_(4)^(+)immobilization rates were significantly higher under the AINPK treatment than the DINPK treatment by 2.58-3.27-,1.25-1.44-,and 1-1.26-fold,respectively.These findings demonstrated that AI and the addition of organic fertilizer accelerated the turnover of soil organic matter and N transformation processes,thereby enhancing N availability.Moreover,the combination of AI and organic fertilizer application was found to promote root growth(8.4-10.6%),increase the duration of the period of rapid N accumulation(ΔT),and increase the maximum N accumulation rate(V_(max)),subsequently encouraging aboveground dry matter accumulation.Consequently,the AI treatment yield was significantly greater(by 6.3-12.4%)than under the DI treatment.Further,N partial factor productivity(NPFP)and N harvest index(NHI)were greater under AI than under DI,by 6.3 to 12.4%,and 4.6 to 8.1%,respectively.The rankings of yield and NPFP remained consistent,with NPK+OM>OM>NPK under both AI and DI treatments.These results highlighted the positive impacts of AI and organic fertilizer application on soil N availability,N uptake,and overall crop yield in tomato.The optimal management measure was identified as the AINPK+OM treatment,which led to more efficient N management,better crop growth,higher yield,and more sustainable agricultural practices. 展开更多
关键词 aerated irrigation soil carbon/nitrogen mineralization gross nitrogen transformation nitrogen utilization YIELD
在线阅读 下载PDF
Optimization of fertilization combined with water-saving irrigation improves the water and nitrogen utilization efficiency of wheat and reduces nitrogen loss in the Nansi Lake basin,China
18
作者 Jingyi Feng He Zhang +8 位作者 Hongyuan Zhang Xirui Kang Hui Wang Hong Pan Quangang Yang Zhongchen Yang Yajie Sun Yanhong Lou Yuping Zhuge 《Journal of Integrative Agriculture》 2025年第10期4034-4047,共14页
The eutrophication of rivers and lakes is becoming increasingly common,primarily because of pollution from agricultural non-point sources.We investigated the effects of optimized water and fertilizer treatments on agr... The eutrophication of rivers and lakes is becoming increasingly common,primarily because of pollution from agricultural non-point sources.We investigated the effects of optimized water and fertilizer treatments on agricultural non-point source pollution in the Nansi Lake basin.The water heat carbon nitrogen simulator model(WHCNS model)was used to analyze water and nitrogen transport in wheat fields in Nansi Lake basin.Four water and fertilizer treatments were set up:conventional fertilization and irrigation(CK),reduced controlled-release fertilizer and conventional irrigation(F2W1),an equal amount of controlled-release fertilizer and reduced irrigation(F1W2),and reduced controlled-release fertilizer and reduced irrigation(F2W2).The results indicated that the replacement of conventional fertilizers with controlled-release fertilizers,combined with reduced irrigation,led to reduced nitrogen loss.Compared with those of the CK,the cumulative nitrogen leaching and ammonia volatilization of F2W1 were reduced by 8.90 and 41.67%,respectively;under F1W2,the same parameters were reduced by 12.50 and 15.99%,respectively.Compared with the other treatments,F2W2 significantly reduced nitrogen loss while producing a stable yield.Compared with those of the CK,ammonia volatilization and nitrogen loss due to leaching were reduced by 29.17 and 27.13%,respectively,water and nitrogen use efficiencies increased by 11.38 and 17.80%,respectively.F2W2 showed the best performance among the treatments,considering water and fertilizer management.Our findings highlight the effectiveness of optimizing water and fertilizer application in improving the water and nitrogen use efficiency of wheat,which is of great significance for mitigating nitrogen loss from farmland in the Nansi Lake basin. 展开更多
关键词 controlled-release fertilizer reduced irrigation WHCNS model nitrogen loss
在线阅读 下载PDF
Intelligent Irrigation System for Agricultural Greenhouse Adaptive to Crop Growth Law
19
作者 Haicheng Wan Shanping Wang +1 位作者 Qifan Dong Hongyu Jia 《Journal of Electronic Research and Application》 2025年第1期113-120,共8页
Greenhouse planting is a key method for increasing the yield of agricultural products in China.The Academy of Agricultural Sciences has conducted extensive research on the water requirements of greenhouse crops during... Greenhouse planting is a key method for increasing the yield of agricultural products in China.The Academy of Agricultural Sciences has conducted extensive research on the water requirements of greenhouse crops during various growth stages.Studies indicate that crops in the germination stage,seedling stage,and other stages of their growth cycle have different water needs.Proper irrigation can significantly enhance both crop quality and yield.To apply the Academy of Agricultural Sciences’expertise on irrigation during different growth stages to practical farming,and to avoid improper irrigation at specific stages that could reduce crop production and quality,our team has designed an intelligent irrigation system for agricultural greenhouses.This system adapts to the growth patterns of crops by establishing an irrigation model based on characteristic images of each growth stage and irrigation data provided by the Academy.Using image recognition technology,the system accurately identifies the growth stage of crops.It then employs a pre-set irrigation curve and data from humidity sensors to execute precise irrigation through a closed-loop Proportion-Integral-Differential(PID)control system.This ensures optimal water management,leading to improved crop quality and yield. 展开更多
关键词 Crop growth cycle Image recognition Precision irrigation
在线阅读 下载PDF
Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes
20
作者 Yunji Xu Xuelian Weng +6 位作者 Shupeng Tang Weiyang Zhang Kuanyu Zhu Guanglong Zhu Hao Zhang Zhiqin Wang Jianchang Yang 《Journal of Integrative Agriculture》 2025年第9期3351-3367,共17页
Alternate wetting and soil drying irrigation(AWD)technique is crucial in infuencing grain quality in rice(Oryza sativa L.).Lipids are the third most abundant constituents in rice grains,after starch and proteins,and a... Alternate wetting and soil drying irrigation(AWD)technique is crucial in infuencing grain quality in rice(Oryza sativa L.).Lipids are the third most abundant constituents in rice grains,after starch and proteins,and are closely related to grain quality.However,it remains unclear about the changes in lipids profling under different AWD regimes.This study set up three irrigation regimes including conventional irrigation(CI),alternate wetting and moderate soil drying irrigation(AWMD),and alternate wetting and severe soil drying irrigation(AWSD).It explored lipidome changes in milled rice of Yangdao 6(YD6)using the untargeted lipidomics approach and analyzed rice cooking and eating quality.The results identifed seven lipid classes,55 lipid subclasses,and 1,086 lipid molecular species.Compared with the CI regime,the AWMD regime mainly altered lipid subclasses consisting of triglyceride(TG),ceramide(Cer),diglyceride(DG),bis-methyl lysophosphatidic acid(BisMePA),phosphocholine(PC),phosphoethanolamine(PE),monogalactosyldiacylglycerol(MGDG),and digalactosyl diglyceride(DGDG)in milled rice and improved cooking and eating quality of rice;in contrast,the AWSD regime distinctly changed lipid subclasses like TG,Cer,DG,PC,PE,hexosylceramide(Hex1Cer),DGDG,and BisMePA and degraded cooking and eating quality of rice.Specifcally,AWMD most signifcantly altered the expressions of lipid molecules,including DGDG(18:0_18:2),DGDG(16:0_14:0),PC(33:1),Cer(t17:0_26:0),and Cer(t17:0_16:0);AWSD most obviously influenced the expressions of TG(6:0_14:0_18:3),PC(41:1),TG(19:1_18:4_18:4),Hex1Cer(d18:2_24:0+O),and Hex1Cer(d18:2_24:1).These 10 altered lipid molecules in milled rice can be preferentially used for investigating their relationships with grain quality in rice. 展开更多
关键词 rice(Oryza sativa L.) untargeted lipidomics analysis alternate wetting and soil drying irrigation milled rice cooking and eating quality
在线阅读 下载PDF
上一页 1 2 58 下一页 到第
使用帮助 返回顶部