期刊文献+
共找到1,147篇文章
< 1 2 58 >
每页显示 20 50 100
Analysis of the Physical State and Operation of Hydraulic Infrastructure in the Konni Irrigated Area before Rehabilitation
1
作者 Aboubacar Yerima Bako Djibo Illa Salifou Guero Yadji 《Open Journal of Applied Sciences》 2025年第1期127-136,共10页
In Niger, irrigated agriculture constitutes the main alternative for meeting family needs. It is within this framework that the state and its partners have adopted strategies to promote irrigated production sites. Thi... In Niger, irrigated agriculture constitutes the main alternative for meeting family needs. It is within this framework that the state and its partners have adopted strategies to promote irrigated production sites. This study was carried out on the Konni irrigated perimeter, the objective of which is to analyze the physical state of hydraulic infrastructures and their operation before the rehabilitation of the said perimeter. The methodology adopted consisted, first of all, of documentary research focused on data relating to this scope and our theme to properly guide the collection of data in the field. The field phase was then followed with an observation of hydraulic infrastructures one by one in order to assess their condition. Thus, the collected data was processed and analyzed. The results of this study show a notable deterioration of hydraulic infrastructure which affected the operating yield of the study area, with the development of barely 700 ha out of 1226 ha planned by the basic study for off-season production (57%). Bathymetric measurements showed that the volume of sediment that accumulated in the Zongo Dam is 1.2 million m3, which reduces its initial capacity from 12 million m3 to 10.8 million m3 after 43 years of service. The expansion joints of the feed canal are all in poor condition. 90% of the total length of the tertiary canals are degraded, 82.32% of the panels of the main canal C are degraded and 17.68% are cracked. All crossing structures are blocked between the RN1 and the Zongo dam. Based on this critical situation, it would be essential to consider rehabilitation work on all infrastructure in order to restore the hydraulic and even agronomic performance of the Konni irrigated area. 展开更多
关键词 irrigated Area DAMS REHABILITATION Work Monitoring Distribution Network Konni
在线阅读 下载PDF
Assessing the groundwater recharge processes in intensively irrigated regions: An approach combining isotope hydrology and machine learning
2
作者 MdArzoo Ansari Jacob Noble +4 位作者 USaravana Kumar Archana Deodhar Naima Akhtar Priyanka Singh Rishi Raj 《Geoscience Frontiers》 2025年第5期81-95,共15页
Agriculture is a major contributor to the global economy,accounting for approximately 70%of the freshwater use,which cause significant stress on aquifers in intensively irrigated regions.This stress often leads to the... Agriculture is a major contributor to the global economy,accounting for approximately 70%of the freshwater use,which cause significant stress on aquifers in intensively irrigated regions.This stress often leads to the decline in both the quantity and quality of groundwater resources.This study is focused on an intensively irrigated region of Northern India to investigate the sources and mechanism of groundwater recharge using a novel integrated approach combining isotope hydrology,Artificial Neural Network(ANN),and hydrogeochemical models.The study identifies several key sources of groundwater recharge,including natural precipitation,river infiltration,Irrigation Return Flow(IRF),and recharge from canals.Some groundwater samples exhibit mixing from various sources.Groundwater recharge from IRF is found to be isotopically enriched due to evaporation and characterized by high Cl−.Stable isotope modeling of evaporative enrichment in irrigated water helped to differentiate the IRF during various cultivation periods(Kharif and Rabi)and deduce the climatic conditions prevailed during the time of recharge.The model quantified that 29%of the irrigated water is lost due to evaporation during the Kharif period and 20%during the Rabi period,reflecting the seasonal variations in IRF contribution to the groundwater.The ANN model,trained with isotope hydrogeochemical data,effectively captures the complex interrelationships between various recharge sources,providing a robust framework for understanding the groundwater dynamics in the study area.A conceptual model was developed to visualize the spatial and temporal distribution of recharge sources,highlighting how seasonal irrigation practices influence the groundwater.The integration of isotope hydrology with ANN methodologies proved to be effective in elucidating the multiple sources and processes of groundwater recharge,offering insights into the sustainability of aquifer systems in intensively irrigated regions.These findings are critical for developing data-driven groundwater management strategies that can adapt to future challenges,including climate change,shifting land use patterns,and evolving agricultural demands.The results have significant implications for policymakers and water resource managers seeking to ensure sustainable groundwater use in water-scarce regions. 展开更多
关键词 irrigated region GROUNDWATER Recharge sources Stable water isotopes Model AGRICULTURE Artificial neural network
在线阅读 下载PDF
Biogeochemical behavior of ^(210)Po in the aquatic ecosystem of the North Crimean Canal and adjacent irrigated soils
3
作者 A.A.Korotkov N.Yu.Mirzoeva +1 位作者 O.N.Miroshnichenko I.N.Moseichenko 《Acta Geochimica》 2025年第2期314-324,共11页
The main objectives of this study were to investigate the distribution features of the ^(210)Po in abiotic(water and bottom sediments)and biotic(zooplankton,mollusks,fish)components of the North Crimean Canal(NCC)aqua... The main objectives of this study were to investigate the distribution features of the ^(210)Po in abiotic(water and bottom sediments)and biotic(zooplankton,mollusks,fish)components of the North Crimean Canal(NCC)aquatic ecosystem and adjacent irrigated soils as well as assessment of the doses received by water organisms from α-radiation of absorbed ^(210)Po.The samples were processed using standard radiochemical methods accepted in international practice.The activity of ^(210)Po in the samples was measured using the alpha-spectrometric OCTETE Plus complex(ORTEC-AMETEK,USA).The measurement error did not exceed 20%.Activity concentration of ^(210)Po in the studied objects decreased in the following rank:suspended matter(73.6 Bq/kg d.w.)>soils(32.5 Bq/kg d.w.)≈bottom sediments(32.1 Bq/kg d.w.)>mollusks(23.4 Bq/kg w.w.)>fish(6.4 Bq/kg w.w.).The ^(210)Po distribution coefficient(K_(d))values in water between suspended matter and its dissolved parts varied within the 1.4×10^(4)-1.4×10^(5) L/kg range.The concentration factors(CF)of ^(210)Po for hydrobionts of the NCC were in the range 10^(3)-10^(4) L/kg.The calculated absorbed radiation doses from ^(210)Po alpha radiation for the hydrobionts of the North Crimean Canal were significantly below the recommended dose limits. 展开更多
关键词 ^(210)Po North Crimean Canal ecosystem Water HYDROBIONTS Bottom sediments irrigated soils Equivalent dose
在线阅读 下载PDF
Improving water productivity of sprinkler-irrigated cumin through deficit irrigation in arid areas
4
作者 Hari Mohan MEENA Deepesh MACHIWAL +2 位作者 Priyabrata SANTRA Vandita KUMARI Saurabh SWAMI 《Journal of Arid Land》 2025年第6期791-807,共17页
Integrating sprinkler with deficit irrigation system is a new approach to improve crop water productivity and ensure water and food security in arid areas of India.This study undertook a field experiment of sprinkler-... Integrating sprinkler with deficit irrigation system is a new approach to improve crop water productivity and ensure water and food security in arid areas of India.This study undertook a field experiment of sprinkler-irrigated cumin(variety GC-4)with a mini-lysimeter setup at an experimental research farm in Jodhpur,India during 2019-2022.Four irrigation treatments T_(1),T_(2),T_(3),and T4 were designed at irrigation water/cumulative pan evaporation(IW/CPE)of 1.0,0.8,0.6,and 0.4,respectively,with three replications.Daily actual crop evapotranspiration(ETc)was recorded and weekly soil moisture was monitored over the crop growth period.Quantities of applied water and drainage from mini-lysimeters were also measured at every irrigation event.Yield of cumin was recorded at crop maturity.Furthermore,change in farmer's net income from 1-hm2 land was computed based on the cost of applying irrigation water and considering yield variations among the treatments.Results indicated the highest mean seasonal actual ETc(371.7 mm)and cumin yield(952.47 kg/hm2)under T_(1)(with full irrigation).Under T_(2),T_(3),and T4,the seasonal actual ETc decreased by 10.4%,27.6%,and 41.3%,respectively,while yield declined by 5.0%,28.4%,and 50.8%,respectively,as compared to the values under T_(1).Furthermore,crop water productivity of 0.272(±0.068)kg/m3 under T_(2)was found relatively higher in comparison to other irrigation treatments,indicating that T_(2)can achieve improved water productivity of cumin in arid areas at an optimum level of deficit irrigation.The results of cost-economics indicated that positive change in farmer's net income from 1-hm2 land was 108.82 USD under T_(2),while T_(3)and T4 showed net losses of 5.33 and 209.67 USD,respectively.Moreover,value of yield response factor and ratio of relative yield reductions to relative ETc deficits were found to be less than 1.00 under T_(2)(0.48),and more than 1.00 under T_(3)(1.07)and T4(1.23).This finding further supports that T_(2)shows the optimized level of deficit irrigation that saves 20.0%of water with sacrificing 5.0%yield in the arid areas of India.Findings of this study provide useful strategies to save irrigation water,bring additional area under irrigation,and improve crop water productivity in India and other similar arid areas in the world. 展开更多
关键词 cumin crop crop water productivity crop evapotranspiration deficit irrigation mini-sprinkler irrigation yield response factor
在线阅读 下载PDF
Responses of yield,root traits and their plasticity to the nitrogen environment in nitrogen-efficient cultivars of drip-irrigated rice
5
作者 Qingyun Tang Guodong Wang +2 位作者 Lei Zhao Zhiwen Song Yuxiang Li 《Journal of Integrative Agriculture》 2025年第2期480-496,共17页
The responses of drip-irrigated rice physiological traits to water and fertilizers have been widely studied.However,the responses of yield,root traits and their plasticity to the nitrogen environment in different nitr... The responses of drip-irrigated rice physiological traits to water and fertilizers have been widely studied.However,the responses of yield,root traits and their plasticity to the nitrogen environment in different nitrogen-efficient cultivars are not fully understood.An experiment was conducted from 2020-2022 with a high nitrogen use efficiency(high-NUE)cultivar(T-43)and a low-NUE cultivar(LX-3),and four nitrogen levels(0,150,300,and 450 kg ha^(-1))under drip irrigation in large fields.The aim was to study the relationships between root morphology,conformation,biomass,and endogenous hormone contents,yield and NUE.The results showed three main points:1)Under the same N application rate,compared with LX-3,the yield,N partial factor productivity(PFP),fine root length density(FRLD),shoot dry weight(SDW),root indole-3-acetic acid(IAA),and root zeatin and zeatin riboside(Z+ZR)of T-43 were significantly greater by11.4-18.9,11.3-13.5,11.6-15.7,9.9-31.1,6.1-48.1,and 22.8-73.6%,respectively,while the root-shoot ratio(RSR)and root abscisic acid(ABA)were significantly lower(P<0.05);2)nitrogen treatment significantly increased the rice root morphological indexes and endogenous hormone contents(P<0.05).Compared to N0,the yield,RLD,surface area density(SAD),root volume density(RVD),and root endogenous hormones(IAA,Z+ZR)were significantly increased in both cultivars under N2 by 61.6-71.6,64.2-74.0,69.9-105.6,6.67-9.91,54.0-67.8,and 51.4-58.9%,respectively.Compared with N3,the PFP and N agronomic efficiency(NAE)of nitrogen fertilizer under N2 increased by 52.3-62.4 and39.2-63.0%,respectively;3)the responses of root trait plasticity to the N environment significantly differed between the cultivars(P<0.05).Compared with LX-3,T-43 showed a longer root length and larger specific surface area,which is a strategy for adapting to changes in the nutrient environment.For the rice cultivar with high-NUE,the RSR was optimized by increasing the FRLD,root distribution in upper soil layers,and root endogenous hormones(IAA,Z+ZR)under suitable nitrogen conditions(N2).An efficient nutrient acquisition strategy can occur through root plasticity,leading to greater yield and NUE. 展开更多
关键词 drip irrigation rice nitrogen environment root traits PLASTICITY YIELD nitrogen use efficiency
在线阅读 下载PDF
Establishment of critical nitrogen-concentration dilution curves based on leaf area index and aboveground biomass for drip-irrigated spring maize in Northeast China
6
作者 Linli Zhou Bo Ming +11 位作者 Keru Wang Dongping Shen Liang Fang Hongye Yang Jun Xue Ruizhi Xie Peng Hou Jianquan Ye Jinghui Yu Ting Zhang Guoqiang Zhang Shaokun Li 《The Crop Journal》 2025年第2期556-564,共9页
The unreasonable application of nitrogen fertilizer poses a threat to agricultural productivity and the environment protection in Northeast China.Therefore,accurately assessing crop nitrogen requirements and optimizin... The unreasonable application of nitrogen fertilizer poses a threat to agricultural productivity and the environment protection in Northeast China.Therefore,accurately assessing crop nitrogen requirements and optimizing fertilization are crucial for sustainable agricultural production.A three-year field experiment was conducted to evaluate the effects of planting density on the critical nitrogen concentration dilution curve(CNDC)for spring maize under drip irrigation and fertilization integration,incorporating two planting densities:D1(60,000 plants ha^(-1))and D2(90,000 plants ha^(-1))and six nitrogen levels:no nitrogen(N0),90(N90),180(N180),270(N270),360(N360),and 450(N450)kg ha^(-1).A Bayesian hierarchical model was used to develop CNDC models based on dry matter(DM)and leaf area index(LAI).The results revealed that the critical nitrogen concentration exhibited a power function relationship with both DM and LAI,while planting density had no significant impact on the CNDC parameters.Based on these findings,we propose unified CNDC equations for maize under drip irrigation and fertilization integration:Nc=4.505DM-0.384(based on DM)and Nc=3.793LAI-0.327(based on LAI).Additionally,the nitrogen nutrition index(NNI),derived from the CNDC,increased with higher nitrogen application rates.The nitrogen nutrition index(NNI)approached 1 with a nitrogen application rate of 180 kg ha^(-1)under the D1 planting density,while it reached 1 at 270 kg ha^(-1)under the D2 planting density.The relationship between NNI and relative yield(RY)followed a“linear+plateau”model,with maximum RY observed when the NNI approached 1.Thus,under the condition of drip irrigation and fertilization integration in Northeast China’s spring maize production,the optimal nitrogen application rates for achieving the highest yields were 180 kg ha^(-1)at a planting density of 60,000 plants ha^(-1),and 270 kg ha^(-1)at a density of 90,000 plants ha^(-1).The CNDC and NNI models developed in this study are valuable tools for diagnosing nitrogen nutrition and guiding precise fertilization practices in maize production under integrated drip irrigation and fertilization systems in Northeast China. 展开更多
关键词 Drip irrigation fertigation integration Spring maize Bayesian analysis Critical nitrogen concentration dilution curve Nitrogen nutrition index
在线阅读 下载PDF
Plane(Platanus orientalis L.)leaf biochar improves wettability of a silty clay soil irrigated with saline water
7
作者 Vajiheh DOROSTKAR Fatemeh Zahra ARABAMERI 《Pedosphere》 2025年第4期775-782,共8页
The wettability of coarse-grained soils has been studied previously.However,soil drying in arid regions due to limited precipitation or irrigation has resulted in soil water repellency to some extent in fine-grained s... The wettability of coarse-grained soils has been studied previously.However,soil drying in arid regions due to limited precipitation or irrigation has resulted in soil water repellency to some extent in fine-grained soils.In this study,laboratory experiments were conducted to investigate the effects of plane(Platanus orientalis L.)leaf biochar with fine(<0.1 mm)and coarse grains(0.1-0.5 mm)on the wettability of a silty clay soil irrigated with saline and non-saline water.Eleven rates of each biochar,ranging from 0 to 10%with 1%intervals,were investigated along with five ionic strengths of water,including 0,0.2,0.4,0.6,and 0.8 mol L^(-1),prepared using sodium and calcium chloride,which are two dominant salts in arid regions.The results showed that application of 5%-10%fine-grained biochar changed the soil hydrophobicity class from strongly to slightly water-repellent,while only 4%coarse-grained biochar was sufficient for the same change in soil wettability.Furthermore,the use of 10%coarse-grained biochar made the soil hydrophilic.The positive effect of plane leaf biochar on soil water repellency reduction was limited by water salinity.The sodium chloride solution was more effective in decreasing the soil wettability than calcium chloride solution and increased the demand for biochar for soil water repellency reduction.In conclusion,plane leaf biochar could be beneficial in managing the hydrophobicity of fine-grained soils.However,water quality as well as biochar particle size determined the quantity of biochar required for improving soil wettability. 展开更多
关键词 electrolyte ionic strength irrigation water quality molarity of ethanol droplet soil hydrophobicity amelioration soil water repellency water drop penetration time
原文传递
Irrigated Agriculture Facing the Challenge of Climate Change: Adaptation Strategies for Farmers in the Irrigated Perimeters of Môle Saint-Nicolas, Haiti
8
作者 Frantz Mial Jean-François Bissonnette +1 位作者 Marc-André Bourgault Meryem Qacami 《American Journal of Climate Change》 2024年第3期477-498,共22页
Môle Saint-Nicolas, like all other communes in the Republic of Haiti, faces increasing climate variability, impacting agricultural production and water resources. Consequently, there is a pressing need for adapta... Môle Saint-Nicolas, like all other communes in the Republic of Haiti, faces increasing climate variability, impacting agricultural production and water resources. Consequently, there is a pressing need for adaptation to these climatic changes. This research aims to showcase the adaptation strategies deployed by farmers to cope with the increasing climate variability. Surveys were conducted through group and individual discussions with a randomly selected cohort of 150 farmers. Two types of analysis were performed: quantitative and qualitative. The quantitative data analysis was conducted using Statistical Package for the Social Sciences (SPSS) software. The findings reveal that farmers have perceived changes in rainfall patterns, temperature, wind, and their environment. These changes manifest as irregular rainfall, higher temperatures, prolonged drought periods, violent winds accompanied by rain, premature cessation of rains, and reduced flow from water sources. In response, the most common adaptation strategies adopted include selecting new cultivars, early-maturing varieties, crop rotation and diversification, canal dredging, new soil preparation methods, upstream water source protection, and micro-watershed management. The significance of this research lies in its contribution to enhancing farmers’ adaptive capacities by alerting stakeholders in the irrigated perimeters about the consequences of climate change, thereby incorporating the real needs of farmers in future projects. 展开更多
关键词 Climate Change Perception Adaptation Agriculture irrigated Perimeter
在线阅读 下载PDF
Demography and Socio-Economic Aspects on Irrigated Smallholder Agricultural Enterprises and Their Association with the Cultivation of Maize (Zea mays L.) as a Selected Field Crop
9
作者 Tsumbedzo Jutas Mavhungu Azwihangwisi Edward Nesamvuni +2 位作者 Khathutshelo Alfred Tshikolomo Ndivhudzannyi Sylvestor Mpandeli Johan Adriaan van Niekerk 《Agricultural Sciences》 2024年第7期729-741,共13页
The purpose of this study is to correlate demography and socio-economic aspects at Irrigated Smallholder Agricultural Enterprises and their association with the Cultivation of Maize in order to determine its positive ... The purpose of this study is to correlate demography and socio-economic aspects at Irrigated Smallholder Agricultural Enterprises and their association with the Cultivation of Maize in order to determine its positive impacts at irrigated smallholders’ agricultural entrepreneurs’ household. Chi-square test was used as descriptive analysis method. The Fischer Exact tests were employed to test demography (gender, age, education, and income) in winter and summer production season of irrigated smallholder agricultural enterprises and their association with the cultivation of selected field crop (i.e. maize). The results show that gender results were not being statistically significant, as measured by the Phi measure of effect size, φ = 0.149, p = 0.011, and φ = 0.05, p = 0.392 in summer. As far as age is concern, it appears to be a statistically significant association between cultivating maize and age in winter, φ = 0.046, p = 0.730 in winter and φ = 0.172, p = 0.013. Education winter result not being statistically significant, the effect size showed a weak association, as measured by the Phi measure of effect size, φ = 0.112, p = 0.305 and φ = 0.035, p = 0.948 in summer. Income result not being statistically significant, as measured by the Phi measure of effect size, φ = 0.049, p = 0.399 and φ = 0.081, p = 0.166 in summer. In conclusion, the study shows that the development of best management practices must be based on a comprehensive analysis of the livelihoods and irrigated smallholder agricultural enterprise farming styles of participating irrigated smallholder agricultural entrepreneurs. 展开更多
关键词 MAIZE ASSOCIATION irrigated Smallholder Agricultural Enterprises DEMOGRAPHY Livelihoods
在线阅读 下载PDF
Effect of Irrigation on Groundwater Dynamic Change in the Typical Irrigated Area of Qinghai Province 被引量:3
10
作者 周鸿文 吕文星 +2 位作者 唐红波 王永峰 申国峰 《Agricultural Science & Technology》 CAS 2016年第7期1718-1722,共5页
Under the influence of the natural and human factors, water table of irri- gated area Changes frequently, but it is mainly affected by irrigation water infiltration replenishment during the irrigation. 5 groundwater o... Under the influence of the natural and human factors, water table of irri- gated area Changes frequently, but it is mainly affected by irrigation water infiltration replenishment during the irrigation. 5 groundwater observation wells were constructed in experimental plot of the Daxia irrigated area to carry out the experiment of the effect of irrigation on groundwater dynamic change in this research. The results showed that the groundwater stage dynarnic change rule of spring and seedling irri- gation stage in the typical plot was fit to the hydrological geology condition of grade- I terrace of Huangshui river valley. On the whole, lateral canal water direction formed a line effect. The No. 1 and No. 2 observation well were the closest to the lateral canal, which received more supplies, and the water level was the highest; the No, 3 observation well took the second place; The No. 4 and No. 5 observation well accepted least supplies, and the water level was the lowest. The rangeability of water table of spring irrigation period was significantly higher than that of seedling irrigation period, this is mainly due to the difference value of intake water volume and drainage water volume of spring irrigation phase was significantly higher than the seedling irrigation phase. 展开更多
关键词 Farm irrigation Water table Dynamiq Change Typical irrigated area basin in Qinghai Province
在线阅读 下载PDF
Vertical Variation Characteristics of Basic Physical Properties in the Daxia Irrigated Area of Qinghai Province
11
作者 吕文星 唐洪波 +3 位作者 刘东旭 王国重 王玉明 李东 《Agricultural Science & Technology》 CAS 2015年第12期2859-2862,2865,共5页
Influenced by climate, biology and soil properties, vertical soil profile showed stratification character in terms of basic physical properties. The research conducted measurement and analysis on basic physical proper... Influenced by climate, biology and soil properties, vertical soil profile showed stratification character in terms of basic physical properties. The research conducted measurement and analysis on basic physical properties of typical field in the Daxia irrigation area in Qinghai Province. The results showed that soil bulk density changed from decreasing to increasing upon soil horizon; the soil horizons in 0-40 and 90-150 cm were high porosity zones, and the others were low porosi- ty area; the saturation moisture capacity, water retention of capillary porosity and field water retention all changed from decreasing to increasing upon soil horizon featured by arithmetic progression. In addition, the research area in Daxia irrigated area showed loose structure in soil horizon of 0-40 cm, compacted in 40-60 cm, and loose again in 60-200 cm vertically. 展开更多
关键词 Daxia irrigated area Soil basic physical properties Vertical variation
在线阅读 下载PDF
Optimal yield-related attributes of irrigated rice for high yield potential based on path analysis and stability analysis 被引量:4
12
作者 Ganghua Li Jun Zhang +5 位作者 Congdang Yang Yunpan Song Chengyan Zheng Shaohua Wang Zhenghui Liu Yanfeng Ding 《The Crop Journal》 SCIE CAS 2014年第4期235-243,共9页
Improvement of yield in rice(Oryza sativa L.) is vital for ensuring food security in China. Both rice breeders and growers need an improved understanding of the relationship between yield and yield-related traits. New... Improvement of yield in rice(Oryza sativa L.) is vital for ensuring food security in China. Both rice breeders and growers need an improved understanding of the relationship between yield and yield-related traits. New indica cultivars(53 in 2007 and 48 in 2008) were grown in Taoyuan,Yunnan province, to identify important components contributing to yield. Additionally, two standard indica rice cultivars with similar yield potentials, II You 107(a large-panicle type) and Xieyou 107(a heavy-panicle type), were planted in Taoyuan, Yunnan province and Nanjing,Jiangsu province, from 2006 to 2008 to evaluate the stability of yield and yield-related attributes.Growth duration(GD), leaf area index(LAI), panicles per m2(PN), and spikelets per m2(SM) were significantly and positively correlated with grain yield(GY) over all years. Sequential path analysis identified PN and panicle weight(PW) as important first-order traits that influenced grain yield. All direct effects were significant, as indicated by bootstrap analysis. Yield potential varied greatly across locations but not across years. Plant height(PH), days from heading to maturity(HM), and grain weight(GW) were stable traits that showed little variation across sites or years, whereas GD(mainly the pre-heading period, PHP) and PN varied significantly across locations. To achieve a yield of 15 t ha-1, a cultivar should have a PH of 110–125 cm, a long GD with HM of approximately 40 days, a PN of 300–400 m-2, and a GW of 29–31 mg. 展开更多
关键词 irrigated rice GRAIN YIELD Yield-related attributes SEQUENTIAL path ANALYSIS Stability ANALYSIS
在线阅读 下载PDF
Groundwater recharge under irrigated agro-ecosystems in the North China Plain: From a critical zone perspective 被引量:4
13
作者 MIN Leilei QI Yongqing +3 位作者 SHEN Yanjun WANG Ping WANG Shiqin LIU Meiying 《Journal of Geographical Sciences》 SCIE CSCD 2019年第6期877-890,共14页
From a critical zone perspective, the present paper aims to present the magnitude of groundwater recharge under different agricultural land-use types, reveal the process of water and solute transport in thick vadose z... From a critical zone perspective, the present paper aims to present the magnitude of groundwater recharge under different agricultural land-use types, reveal the process of water and solute transport in thick vadose zone, evaluate the "time lag" effect of recharge, and underscore the role of thickening vadose zone in recharge. The results indicated that different agricultural land-use types need to be further considered in recharge rate estimate. Under the typical irrigation condition in the piedmont plain, the recharge rate under flood irrigated winter wheat and summer maize(W/M_F), maize(M), non-cultivation(NC), native vegetation(NV), vegetables(V), and orchards(O) is 206.4, 149.7, 194.1, 46.4, 320.0, and 48.6 mm/yr, respectively. In the central plain, the value under W/M_F, M, NC, V, and cotton(C) is 92.8, 50.8, 85.0, 255.5, and 26.5 mm/yr, respectively. Soil water residence time(several years) and groundwater level response time(several months) should be distinguished to further understand the processes of groundwater recharge, because the soil water displacement velocities range from 0.2 to 2.2 m/yr while the rate of wetting front propagation is approximately 47 m/yr in the piedmont plain. The thickening vadose zone would prolong residence time of soil water and contaminant, which could postpone the time of or alleviate groundwater pollution, but have no significant influence on the magnitude of recharge in a long time scale. Recharge coefficient based on shorter time span(e.g. 2 or 3 years) should be used with caution as a parameter for groundwater resources evaluation, because it varies with total water input and target soil depth. Uncertainties in evapotranspiration and other water balance components should be evaluated in recharge estimation and the impact of land-use types on recharge should be emphasized. The critical zone science would greatly improve the understanding of groundwater recharge processes. The results of the present study will be helpful in sustainable groundwater resources management. 展开更多
关键词 GROUNDWATER RECHARGE critical zone irrigated AGRO-ECOSYSTEMS NORTH China PLAIN
原文传递
Layering Precision Land Leveling and Furrow Irrigated Raised Bed Planting: Productivity and Input Use Efficiency of Irrigated Bread Wheat in Indo-Gangetic Plains 被引量:6
14
作者 M. L. Jat Raj Gupta +1 位作者 Y. S. Saharawat Raj Khosla 《American Journal of Plant Sciences》 2011年第4期578-588,共11页
Stagnating yield and declining input use efficiency in irrigated wheat of the Indo-Gangetic Plain (IGP) coupled with diminishing availability of water for agriculture is a major concern of food security in South Asia.... Stagnating yield and declining input use efficiency in irrigated wheat of the Indo-Gangetic Plain (IGP) coupled with diminishing availability of water for agriculture is a major concern of food security in South Asia. The objective of our study was to establish an understanding of how wheat yield and input use efficiency can be improved and how land leveling and crop establishment practices can be modified to be more efficient in water use through layering of precision-conservation crop management techniques. The “precision land leveling with raised bed” planting can be used to improve crop yield, water and nutrient use efficiency over the existing “traditional land leveling with flat” planting practices. We conducted a field experiment during 2002-2004 at Modipuram, India to quantify the benefits of alternate land leveling (precision land leveling) and crop establishment (furrow irrigated raised bed planting) techniques alone or in combination (layering precision-conservation) in terms of crop yield, water savings, and nutrient use efficiency of wheat production in IGP. The wheat yield was about 16.6% higher with nearly 50% less irrigation water with layering precision land leveling and raised bed planting compared to traditional practices (traditional land leveling with flat planting). The agronomic (AE) and uptake efficiency (UE) of N, P and K were significantly improved under precision land leveling with raised bed planting technique compared to other practices. 展开更多
关键词 Precision Land Leveling FURROW irrigated Raised BED PLANTING Input Use EFFICIENCY irrigated Bread Wheat Water PRODUCTIVITY Uptake EFFICIENCY Agronomic EFFICIENCY
在线阅读 下载PDF
Response of Soil Organic Carbon and Its Aggregate Fractions to LongTerm Fertilization in Irrigated Desert Soil of China 被引量:4
15
作者 CHAI Yan-jun ZENG Xi-bai +4 位作者 E Sheng-zhe HUANG Tao CHE Zong-xian SU Shi-ming BAI Ling-yu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第12期2758-2767,共10页
Irrigated desert soil samples in the Hexi Corridor of China were collected over a period of 23 years from a site where different fertilization methods had been used. Changes of soil organic carbon (SOC) and its wate... Irrigated desert soil samples in the Hexi Corridor of China were collected over a period of 23 years from a site where different fertilization methods had been used. Changes of soil organic carbon (SOC) and its water stable aggregate (WSA) size fractions were studied. The effects of various fertilization methods on the distribution of added organic carbon (OC) in different WSA size fractions were also analyzed. The results showed that the applied fertilizations for 23 years improved SOC concentrations and OC concentrations in all WSA size fractions compared to the non-fertilized treatment (CK). In addition, fertilization obviously increased the OC stocks of2 mm, 0.25-2 mm and 0.053-0.25 mm WSA fractions, respectively. A signiifcant positive correlation was found between soil C gains and OC inputs (r=0.92, P〈0.05), indicating that SOC may have not reached the saturation point yet at the site. The C sequestration rate was estimated by 14.02%at the site. The OC stocks in all of the〈2 mm WSA fractions increased with the increase of OC input amounts;and the conversion rate of the input fresh OC to the OC stock of〈0.053 mm WSA fraction was 1.2 and 2.6 times higher than those of the 0.25-2 mm and 0.053-0.25 mm WSA fractions, respectively. Therefore, the〈0.053 mm WSA fraction was the most important component for soil C sequestration in the irrigated desert soil. 展开更多
关键词 AGGREGATE irrigated desert soil long-term fertilization organic carbon
在线阅读 下载PDF
Germplasm Innovation of Heat Tolerance in Rice for Irrigated Lowland Conditions in the Philippines 被引量:4
16
作者 Norvie L.MANIGBAS Leslie Angela F.LAMBIO +1 位作者 Luvina B.MADRID Corazon C.CARDENAS 《Rice science》 SCIE 2014年第3期162-169,共8页
Heat-tolerant varieties, such as N22 and Dular, which were used in this study, usually have low yield potential and undesirable plant characteristics but combining them with high yielding and improved rice varieties, ... Heat-tolerant varieties, such as N22 and Dular, which were used in this study, usually have low yield potential and undesirable plant characteristics but combining them with high yielding and improved rice varieties, new heat-tolerant rice genotypes with high yield potential can be achieved. In this study, phenotyping and selecting desirable materials from various crosses were performed under high temperature conditions during the reproductive stage. Screening was performed in the field and glasshouse to select individuals with heat tolerance and high yield potential. Several advanced breeding lines from Gayabyeo/N22 cross produced desirable individuals with heat tolerance, resistance to pests and diseases, and high yield potential. The genetic variation in percent sterility among the selected backcross populations grown in high temperature environments showed that large number of plants can be identified and selected with lower percent sterility. 展开更多
关键词 heat tolerance high temperature irrigated lowland RICE
在线阅读 下载PDF
Chemical fractions and potential mobility of lead in soils irrigated by sewage in Pearl River Delta,South China 被引量:1
17
作者 黄冠星 陈宗宇 +3 位作者 孙继朝 刘景涛 张玉玺 王金翠 《Journal of Central South University》 SCIE EI CAS 2012年第9期2620-2626,共7页
The chemical fractions,i.e.,water soluble(WS),exchangeable(Ex),carbonate(Car),weakly organic(WO),Fe-Mn oxide(FMO),strongly organic(SO),residual(Res) fraction,of Pb in irrigated soils in South China were investigated b... The chemical fractions,i.e.,water soluble(WS),exchangeable(Ex),carbonate(Car),weakly organic(WO),Fe-Mn oxide(FMO),strongly organic(SO),residual(Res) fraction,of Pb in irrigated soils in South China were investigated by a modified Tessier sequential extraction technique.The results show that the chemical fraction of Pb in soil is mainly the Res fraction and followed by FMO fraction,and the WS,WO,FMO,and SO fractions in topsoils(0-10 cm) are higher than those in subsoils(30-40 cm).The sum of contents of WS and Ex fractions(SWE) in topsoils is significantly positively related with that in subsoils,indicating the strong mobility of Pb in WS and Ex fractions in soils,and the SWE in soils is higher than the German trigger value for the transfer path soil-plant,indicating the high bioavailability of Pb in soils of this area.Fortunately,SWE and the ratio of WS and Ex fractions(RWE) to the sum of all fractions generally decrease with the soil depth in soil profile and the RWE in soil profile is lower than 0.5%,indicating the low pollution risk for Pb in groundwater.In addition,soil particles,pH and Fe2O3 play an important role in the impact of mobility and chemical fractions of Pb in soils. 展开更多
关键词 chemical fractions MOBILITY LEAD irrigated soil soil profile
在线阅读 下载PDF
Evaluation of Levels of Selected Heavy Metals in Kales, Soils and Water Collected from Irrigated Farms along River Moiben, Uasin-Gishu County, Kenya 被引量:1
18
作者 Teresa Akenga Kiplagat Ayabei +2 位作者 Emmy Kerich Vincent Sudoi Cyrus Kuya 《Journal of Geoscience and Environment Protection》 2020年第2期144-155,共12页
There has been a rapidly increasing urbanization and industrialization as well as increased usage of agrochemicals in the recent few years which have resulted in accumulation of heavy metals in cultivated food, soils ... There has been a rapidly increasing urbanization and industrialization as well as increased usage of agrochemicals in the recent few years which have resulted in accumulation of heavy metals in cultivated food, soils and water. This research aimed at establishing the levels of Zn2+, Cd2+, Cu2+, Cr2+, Mn2+, Fe2+ and Pb2+ metal ions in kales, soil and irrigation water on farms along river Moiben. Twenty seven samples of vegetables, soil and water samples were collected using purposive sampling method, that is, the samples were collected from the households who had kales in their farms. Samples were then dried, grounded, digested and analyzed using Inductive Couple Plasma-Optical Emission Spectroscopy (ICP-OES). The results showed that the Fe had the highest mean in soil and water with the values of 250.22 ± 85.37 and 0.72 ± 0.33 mg/kg respectively, while in kales Zn value was highest with a value of 0.0154 ± 0.007 mg/kg. The metal ion concentrations in the soils and the irrigation water were higher than in kales. The concentrations on the metal ions were following this order Fe > Mn > Zn > Cu > Cr > Pb > Cd for soil as well as for water but for the kales sample it followed slightly different order Zn > Fe > Mn > Cu > Cr > Pb > Cd. In soil samples, metal ions concentrations (mg/kg) were found to be high compared to the levels in water and kales. ANOVA tests revealed that the mean difference in heavy metals concentration from different stations within the area was insignificant (p > 0.05) with an exception of Cd (p = 0.001) in water samples, Fe (p = 0.007) in kales samples, Zn (p = 0.016) and Cd (p = 0.011) in the samples of soil. Results were compared to the acceptable levels set by World Health Organization (WHO) and the study showed that for kales, concentrations of the metal ions were all lower than the (WHO) set standards. For water samples, Fe, Pb, Mn metal ions were above the WHO set standards. The presence of the investigated heavy metals in the samples could be pointed to excessive use of agrochemicals as indicated by our earlier survey on the use of agrochemicals. We therefore recommend thorough investigations and monitoring of the said heavy metals in the commercially distributed agrochemicals. 展开更多
关键词 HEAVY Metals Kales SOILS and WATER irrigated Farms
在线阅读 下载PDF
Genetic gains in wheat in Turkey:Winter wheat for irrigated conditions 被引量:1
19
作者 Nurberdy Gummadov Mesut Keser +7 位作者 Beyhan Akin Mustafa Cakmak Zafer Mert Seyfi Taner Irfan Ozturk Ali Topal Selami Yazar Alexey Morgounov 《The Crop Journal》 CAS CSCD 2015年第6期507-516,共10页
The study estimated genetic gain for yield and other traits in winter wheat released for irrigated environments in Turkey from 1963 to 2004. Yield trials including 14 varieties were grown in 16 environments from 2008 ... The study estimated genetic gain for yield and other traits in winter wheat released for irrigated environments in Turkey from 1963 to 2004. Yield trials including 14 varieties were grown in 16 environments from 2008 to 2012 in provinces of Konya, Eski?ehir, Ankara, and Edirne. The highest yields were achieved by recent varieties Kinaci-97(5.48 t ha^(-1)),Cetinel-2000(5.39 t ha^(-1)), Alpu-2001(5.44 t ha^(-1)), Ahmetaga(5.35 t ha^(-1)), and Ekiz-2004(5.42 t ha^(-1)) compared to older varieties Yektay-406(4.17 t ha^(-1)) and Bezostaya-1(4.27 t ha^(-1))released in the 1960 s. The progress reached in grain yield in 20 years was 1.16 t ha^(-1)or58 kg ha^(-1)(1.37%) per year. This gain was mainly achieved through shorter plant height and increased harvest index. There was no clear tendency of changes in specific yield components demonstrating that new high-yielding varieties may have different ways to reach their yield potentials. The yield gains were accompanied by improved stripe rust and leaf rust resistances primarily based on adult plant resistance genes. The grain quality of the new varieties did not deteriorate over time although most of them were inferior to the bread-making quality check Bezostaya-1, a feature that may require attention in future breeding. 展开更多
关键词 Bread wheat Yield potential Reduced plant height irrigated environment
在线阅读 下载PDF
Agronomic, Water Productivity and Economic Analysis of Irrigated Rice under Different Nitrogen and Water Management Methods 被引量:1
20
作者 Abdulai Yakubu Joseph Ofori +1 位作者 Christiana Amoatey Davie M. Kadyampakeni 《Agricultural Sciences》 2019年第1期92-109,共18页
The most limiting factors for irrigated rice farming are water and nitrogen. Efficient water and nitrogen management has remained critical for sustainable rice production in irrigated rice farming system. Due to rapid... The most limiting factors for irrigated rice farming are water and nitrogen. Efficient water and nitrogen management has remained critical for sustainable rice production in irrigated rice farming system. Due to rapid global population growth and climate change, future rice production will depend heavily on developing strategies and practices that use water and nitrogen efficiently. The study therefore set to evaluate agronomic, water productivity and economic analysis of irrigated rice under various nitrogen and water management methods. To achieve the set objectives, field and pot experiments were carried out at the Soil and Irrigation Research Centre, University of Ghana, Kpong in 2015 and 2016 cropping season. The field experiment was laid in a split plot design with water management treatments as main plots and N fertilizer as subplot treatment. The pot experiment was carried out in a randomized complete block design with five replications. The water management treatments were;continuous submergence (SC), alternate wet and dry soil condition (AWD) and moist soil condition (MC). Nitrogen fertilizer rates were;no N fertilizer (N0), 60 kg N/ha (N1) and 90 kg N/ha (N2). Data such as yield and yield parameters of rice, water use, water productivity, costs and returns were recorded. Results obtained from both pot and field experiments revealed that rice yields were at par in AWD and SC but yields were lower in MC treatment. With N fertilizer, higher yields were observed with 90 kg N/ha. The interaction effect of submerged with 90 kg N/ha gave the highest grain yield. N fertilizer effect on water use and water productivity was ranked as N2 > N1 > N0 while water management effect on water use and water productivity was ranked in this order: SC > AWD > MC and MC > AWD > SC respectively. 展开更多
关键词 irrigated Rice NITROGEN WATER Management Yield WATER PRODUCTIVITY
在线阅读 下载PDF
上一页 1 2 58 下一页 到第
使用帮助 返回顶部