期刊文献+
共找到64,094篇文章
< 1 2 250 >
每页显示 20 50 100
The critical role of iron homeostasis in neurodegenerative diseases
1
作者 Tiantian Liang Jiasen Xu +6 位作者 Yan Zhu He Zhao Xiaoyu Zhai Qi Wang Xiaohui Ma Limei Cui Yan Sun 《Neural Regeneration Research》 2026年第5期1723-1737,共15页
Neurodegenerative diseases are prevalent conditions that greatly impact human health.These diseases are primarily characterized by the progressive loss and eventual death of neuronal function,although the precise mech... Neurodegenerative diseases are prevalent conditions that greatly impact human health.These diseases are primarily characterized by the progressive loss and eventual death of neuronal function,although the precise mechanisms underlying these processes remain incompletely understood.Iron is an essential trace element in the human body,playing a crucial role in various biological processes.The maintenance of iron homeostasis relies on the body's intricate and nuanced regulatory mechanisms.In recent years,considerable attention has been directed toward the relationship between dysregulated iron homeostasis and neurodegenerative diseases.The regulation of iron homeostasis within cells is crucial for maintaining proper nervous system function.Research has already revealed that disruptions in iron homeostasis may lead to ferroptosis and oxidative stress,which,in turn,can impact neuronal health and contribute to the development of neurodegenerative diseases.This article primarily explores the intimate relationship between iron homeostasis and neurodegenerative diseases,aiming to provide novel insights and strategies for treating these debilitating conditions. 展开更多
关键词 ferroprotein neurodegenerative diseases iron homeostasis iron iron regulatory proteins
暂未订购
Study of the relationship between iron metabolism disorders and sepsis-associated liver injury:A prospective observational study
2
作者 Tian-Wei Wang Lu-Lu Zhou +10 位作者 Jing Yuan Wen-Xin Zhou Hao-Ran Wang Ting-Ting Yu Ji-Chao Zhai Cheng-Bin Tang Wei Jiang Jiang-Quan Yu Rui-Qiang Zheng Hai-Long Yu Jun Shao 《World Journal of Gastroenterology》 2025年第14期71-82,共12页
BACKGROUND Sepsis-associated liver injury(SALI)refers to secondary liver function impairment caused by sepsis,patients with SALI often have worse clinical outcomes.The early identification and assessment of the occurr... BACKGROUND Sepsis-associated liver injury(SALI)refers to secondary liver function impairment caused by sepsis,patients with SALI often have worse clinical outcomes.The early identification and assessment of the occurrence and progression of SALI are pressing issues that urgently need to be resolved.AIM To investigate the relationship between iron metabolism and SALI.METHODS In this prospective study,139 patients were recruited,with 53 assigned to the SALI group.The relationships between SALI and various iron metabolism-related biomarkers were examined.These biomarkers included serum iron(SI),total iron-binding capacity(TIBC),serum ferritin,transferrin,and transferrin saturation.To identify independent risk factors for SALI,both univariate and multivariate logistic regression analyses were performed.Additionally,receiver operating characteristic curve analysis was utilized to assess the predictive value of these biomarkers for the occurrence of SALI.RESULTS There were no statistically significant differences in age,sex,body mass index,Sequential Organ Failure Assessment scores(excluding liver function),or APACHE II scores between the two groups of patients.Compared with the sepsis group,the SALI group presented significantly higher SI(P<0.001),TIBC(P<0.001),serum ferritin(P=0.001),transferrin(P=0.005),and transferrin saturation levels(P<0.001).Multivariate logistic regression analysis revealed that SI(odds ratio=1.24,95%confidence interval:1.11-1.40,P<0.001)and TIBC levels(odds ratio=1.13,95%confidence interval:1.05-1.21,P<0.001)were independent predictors of SALI.Receiver operating characteristic curve analysis revealed that SI and TIBC had areas under the curve of 0.816 and 0.757,respectively,indicating moderate predictive accuracy for SALI.CONCLUSION Iron metabolism disorders are closely associated with the development of SALI,and SI and TIBC may serve as potential predictive biomarkers.The combined use of SI and TIBC has superior diagnostic efficacy for SALI.These findings provide valuable insights for the early identification and management of SALI among patients with sepsis. 展开更多
关键词 SEPSIS Liver injury iron metabolism Biomarkers Serum iron Total iron-binding capacity
暂未订购
Iron metabolism and sepsis-associated liver injury:Methodological considerations and clinical perspectives
3
作者 Gokhan Koker 《World Journal of Hepatology》 2025年第8期319-321,共3页
This letter offered commentary on the recently published article by Wang et al that investigated the relationship between iron metabolism disorders and sepsis-associated liver injury(SALI).The original study identifie... This letter offered commentary on the recently published article by Wang et al that investigated the relationship between iron metabolism disorders and sepsis-associated liver injury(SALI).The original study identified serum iron and total iron-binding capacity as potential predictive markers of SALI,contributing important insights to critical care hepatology.In this correspondence several methodological considerations that may influence the interpretation and general-izability of the findings were discussed.These include the limitations of a single-center design,the lack of serial biomarker measurements,the omission of hepcidin(a central iron regulatory hormone)as a measured variable,and the exclusive reliance on biochemical criteria for diagnosing liver injury.The potential value of incorporating imaging modalities and additional iron-related markers such as ferritin and transferrin saturation were also highlighted.The aim was to reinforce the importance of a comprehensive approach to iron metabolism in sepsis and to suggest future directions for clinical research that may enhance the diagnostic and prognostic utility of iron-related biomarkers in SALI. 展开更多
关键词 Sepsis-associated liver injury iron metabolism HEPCIDIN Serum iron Total iron-binding capacity Prognostic markers Biomarkers in critical illness Liver imaging FERRITIN Transferrin saturation
暂未订购
Role of iron ore in enhancing gasification of iron coke:Structural evolution,influence mechanism and kinetic analysis 被引量:1
4
作者 Jie Wang Wei Wang +4 位作者 Xuheng Chen Junfang Bao Qiuyue Hao Heng Zheng Runsheng Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期58-69,共12页
The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the micro... The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%. 展开更多
关键词 low-carbon ironmaking iron coke GASIFICATION structural evolution kinetic model
在线阅读 下载PDF
Study of Environmental and Geochemical Effects on The Distribution and Transformations of Iron Oxides in Some Soils
5
作者 Rafaa Haider Azizi Al-Mahanna Luma Abdalalah Sagban Alabadi 《Journal of Environmental & Earth Sciences》 2025年第2期129-137,共9页
This study was conducted to determine the content,distribution and transformation of iron oxides in the soils of the Middle Euphrates regions in Iraq.The study included four sites:Tuwairij area in Karbala Governorate,... This study was conducted to determine the content,distribution and transformation of iron oxides in the soils of the Middle Euphrates regions in Iraq.The study included four sites:Tuwairij area in Karbala Governorate,College of Agriculture at the University of Kufa in Najaf Governorate,College of Agriculture at the University of Qadisiyah in Diwaniyah Governorate,and the Nile District in Babylon Governorate.The results showed that the soils of Najaf and Qadisiyah were superior in terms of their content of total free iron oxides(Fet)compared to the soils of Karbala and Babylon.The relative distribution of free iron oxides was generally close among the studied sites,with a homogeneous pattern in the distribution of these oxides within the soil horizons.As for silicate iron oxides(Fes),a homogeneous pattern was observed in the soil of Babylon with its content increasing with depth,while these patterns varied in the soils of Karbala,Najaf and Qadisiyah.Regarding the ratios of crystalline iron oxides(Fed/Fet),the study showed that the Babylon and Qadisiyah soils recorded the highest values,while these values were lower in the Najaf and Karbala soils.On the other hand,amorphous iron oxides(FeO)showed similar values in the Najaf and Qadisiyah soils.In general,these results clearly showed the effect of environmental and geochemical factors of the study areas on the distribution and transformations of iron oxides in the soil of the Middle Euphrates regions. 展开更多
关键词 Fed/Fet FEO CRYSTALLINE iron Compounds Active iron Ratio
在线阅读 下载PDF
OsACL-A2 Regulates Positive Iron Uptake and Blast Resistance in Rice
6
作者 DUAN Wenjing AARON Chan +13 位作者 XU Peng ZHANG Yingxin SUN Lianping WANG Beifang CAO Yongrun ZHANG Yue LI Dian CHEN Daibo HONG Yongbo ZHAN Xiaodeng WU Weixun CHENG Shihua LIU Qun’en CAO Liyong 《Rice science》 2025年第5期589-593,I0005-I0008,共9页
Iron is an essential nutrient for plant growth,development,and disease resistance.Plants absorb iron through their roots,with citrate playing a key role in xylem transport of insoluble Fe3+.In this study,we identified... Iron is an essential nutrient for plant growth,development,and disease resistance.Plants absorb iron through their roots,with citrate playing a key role in xylem transport of insoluble Fe3+.In this study,we identified the cytoplasmic ATP-citrate lyase(ACL)subunit A2 in rice(Oryza sativa L.),OsACL-A2(Os12g0566300),as a critical factor for iron uptake and transport.The osacl-a2 mutant exhibited reduced leaf iron levels,leading to iron deficiency-induced chlorosis,activated defense signaling,and eventual necrosis in mature leaves.Additionally,blast resistance was weakened in immature osacl-a2 leaves.Exogenous iron supplementation rescued these defects.The mutant displayed reduced ATP-citrate lyase activity but increased citric acid levels compared with its wild type(WT),suggesting that the osacl-a2 mutation impairs enzyme activity.Thus,OsACL-A2-mediated citrate lyase activity plays a vital role in promoting iron uptake and associated blast resistance in rice. 展开更多
关键词 xylem transport blast resistance defense signaling iron uptake iron deficiency chlorosisactivated defense signalingand CHLOROSIS cytoplasmic ATP citrate lyase
在线阅读 下载PDF
Remediation of sulfamethoxazole contaminated soil using sulfidated zero-valent iron:The overlooked size and sulfur content effects
7
作者 Chenyu Nie Yinshun Dai +6 位作者 Zhongkai Duan Yucheng Feng Yi Chen Haijun Chen Chao Song Shuguang Wang Shan Zhao 《Journal of Environmental Sciences》 2025年第12期853-866,共14页
Sulfamethoxazole(SMX)contamination in farmland disrupts soil micro-ecological functions,posing a risk to soil health and productivity.Sulfidated zero-valent iron(SZVI),a promising green material known for its good rea... Sulfamethoxazole(SMX)contamination in farmland disrupts soil micro-ecological functions,posing a risk to soil health and productivity.Sulfidated zero-valent iron(SZVI),a promising green material known for its good reactivity,had been used for soil remediation.However,existing studies often overlooked the effects of particle size and sulfur content on the long-term performance of SZVI and its impact on soil micro-ecological safety.This study employed polysulfide-modified nano,micro-nano,and micron-sized SZVI to investigate how particle size and sulfur content influenced the reactivity and durability,as well as the iron oxide forms and microbial community of soil during the SMX remediation.The results demonstrated that micro-nano sized SZVI(nm-SZVI)exhibited prolonged reactivity,achieving 83.12%-99.91%SMX removal over 30 days and maintaining higher levels of soil amorphous and reactive ferrous iron.Although sulfidation improved reactivity,excessive sulfur content reduced removal efficiency and accelerated the conversion to soil crystalline iron forms.Compared to nanoparticles,nm-SZVI fostered microbial diversity and balanced functional bacteria for electron transfer,organic matter utilization,and nutrient cycling.However,the elevated sulfur content in SZVI inhibited the stability of the microbial network.Finally,it was found that SMX underwent isoxazole reduction cleavage and oxidative removal pathways,reducing ecological toxicity.This study provided a new insight into the rational design of SZVI to achieve long-term pollutant removal and ensuring the health and stability of the microbial community by regulating particle size and sulfur content in soil remediation. 展开更多
关键词 Sulfidated zero-valent iron SULFAMETHOXAZOLE Particle size Sulfur content Soil iron(hydr)oxide MICROORGANISM
原文传递
A Comprehensive Evaluation Framework for Lithium Iron Phosphate Cathode Relithiation Techniques:Balancing Production Costs,Electrochemical Performance,and Environmental Impact
8
作者 Evgenii Beletskii Alexey Volkov +3 位作者 Elizaveta Evshchik Valery Kolmakov Anna Shikhovtseva Valentin Romanovski 《Energy & Environmental Materials》 2025年第3期11-27,共17页
Lithium iron phosphate(LFP)has found many applications in the field of electric vehicles and energy storage systems.However,the increasing volume of end-of-life LFP batteries poses an urgent challenge in terms of envi... Lithium iron phosphate(LFP)has found many applications in the field of electric vehicles and energy storage systems.However,the increasing volume of end-of-life LFP batteries poses an urgent challenge in terms of environmental sustainability and resource management.Therefore,the development and implementation of efficient LFP battery recycling methods are crucial to address these challenges.This article presents a novel,comprehensive evaluation framework for comparing different lithium iron phosphate relithiation techniques.The framework includes three main sets of criteria:direct production cost,electrochemical performance,and environmental impact.Each criterion is scored on a scale of 0–100,with higher scores indicating better performance.The direct production cost is rated based on material costs,energy consumption,key equipment costs,process duration and space requirements.Electrochemical performance is assessed by rate capability and cycle stability.Environmental impact is assessed based on CO_(2)emissions.The framework provides a standardized technique for researchers and industry professionals to objectively compare relithiation methods,facilitating the identification of the most promising approaches for further development and scale-up.The total average score across the three criterion groups for electrochemical,chemical,and hydrothermal relithiation methods was approximately 60 points,while sintering scored 39 points,making it the least attractive relithiation technique.Combining approaches outlined in publications with scores exceeding 60,a relithiation scheme was proposed to achieve optimal electrochemical performance with minimal resource consumption and environmental impact.The results demonstrate the framework’s applicability and highlight areas for future research and optimization in lithium iron phosphate cathode recycling. 展开更多
关键词 battery recycling environmental impact lithium iron phosphate battery relithiation techno-economic analysis
在线阅读 下载PDF
Experimental and mechanistic study on iron extraction from high-iron red mud under multiple physical field coupling conditions
9
作者 DONG Hai-pei YANG Jin-lin +3 位作者 ZHOU Wen-tao YU Xu-yang MA Shao-jian WANG Ding-zheng 《Journal of Central South University》 2025年第7期2476-2486,共11页
Red mud is a solid waste discharged in the process of alumina production,and how to realize the efficient recovery of its iron is an urgent problem to be solved.In this study,the iron extraction test and mechanism stu... Red mud is a solid waste discharged in the process of alumina production,and how to realize the efficient recovery of its iron is an urgent problem to be solved.In this study,the iron extraction test and mechanism study of high iron red mud were carried out under the coupling conditions of multiple physical field(microwave field,gas-solid flow field and temperature field)with biomass as the reducing agent.The test results showed that under the optimal conditions,an iron concentrate with a yield of 78.4%,an iron grade of 59.23%,and a recovery rate of 86.65%was obtained.The analyses of XRD,XPS,TEM,and SEM-EDS showed that during the roasting process,the hematite in the high-iron red mud was completely converted to magnetite,and the biomass produced the reductant that provided the magnetization reaction;A large number of cracks and pores appeared in the surface of the hematite reduction product particles,which helped to induce iron minerals to undergo effective mineral phase transformation.The above study provides ideas for the phase transformation and efficient recovery of iron minerals in red mud. 展开更多
关键词 multiple physical field high-iron red mud BIOMASS mineral phase transformation iron extraction
在线阅读 下载PDF
Mechanism of thermal compressive strength evolution of carbon-bearing iron ore pellet without binders during reduction process
10
作者 Hong-tao Wang Yi-bin Wang +3 位作者 Shi-xin Zhu Qing-min Meng Tie-jun Chun Hong-ming Long 《Journal of Iron and Steel Research International》 2025年第4期871-882,共12页
Against the background of“carbon peak and carbon neutrality,”it is of great practical significance to develop non-blast furnace ironmaking technology for the sustainable development of steel industry.Carbon-bearing ... Against the background of“carbon peak and carbon neutrality,”it is of great practical significance to develop non-blast furnace ironmaking technology for the sustainable development of steel industry.Carbon-bearing iron ore pellet is an innovative burden of direct reduction ironmaking due to its excellent self-reducing property,and the thermal strength of pellet is a crucial metallurgical property that affects its wide application.The carbon-bearing iron ore pellet without binders(CIPWB)was prepared using iron concentrate and anthracite,and the effects of reducing agent addition amount,size of pellet,reduction temperature and time on the thermal compressive strength of CIPWB during the reduction process were studied.Simultaneously,the mechanism of the thermal strength evolution of CIPWB was revealed.The results showed that during the low-temperature reduction process(300-500℃),the thermal compressive strength of CIPWB linearly increases with increasing the size of pellet,while it gradually decreases with increasing the anthracite ratio.When the CIPWB with 8%anthracite is reduced at 300℃for 60 min,the thermal strength of pellet is enhanced from 13.24 to 31.88 N as the size of pellet increases from 8.04 to 12.78 mm.Meanwhile,as the temperature is 500℃,with increasing the anthracite ratio from 2%to 8%,the thermal compressive strength of pellet under reduction for 60 min remarkably decreases from 41.47 to 8.94 N.Furthermore,in the high-temperature reduction process(600-1150℃),the thermal compressive strength of CIPWB firstly increases and then reduces with increasing the temperature,while it as well as the temperature corresponding to the maximum strength decreases with increasing the anthracite ratio.With adding 18%anthracite,the thermal compressive strength of pellet reaches the maximum value at 800℃,namely 35.00 N,and obtains the minimum value at 1050℃,namely 8.60 N.The thermal compressive strength of CIPWB significantly depends on the temperature,reducing agent dosage,and pellet size. 展开更多
关键词 Non-blast furnace ironmaking Carbon-bearing iron ore pellet Reduction reaction Thermal compressive strength MECHANISM
原文传递
Iron dysregulation,ferroptosis,and oxidative stress in diabetic osteoporosis:Mechanisms,bone metabolism disruption,and therapeutic strategies
11
作者 Yao-Bin Wang Zhi-Peng Li +9 位作者 Peng Wang Rui-Bo Wang Yu-Hua Ruan Zhen Shi Hao-Yu Li Jin-Ke Sun Yang Mi Cheng-Jin Li Peng-Yuan Zheng Chang-Jiang Zhang 《World Journal of Diabetes》 2025年第6期73-88,共16页
Diabetic osteoporosis(DOP)is a common complication in diabetes,driven by hyperglycemia-induced metabolic disturbances,chronic inflammation,and oxi-dative stress.This review describes the critical role of iron metaboli... Diabetic osteoporosis(DOP)is a common complication in diabetes,driven by hyperglycemia-induced metabolic disturbances,chronic inflammation,and oxi-dative stress.This review describes the critical role of iron metabolism dysregu-lation in DOP pathogenesis,focusing on ferroptosis,a novel iron-dependent cell death pathway characterized by lipid peroxidation and reactive oxygen species(ROS)overproduction.Diabetic conditions exacerbate iron overload,impairing osteoblast function and enhancing osteoclast activity,while triggering ferroptosis in bone cells.Ferroptosis not only accelerates osteoblast apoptosis but also amplifies osteoclast-mediated bone resorption,synergistically promoting bone loss.Furthermore,chronic inflammation and oxidative stress disrupt the balance between bone formation and resorption,with elevated pro-inflammatory cyto-kines(e.g.,tumor necrosis factor-α,interleukin-6)and ROS exacerbating cellular dysfunction.Therapeutic strategies targeting iron metabolism(e.g.,deferoxamine)and ferroptosis inhibition(e.g.,nuclear factor erythroid 2-related factor 2/heme oxygenase-1 pathway activation,antioxidants like melatonin)demonstrate potential to mitigate DOP progression.Future research should prioritize personalized interventions,clinical trials of iron chelators and antioxidants,and mechanistic studies to refine therapeutic approaches.This review provides a comprehensive framework for understanding DOP pathogenesis and highlights innovative strategies to improve bone health in diabetic patients. 展开更多
关键词 Bone metabolism Bone mineral density Diabetes-related osteoporosis HYPERGLYCEMIA Inflammatory response iron-dependent cell death iron metabolism dysregulation OSTEOBLASTS OSTEOCLASTS Oxidative stress
暂未订购
Phase engineering and heteroatom incorporation enable defect-rich MoS_(2) for long life aqueous iron-ion batteries
12
作者 Xinyu Guo Chang Li +4 位作者 Wenjun Deng Yi Zhou Yan Chen Yushuang Xu Rui Li 《Chinese Chemical Letters》 2025年第3期506-511,共6页
Aqueous iron-ion batteries are regarded as one of the most promising candidates for grid applications owing to their low cost,high theoretical capacity,and excellent stability of iron in aqueous electrolytes.However,t... Aqueous iron-ion batteries are regarded as one of the most promising candidates for grid applications owing to their low cost,high theoretical capacity,and excellent stability of iron in aqueous electrolytes.However,the slow Fe(de)insertion caused by the high polarity of Fe^(2+)makes it difficult to match suitable cathode materials.Herein,defect-rich MoS_(2)with abundant 1T phase is synthesized and successfully applied in aqueous iron-ion batteries.Benefit from abundant active sites generated by the heteroatom incorporation and S vacancy,as well as the highly conductive 1T phase,it can deliver a specific capacity of 123 mAh/g at a current density of 100mA/g,and demonstrates an impressive capacity retention of 88%after 600 cycles at 200mA/g.This work presents a novel pathway for the advancement of cathode materials for aqueous iron-ion batteries. 展开更多
关键词 MoS_(2) Controllable phase engineering Aqueous iron-ion batteries Fe^(2+)intercalation iron metal anode
原文传递
Metabolomic and gut-microbial responses of earthworms exposed to microcystins and nano zero-valent iron in soil 被引量:2
13
作者 Yifan Wang Chunlong Zhang +1 位作者 Daohui Lin Jianying Zhang 《Journal of Environmental Sciences》 2025年第4期340-348,共9页
The earthworm-based vermiremediation facilitated with benign chemicals such as nano zero-valent iron(nZVI)is a promising approach for the remediation of a variety of soil contaminants including cyanotoxins.As themost ... The earthworm-based vermiremediation facilitated with benign chemicals such as nano zero-valent iron(nZVI)is a promising approach for the remediation of a variety of soil contaminants including cyanotoxins.As themost toxic cyanotoxin,microcystin-LR(MC-LR)enter soil via runoff,irrigated surface water and sewage,and the application of cyanobacterial biofertilizers as part of the sustainable agricultural practice.Earthworms in such remediation systems must sustain the potential risk from both nZVI and MC-LR.In the present study,earthworms(Eisenia fetida)were exposed up to 14 days to MC-LR and nZVI(individually and inmixture),and the toxicity was investigated at both the organismal andmetabolic levels,including growth,tissue damage,oxidative stress,metabolic response and gut microbiota.Results showed that co-exposure of MC-LR and nZVI is less potent to earthworms than that of separate exposure.Histological observations in the co-exposure group revealed only minor epidermal brokenness,and KEGG enrichment analysis showed that co-exposure induced earthworms to regulate glutathione biosynthesis for detoxification and reduced adverse effects from MC-LR.The combined use of nZVI promoted the growth and reproduction of soil and earthworm gut bacteria(e.g.,Sphingobacterium and Acinetobacter)responsible for the degradation of MC-LR,whichmight explain the observed antagonism between nZVI and MC-LR in earthworm microcosm.Our study suggests the beneficial use of nZVI to detoxify pollutants in earthworm-based vermiremediation systems where freshwater containing cyanobacterial blooms is frequently used to irrigate soil and supply water for the growth and metabolism of earthworms. 展开更多
关键词 Nano zero-valent iron MICROCYSTIN-LR Mixed exposure Vermiremediation Metabolic pathways Gut microbiota
原文传递
Organic fertilizer enhances soil aggregate stability by altering greenhouse soil content of iron oxide and organic carbon 被引量:1
14
作者 Lijun Ren Han Yang +4 位作者 Jin Li Nan Zhang Yanyu Han Hongtao Zou Yulong Zhang 《Journal of Integrative Agriculture》 2025年第1期306-321,共16页
Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic ... Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic fertilizer is not well understood.In a 3-year field experiment, we aimed to investigate the factors which drive the stability of soil aggregates in greenhouse soil.To explore the impact of organic fertilizer on soil aggregates, we established four treatments:no fertilization (CK);inorganic fertilizer (CF);organic fertilizer (OF);and combined application of inorganic and organic fertilizers(COF).The application of organic fertilizer significantly enhanced the stability of aggregates, that is it enhanced the mean weight diameter, geometric mean diameter and aggregate content (%) of>0.25 mm aggregate fractions.OF and COF treatments increased the concentration of SOC, especially the aliphatic-C, aromatic-C and polysaccharide-C components of SOC, particularly in>0.25 mm aggregates.Organic fertilizer application significantly increased the content of free Fe(Fed), reactive Fe (Feo), and non-crystalline Fe in both bulk soil and aggregates.Furthermore, non-crystalline Fe showed a positive correlation with SOC content in both bulk soil and aggregates.Both non-crystalline Fe and SOC were significantly positively correlated with>2 mm mean weight diameter.Overall, we believe that the increase of SOC, aromatic-C, and non-crystal ine Fe concentrations in soil after the application of organic fertilizer is the reason for improving soil aggregate stability. 展开更多
关键词 organic fertilizer soil aggregates soil organic carbon iron oxides greenhouse soil
在线阅读 下载PDF
Iron homeostasis and ferroptosis in muscle diseases and disorders:mechanisms and therapeutic prospects 被引量:1
15
作者 Qin Ru Yusheng Li +4 位作者 Xi Zhang Lin Chen Yuxiang Wu Junxia Min Fudi Wang 《Bone Research》 2025年第2期225-262,共38页
The muscular system plays a critical role in the human body by governing skeletal movement,cardiovascular function,and the activities of digestive organs.Additionally,muscle tissues serve an endocrine function by secr... The muscular system plays a critical role in the human body by governing skeletal movement,cardiovascular function,and the activities of digestive organs.Additionally,muscle tissues serve an endocrine function by secreting myogenic cytokines,thereby regulating metabolism throughout the entire body.Maintaining muscle function requires iron homeostasis.Recent studies suggest that disruptions in iron metabolism and ferroptosis,a form of iron-dependent cell death,are essential contributors to the progression of a wide range of muscle diseases and disorders,including sarcopenia,cardiomyopathy,and amyotrophic lateral sclerosis.Thus,a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention.This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury,as well as associated muscle diseases and disorders.Moreover,we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders.Finally,we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis. 展开更多
关键词 myogenic cytokinesthereby muscle diseases iron homeostasis ferroptosis SARCOPENIA therapeutic targets amyotrophic lateral sclerosis muscular system
暂未订购
High-energy-density lithium manganese iron phosphate for lithium-ion batteries:Progresses,challenges,and prospects 被引量:1
16
作者 Bokun Zhang Xiaoyun Wang +5 位作者 Shuai Wang Yan Li Libo Chen Handong Jiao Zhijing Yu Jiguo Tu 《Journal of Energy Chemistry》 2025年第1期1-17,共17页
The soaring demand for smart portable electronics and electric vehicles is propelling the advancements in high-energy–density lithium-ion batteries.Lithium manganese iron phosphate(LiMn_(x)Fe_(1-x)PO_(4))has garnered... The soaring demand for smart portable electronics and electric vehicles is propelling the advancements in high-energy–density lithium-ion batteries.Lithium manganese iron phosphate(LiMn_(x)Fe_(1-x)PO_(4))has garnered significant attention as a promising positive electrode material for lithium-ion batteries due to its advantages of low cost,high safety,long cycle life,high voltage,good high-temperature performance,and high energy density.Although LiMn_(x)Fe_(1-x)PO_(4)has made significant breakthroughs in the past few decades,there are still facing great challenges in poor electronic conductivity and Li-ion diffusion,manganese dissolution affecting battery cycling performance,as well as low tap density.This review systematically summarizes the reaction mechanisms,various synthesis methods,and electrochemical properties of LiMn_(x)Fe_(1-x)PO_(4)to analyze reaction processes accurately and guide material preparation.Later,the main challenges currently faced are concluded,and the corresponding various modification strategies are discussed to enhance the reaction kinetics and electrochemical performance of LiMn_(x)Fe_(1-x)PO_(4),including multi-scale particle regulation,heteroatom doping,surface coating,as well as microscopic morphology design.Finally,in view of the current research challenges faced by intrinsic reaction processes,kinetics,and energy storage applications,the promising research directions are anticipated.More importantly,it is expected to provide key insights into the development of high-performance and stable LiMn_(x)Fe_(1-x)PO_(4)materials,to achieve practical energy storage requirements. 展开更多
关键词 Lithiummanganese iron phosphate High energydensity LITHIUM-IONBATTERIES Reactionmechanism Tap density
在线阅读 下载PDF
《Journal of Iron and Steel Research International》征稿启事
17
《钢铁研究学报》 北大核心 2025年第9期1151-1151,共1页
Journal of Iron and Steel Research International(中文刊名:钢铁研究学报(英文版),下文简称JISRI)是由中国钢铁工业协会主管、中国钢研科技集团有限公司主办的冶金领域学术期刊(CN 11-3678/TF,ISSN 1006-706X)。JISRI于1994年创刊,月... Journal of Iron and Steel Research International(中文刊名:钢铁研究学报(英文版),下文简称JISRI)是由中国钢铁工业协会主管、中国钢研科技集团有限公司主办的冶金领域学术期刊(CN 11-3678/TF,ISSN 1006-706X)。JISRI于1994年创刊,月刊,主编为田志凌教授。 展开更多
关键词 钢铁研究学报 Journal of iron and Steel Research International
原文传递
《Journal of Iron and Steel Research International》征稿启事
18
《钢铁研究学报》 北大核心 2025年第7期844-844,共1页
Journal of Iron and Steel Research International(中文刊名:钢铁研究学报(英文版),下文简称JISRI)是由中国钢铁工业协会主管、中国钢研科技集团有限公司主办的冶金领域学术期刊(CN 11-3678/TF,ISSN 1006-706X)。JISRI于1994年创刊,月... Journal of Iron and Steel Research International(中文刊名:钢铁研究学报(英文版),下文简称JISRI)是由中国钢铁工业协会主管、中国钢研科技集团有限公司主办的冶金领域学术期刊(CN 11-3678/TF,ISSN 1006-706X)。JISRI于1994年创刊,月刊,主编为田志凌教授。 展开更多
关键词 钢铁研究学报 Journal of iron and Steel Research International
原文传递
Journal of Iron and Steel Research International 征稿启事
19
《钢铁研究学报》 北大核心 2025年第3期334-334,共1页
Journal of Iron and Steel Research International(中文刊名:钢铁研究学报(英文版),下文简称JISRI)是由中国钢铁工业协会主管、中国钢研科技集团有限公司主办的冶金领域学术期刊(CN11-3678/TFISSN1006-706X)。JISRI于1994年创刊,月刊... Journal of Iron and Steel Research International(中文刊名:钢铁研究学报(英文版),下文简称JISRI)是由中国钢铁工业协会主管、中国钢研科技集团有限公司主办的冶金领域学术期刊(CN11-3678/TFISSN1006-706X)。JISRI于1994年创刊,月刊,主编为田志凌教授。JISRI被SCI科学引文索引、EI工程索引、美国化学文摘(CAS)、JST日本科学技术振兴机构数据库、中国科学引文数据库(CSCD)等国内外著名检索机构及数据库收录. 展开更多
关键词 Journal of iron and Steel Research International
原文传递
Immobilization of phosphorus in sediment-water system by hydrous iron oxide and hydrous iron oxide/calcite mixture under feed input condition
20
作者 Lingui Li Yanhui Zhan Jianwei Lin 《Journal of Environmental Sciences》 2025年第12期476-504,共29页
The efficiency and mechanism of hydrous iron oxide(HFO)and HFO/calcite mixture to inactivate the phosphorus in the overlying water(OW)/sediment system under the feed adding condition were explored,and the effect of HF... The efficiency and mechanism of hydrous iron oxide(HFO)and HFO/calcite mixture to inactivate the phosphorus in the overlying water(OW)/sediment system under the feed adding condition were explored,and the effect of HFO and HFO/calcite mixture addition on the diversity,composition and function of bacterial communities in the sediment was examined.HFO and HFO/calcite mixture direct addition can effectively lower the concentration of soluble reactive phosphorus(RSP)and diffusion gradient in thin film-unstable phosphorus(PD GT)in OW and inactivate the P DGTin the upper sediment.The elimination efficiencies of RSP by the direct HFO and HFO/calcite mixture addition were 48.9%-97.0%and 42.4%-95.4%,respectively.The alteration in the addition mode from the one-time to multiple direct addition was beneficial to the immobilization of RSP and PD GTin OW and P DGTin the upper sediment by HFO and HFO/calcite mixture under the feed input condition in the long run.Permeable fabric wrapping reduced the inactivation efficiency of RSP in OW by HFO and HFO/calcite mixture,but it made the recycling of these materials possible.Most of P immobilized by HFO and HFO/calcite mixture was relatively or very stable.After the HFO and HFO/calcite mixture addition,the composition of bacterial communities in the surface sediment changed.However,the bacterial communities in the amended sediments still can perform good ecological function.Our findings suggest that HFO and HFO/calcite mixture are promising phosphorus-immobilization materials for the inactivation of RSP and PD GTin OW and PD GTin the upper sediment under the feed inputting condition. 展开更多
关键词 Hydrous iron oxide CALCITE SEDIMENT FEED PHOSPHORUS IMMOBILIZATION
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部