Objectives:Proteasomes,multi-subunit proteases,are key actors of cellular protein catabolism and a number of regulatory processes.The detection of subtle proteasome functioning in tumors may contribute to our understa...Objectives:Proteasomes,multi-subunit proteases,are key actors of cellular protein catabolism and a number of regulatory processes.The detection of subtle proteasome functioning in tumors may contribute to our understanding of the mechanisms of cancer development.The current study aimed to identify the role of low molecular mass protein 2(LMP2),a proteasome immune subunit,in the development of mouse colon 26(C26)adenocarcinoma.Methods:The functions of the LMP2 subunit in tumor development in Balb/c mice were studied using its irreversible inhibitor KZR-504.LMP2 activity was detected by the hydrolysis of the fluorogenic substrate Ac-Pro-Ala-Leu-AMC.Western blotting and Quantitative Reverse Transcription Polymerase Chain Reaction(qRT-PCR)were used.We applied fluorescent tests for cell proliferation and apoptosis.M2 macrophages were obtained by polarization of mouse bone marrow-derived macrophages using the corresponding cytokines.Results:KZR-504 showed high specificity only for the LMP2 subunit and had no negative effect on C26 cells in culture.However,KZR-504 suppressed the formation of tumor conglomerates(by 74%,p<0.001)after C26 cell transplantation in vivo,inhibited the expression of chitinase-<3-like protein 3(Chil3)gene(by 90%,p<0.001),a key marker of immunosuppressive M2 macrophages,in the tumor<microenvironment,and reduced the tumor weight compared to the control(by 48%,p<0.01).KZR-504 also suppressed<the expression of Chil3(by 68%,p<0.05)and arginase-1(Arg1)(by 90%,p<0.001),another marker gene,in M2<<macrophages and violated M0-M2 macrophage polarization in culture.Conclusion:We discovered earlier unknown functions of the proteasome LMP2 subunit to facilitate the formation of tumor conglomerates and maintain Chil3 and Arg1 expression in immunosuppressive M2 macrophages.Our work demonstrates that the proteasome LMP2 subunit can be a target for antitumor treatment.展开更多
Avian H9N2 viruses have wide host range among the influenza A viruses.However,knowledge of H9N2 mammalian adaptation is limited.To explore the molecular basis of the adaptation to mammals,we performed serial lung pass...Avian H9N2 viruses have wide host range among the influenza A viruses.However,knowledge of H9N2 mammalian adaptation is limited.To explore the molecular basis of the adaptation to mammals,we performed serial lung passaging of the H9N2 strain A/chicken/Hunan/8.27 YYGK3W3-OC/2018(3W3)in mice and identified six mutations in the hemagglutinin(HA)and polymerase acidic(PA)proteins.Mutations L226Q,T511I,and A528V of HA were responsible for enhanced pathogenicity and viral replication in mice;notably,HA-L226Q was the key determinant.Mutations T97I,I545V,and S594G of PA contributed to enhanced polymerase activity in mammalian cells and increased viral replication levels in vitro and in vivo.PA-T97I increased viral polymerase activity by accelerating the viral polymerase complex assembly.Our findings revealed that the viral replication was affected by the presence of PA-97I and/or PA-545V in combination with a triple-point HA mutation.Furthermore,the double-and triple-point PA mutations demonstrated antagonistic effect on viral replication when combined with HA-226Q.Notably,any combination of PA mutations,along with double-point HA mutations,resulted in antagonistic effect on viral replication.We also observed antagonism in viral replication between PA-545V and PA-97I,as well as between HA-528V and PA-545V.Our findings demonstrated that several antagonistic mutations in HA and PA proteins affect viral replication,which may contribute to the H9N2 virus adaptation to mice and mammalian cells.These findings can potentially contribute to the monitoring of H9N2 field strains for assessing their potential risk in mammals.展开更多
Background:Terpinen-4-ol(T4O),a key constituent of tea tree essential oil and various aromatic plants,has shown promising antiproliferative and pro-apoptotic effects in melanoma and other cancer types.However,its effi...Background:Terpinen-4-ol(T4O),a key constituent of tea tree essential oil and various aromatic plants,has shown promising antiproliferative and pro-apoptotic effects in melanoma and other cancer types.However,its efficacy against cutaneous squamous cell carcinoma(cSCC)remains unclear.Thus,in this study,we investigated the in vivo and in vitro effects of T4O on cSCC cell lines and preliminarily explored its impacting pathways.Methods:Using CCK8 and assay colony formation,we assessed the viability of cSCC A431,SCL-1,and COLO-16 cells treated with T40 at varying concentrations(0,1,2,and 4μM).Flow cytometry was employed to evaluate T4O’s effect on cSCC cell’s cycle progression and apoptosis induction.Additionally,western blotting was utilized to examine the expression intensities of N-cadherin and E-cadherin,two indicative markers of the epithelial-mesenchymal transition(EMT)pathway.T4O’s in vivo effect on inhibiting tumor progression was evaluated on an established xenograft tumor model.Then,the molecular mechanisms of T4O’s antitumor effect were explored by an integrated genome-wide transcriptomics and proteomics study on cSCC A431c cells.Finally,calpain-2’s potential mediator role in T4O’s anti-tumor mechanism was investigated in calpain-2 knockdown cell lines prepared via siRNA transfection.Result:It’s demonstrated that T4O treatment inhibited cSCC proliferation,clonogenicity,migration,and invasion while inducing apoptosis and suppressing the EMT pathway.T4O administration also inhibited cSCC tumorigenesis in the xenograft tumor model.RNA-sequencing and iTRAQ analysis detected significant upregulation of calpain-2 expression in T4O-treated cSCC cells.Western blotting confirmed that T4O significantly increased calpain-2 expression and promoted proteolytic cleavage ofβ-catenin and caspase-12,two calpain-2 target proteins.Importantly,siRNA-mediated calpain-2 knockdown relieved T4O’s suppressive effect on cSCC cell proliferation and motility.Mechanistically,T4O upregulates calpain-2 expression and promotes the cleavage ofβ-catenin and caspase-12,with siRNA-mediated calpain-2 knockdown mitigating T4O’s suppressive effects.Conclusion:These findings suggest that T4O’s antitumor activity in cSCC is mediated through the upregulation of calpain-2 expression and subsequent modulation ofβ-catenin and caspase-12.展开更多
Microtubule-severing enzymes(MTSEs)play important roles in mitosis and meiosis of the primitive organisms.However,their roles in mammalian female meiosis,which accounts for over 80%of gamete-originated human reproduct...Microtubule-severing enzymes(MTSEs)play important roles in mitosis and meiosis of the primitive organisms.However,their roles in mammalian female meiosis,which accounts for over 80%of gamete-originated human reproductive diseases,remain unexplored.In the current study,we reported that katanin-like 2(KL2)was the only MTSE concentrating at chromosomes.Furthermore,the knockdown of KL2 significantly reduced the chromosome-based increase in the microtubule(MT)polymer,increased aberrant kinetochore-MT(K-MT)attachment,delayed meiosis,and severely affected normal fertility.We demonstrated that the inhibition of aurora B,a key kinase for correcting aberrant K-MT attachment,significantly eliminated KL2 expression from chromosomes.Additionally,KL2 interacted with phosphorylated eukaryotic elongation factor-2 kinase,and they competed for chromosome binding.Phosphorylated KL2 was also localized at spindle poles,with its phosphorylation regulated by extracellular signal-regulated kinase 1/2.In summary,the current study reveals a novel function of MTSEs in mammalian female meiosis and demonstrates that multiple kinases coordinate to regulate the levels of KL2 at chromosomes.展开更多
Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),the causative agent of COVID-19,encodes several accessory proteins that have been shown to play crucial roles in regulating the innate immune response.Howeve...Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),the causative agent of COVID-19,encodes several accessory proteins that have been shown to play crucial roles in regulating the innate immune response.However,their expressions in infected cells and immunogenicity in infected humans and mice are still not fully understood.This study utilized various techniques such as luciferase immunoprecipitation system(LIPS),immunofluorescence assay(IFA),and western blot(WB)to detect accessory protein-specific antibodies in sera of COVID-19 patients.Specific antibodies to proteins 3a,3b,7b,8 and 9c can be detected by LIPS,but only protein 3a antibody was detected by IFA or WB.Antibodies against proteins 3a and 7b were only detected in ICU patients,which may serve as a marker for predicting disease progression.Further,we investigated the expression of accessory proteins in SARS-CoV-2-infected cells and identified the expressions of proteins 3a,6,7a,8,and 9b.We also analyzed their ability to induce antibodies in immunized mice and found that only proteins 3a,6,7a,8,9b and 9c were able to induce measurable antibody productions,but these antibodies lacked neutralizing activities and did not protect mice from SARS-CoV-2 infection.Our findings validate the expression of SARS-CoV-2 accessory proteins and elucidate their humoral immune response,providing a basis for protein detection assays and their role in pathogenesis.展开更多
Cutaneous exposure to food allergens through a disrupted skin barrier is recognized as an important cause of food allergy,and the cutaneous sensitized mouse model has been established to investigate relevant allergic ...Cutaneous exposure to food allergens through a disrupted skin barrier is recognized as an important cause of food allergy,and the cutaneous sensitized mouse model has been established to investigate relevant allergic disorders.However,the role of different genetic backgrounds of mice on immune responses to food allergens upon epicutaneous sensitization is largely unknown.In this study,two strains of mice,i.e.,the BALB/c and C57BL/6 mice,were epicutaneously sensitized with ovalbumin on atopic dermatitis(AD)-like skin lesions,followed by intragastric challenge to induce IgE-mediated food allergy.Allergic outcomes were measured as clinical signs,specific antibodies and cytokines,and immune cell subpopulations,as well as changes in intestinal barrier function and gut microbiota.Results showed that both strains of mice exhibited typical food-allergic symptoms with a Th2-skewed response.The C57BL/6 mice,rather than the BALB/c mice,were fitter for establishing an epicutaneously sensitized model of food allergy since a stronger Th2-biased response and severer disruptions in the intestinal barrier and gut homeostasis were observed.This study provides knowledge for selecting an appropriate mouse model to study food-allergic responses associated with AD-like skin lesions and highlights the role of genetic variations in the immune mechanism underlying pathogenesis of food allergy.展开更多
In the present study, we hypothesized that 5-hydroxymethyl-2-furfural could attenuate ischemic brain damage by reducing oxidative injury. Thus, mice were subjected to bilateral common carotid artery occlusion to estab...In the present study, we hypothesized that 5-hydroxymethyl-2-furfural could attenuate ischemic brain damage by reducing oxidative injury. Thus, mice were subjected to bilateral common carotid artery occlusion to establish a model of permanent forebrain ischemia. The mice were intraperitoneally injected with 5-hydroxymethyl-2-furfura130 minutes before ischemia or 5 minutes after ischemia. The survival time of mice injected with 5-hydroxymethyl-2-furfural was longer compared with untreated mice. The mice subjected to ischemia for 30 minutes and reperfusion for 5 minutes were intraperitoneally injected with 5-hydroxymethyl-2-furfural 5 minutes prior to reperfusion, which increased superoxide dismutase content and reduced malondialdehyde content, similar to the effects of Edaravone, a hydroxyl radical scavenger used for the treatment of stroke. These findings indicate that intraperitoneal injection of 5-hydroxymethyl-2-furfural can prolong the survival of mice with permanent forebrain ischemia. This outcome may be mediated by its antioxidative effects.展开更多
To study the cartilage differentiation of mouse mesenchymal stem cells (MSCs) induced by cartilage-derived morphogenetic proteins-2 in vitro, the MSCs were isolated from mouse bone marrow and cultured in vitro. The ...To study the cartilage differentiation of mouse mesenchymal stem cells (MSCs) induced by cartilage-derived morphogenetic proteins-2 in vitro, the MSCs were isolated from mouse bone marrow and cultured in vitro. The cells in passage 3 were induced into chondrogenic differentiation with different concentrations of recombinant human cartilage-derived morphogenetic proteins-2 (0, 10, 20, 50 and 100 ng/mL). After 14 days of induction, morphology of cells was observed under phase-contrast microscope. Collagen Ⅱ mRNA and protein were examined with RT-PCR, Western blotting and immunocytochemistry respectively and the sulfate glycosaminoglycan was measured by Alcian blue staining. RT-PCR showed that CDMP-2 could promote expression of collagen Ⅱ mRNA in an dose-dependant manner, especially at the concentration of 50 ng/mL and 100 ng/mL. Immunocytochemistry and Western blotting revealed a similar change. Alcian blue staining exhibited deposition of typical cartilage extracellular matrix. Our results suggest that mouse bone marrow mesencymal stem cells can differentiate into chondrogenic phonotype with the induction of CDMP-2 in vitro, which provides a basis for further research on the role of CDMP-2 in chondrogenesis.展开更多
AIM:To examine whether the ob/ob mouse model of obesity is accompanied by enteric nervous system ab-normalities such as altered motility METHODS:The study examined the distribution of the P2X 2 receptor (P2X 2 R) in m...AIM:To examine whether the ob/ob mouse model of obesity is accompanied by enteric nervous system ab-normalities such as altered motility METHODS:The study examined the distribution of the P2X 2 receptor (P2X 2 R) in myenteric neurons of female ob/ob mice. Specifically, we used immunohistochemistry to analyze the co-expression of the P2X 2 R with neuronal nitric oxide synthase (nNOS), choline acetyltrans-ferase (ChAT), and calretinin (CalR) in neurons of the small intestine myenteric plexus in ob/ob and control female mice In these sections, we used scanning confocal microscopy to analyze the co-localization of these markers as well as the neuronal density (cm 2 ) and area profile (μm2) of P2X 2 R-positive neurons In addition, enteric neurons were labeled using the nicotinamide adenine dinucleotide (NA H) diaphorase method and analyzed with light microscopy as an alternate means by which to analyze neuronal density and areaRESULTS:In the present study, we observed a 29 6% increase in the body weight of the ob/ob animals (OG) compared to the control group (CG) In addition, the average small intestine area was increased by approxi-mately 29 6% in the OG compared to the CG Immu-noreactivity (IR) for the P2X 2 R, nNOS, ChAT and CalR was detectable in the myenteric plexus, as well as in the smooth muscle, in both groups This IR appeared to be mainly cytoplasmic and was also associated with the cell membrane of the myenteric plexus neurons, where it outlined the neuronal cell bodies and their processes P2X 2 R-IR was observed to co-localize 100% with that for nNOS, ChAT and CalR in neurons of both groups In the ob/ob group, however, we observed that the neuronal density (neuron/cm 2 ) of P2X 2 R-IR cells was in-creased by 62% compared to CG, while that of NOS-IR and ChAT-IR neurons was reduced by 49% and 57%, respectively, compared to control mice The neuronal density of CalR-IR neurons was not different between the groups Morphometric studies further demonstrated that the cell body profile area (μm2) of nNOS-IR, ChAT-IR and CalR-IR neurons was increased by 34%, 20% and 55%, respectively, in the OG compared to controls Staining for NA H diaphorase activity is widely used to detect alterations in the enteric nervous system; however, our qualitative examination of NA H-diaphorase positive neurons in the myenteric ganglia revealed an overall similarity between the two groups CONCLUSION:We demonstrate increases in P2X2R expression and alterations in nNOS, ChAT and CalR IR in ileal myenteric neurons of female ob/ob mice compared to wild-type controls.展开更多
Understanding the pathogenesis of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)and clarifying antiviral immunity in hosts are critical aspects for the development of vaccines and antivirals.Mice are freq...Understanding the pathogenesis of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)and clarifying antiviral immunity in hosts are critical aspects for the development of vaccines and antivirals.Mice are frequently used to generate animal models of infectious diseases due to their convenience and ability to undergo genetic manipulation.However,normal adult mice are not susceptible to SARS-CoV-2.Here,we developed a viral receptor(human angiotensin-converting enzyme 2,hACE2)pulmonary transfection mouse model to establish SARS-CoV-2 infection rapidly in the mouse lung.Based on the model,the virus successfully infected the mouse lung 2 days after transfection.Viral RNA/protein,innate immune cell infiltration,inflammatory cytokine expression,and pathological changes in the infected lungs were observed after infection.Further studies indicated that neutrophils were the first and most abundant leukocytes to infiltrate the infected lungs after viral infection.In addition,using infected CXCL5-knockout mice,chemokine CXCL5 was responsible for neutrophil recruitment.CXCL5 knockout decreased lung inflammation without diminishing viral clearance,suggesting a potential target for controlling pneumonia.展开更多
Severe acute respiratory syndrome coronavirus 2(SARSCo V-2)infection can result in more severe syndromes and poorer outcomes in patients with diabetes and obesity.However,the precise mechanisms responsible for the com...Severe acute respiratory syndrome coronavirus 2(SARSCo V-2)infection can result in more severe syndromes and poorer outcomes in patients with diabetes and obesity.However,the precise mechanisms responsible for the combined impact of coronavirus disease 2019(COVID-19)and diabetes have not yet been elucidated,and effective treatment options for SARS-Co V-2-infected diabetic patients remain limited.To investigate the disease pathogenesis,K18-h ACE2 transgenic(h ACE2^(Tg))mice with a leptin receptor deficiency(h ACE2-Lepr^(-/-))and high-fat diet(h ACE2-HFD)background were generated.The two mouse models were intranasally infected with a 5×10^(5) median tissue culture infectious dose(TCID_(50))of SARSCo V-2,with serum and lung tissue samples collected at 3days post-infection.The h ACE2-Lepr^(-/-)mice were then administered a combination of low-molecular-weight heparin(LMWH)(1 mg/kg or 5 mg/kg)and insulin via subcutaneous injection prior to intranasal infection with1×10^(4) TCID_(50)of SARS-Co V-2.Daily drug administration continued until the euthanasia of the mice.Analyses of viral RNA loads,histopathological changes in lung tissue,and inflammation factors were conducted.Results demonstrated similar SARS-Co V-2 susceptibility in h ACE2^(Tg)mice under both lean(chow diet)and obese(HFD)conditions.However,compared to the h ACE2-Lepr^(+/+)mice,h ACE2-Lepr^(-/-)mice exhibited more severe lung injury,enhanced expression of inflammatory cytokines and hypoxia-inducible factor-1α(HIF-1α),and increased apoptosis.Moreover,combined LMWH and insulin treatment effectively reduced disease progression and severity,attenuated lung pathological changes,and mitigated inflammatory responses.In conclusion,preexisting diabetes can lead to more severe lung damage upon SARS-Co V-2 infection,and LMWH may be a valuable therapeutic approach for managing COVID-19patients with diabetes.展开更多
This study examined the expression and distribution of angiopoietin-1/-2 (Ang-1/-2) in the endometrium of early pregnant mice. The expression of Ang-1/-2 was detected by immunohistochemical staining and in situ hybr...This study examined the expression and distribution of angiopoietin-1/-2 (Ang-1/-2) in the endometrium of early pregnant mice. The expression of Ang-1/-2 was detected by immunohistochemical staining and in situ hybridization respectively. Computerized image analysis system was used to measure the average optical intensity of Ang-1/-2 in endometria at different time points after gestation. Mice were randomly divided into 5 groups: control group, D2 group (2 days after pregnancy), D4 group (4 days after pregnancy), D6 group (6 days after pregnancy) and D8 group (8 days after pregnancy), each containing 15 mice. The results showed that the expression of Ang-1 and Ang-2 was very different among 4 groups (P〈0.01). Immunohistochemical staining revealed that Ang-1 was localized in the cytoplasma of stromal cells 2 days after pregnancy (day 2), and in luminal epithelial cells on day 4. The protein of Ang-2 was mainly expressed in the cytoplasma of glandular epithelia and stromal cells. With gestation time, the positive reactions of Ang-1/-2 were stronger in the endometria of the pregnant mice (P〈0.01). In situ hybridization showed Ang-I mRNA in stromal cells on day 2. Hybridization signal was localized in both stromal cells and vessel epithelial cells on day 4; Ang-2 mRNA was expressed in stromal cells and glandular epithelia on day 2; high mRNA levels appeared in stromal cells, glandular epithelia and vascular endothelia on day 4; an increasing in mRNA expression of Ang-1/-2 was observed on day 6 and day 8 (P〈0.01). It is suggested that Ang-1/-2 may play an important role in the cross-talk between blastocyst and maternal endometrium during the process of embryo implantation.展开更多
GPX-GI is a cytosolic tetrameric Se-dependent glutathione peroxidase, similar in properties to GPX-1. Unlike the almost ubiquitous GPX-1, GPX-GI is mainly expressed in the epithelium of gastrointestinal tract. GPX-GI ...GPX-GI is a cytosolic tetrameric Se-dependent glutathione peroxidase, similar in properties to GPX-1. Unlike the almost ubiquitous GPX-1, GPX-GI is mainly expressed in the epithelium of gastrointestinal tract. GPX-GI contributes to at least fifty percent of GPX activity in rodent small intestmal epithelium. The total GPX activity consists of at least 70% of selenium-dependent GPX activity in this compartment.By analyzing a panel of mouse mterspecies DNA from the Jackson Laboratory's backcross resource,we mapped Gpx2 gene to mouse chromosome 12 between D12Mit4 and D12Mit5, near the Ccs1 locus which contains a colon cancer susceptibility gene. A pseudogene, Gpx2-ps is mapped to mouse chromosome 7.Comparison of Gpx2 gene expression in three pairs of C57BL/6Ha and ICR/Ha mice which are respectively resistant and sensitive to dimethylhydrazine-induced colon cancer, we found a higher Gpx2 mRNA level in C57BL/6Ha colon than ICR/Ha colon. Interestingly, a lower level of GPX activity is found in the resistant strain of mice. Because GPX-1 has three times higher specific activity than GPX GI, our data suggest that the decreased GPX activity may result from a higher level of Gpx2 gene expression in those cells co-express GPx1 gene展开更多
Purpose:To characterizes the progression of glaucoma in DBA/2J mice by measuring intraocular pressure(IOP) and retinal ganglion cells(RGCs) numbers in mice of various ages. Methods:A quantitative assessment of the pat...Purpose:To characterizes the progression of glaucoma in DBA/2J mice by measuring intraocular pressure(IOP) and retinal ganglion cells(RGCs) numbers in mice of various ages. Methods:A quantitative assessment of the pathophysiology of the DBA/2J mice was performed and the C57/BL6 mice was used as control. The IOP was measured by the servo-null micropipette system; the regional patterns of the loss of RGCs were determined by cell count of retrogradely-labeled RGCs. Results:The baseline IOP for DBA/2J mice at 7 weeks was (16.6 ± 1.2)mm Hg.Then IOP increased extend to 12 months, with the peak of (25.2 ± 1.2)mm Hg at 6 months of age. Retinal ganglion cell numbers did not decrease relative to control until 12 months of age(P=0.006), when the loss was proportionally higher in peripheral regions(P<0.05). Conclusion:The elevation in IOP precedes the loss of RGCs by several months. RGCs cell loss occurs particularly in peripheral regions of the retina. These findings expand our understanding of the changes in DBA/2J mice and provide information for experiments design when they are used as a glaucoma model for future studies of RGCs degeneration in glaucoma.展开更多
Background: Host genetic background and sex, play central roles in defining the pathogenesis of type 2 diabetes(T2 D), obesity and infectious diseases. Our previous studies demonstrated the utilization of genetically ...Background: Host genetic background and sex, play central roles in defining the pathogenesis of type 2 diabetes(T2 D), obesity and infectious diseases. Our previous studies demonstrated the utilization of genetically highly diverse inbred mouse lines, namely collaborative cross(CC), for dissecting host susceptibility for the development of T2 D and obesity, showing significant variations following high-fat(42% fat) diet(HFD). Here, we aimed to assessing the host genetic background and sex effects on T2 D and obesity development in response to oral-mixed bacterial infection and HFD using the CC lines.Materials and Methods: Study cohort consists of 97 mice from 2 CC lines(both sexes), maintained on either HFD or Standard diet(CHD) for 12 weeks. At week 5 a group of mice from each diet were infected with Porphyromonas gingivalis(Pg) and Fusobacterium nucleatum(Fn) bacteria(control groups without infection). Body weight(BW) and glucose tolerance ability were assessed at the end time point of the experiment.Results: The CC lines varied(P <.05) at their BW gain and glucose tolerance ability(with sex effect) in response to diets and/or infection, showing opposite responses despite sharing the same environmental conditions. The combination of diet and infection enhances BW accumulation for IL1912, while restraints it for IL72. As for glucose tolerance ability, only females(both lines) were deteriorated in response to infection.Conclusions: This study emphasizes the power of the CC mouse population for the characterization of host genetic makeup for defining the susceptibility of the individual to development of obesity and/or impaired glucose tolerance.展开更多
基金funded by the Government program of basic research in Koltzov Institute of Developmental Biology of the Russian Academy of Sciences,number 0088-2024-0009the Ministry of Science and Higher Education of the Russian Federation,project number 075-15-2020-773(NPS).
文摘Objectives:Proteasomes,multi-subunit proteases,are key actors of cellular protein catabolism and a number of regulatory processes.The detection of subtle proteasome functioning in tumors may contribute to our understanding of the mechanisms of cancer development.The current study aimed to identify the role of low molecular mass protein 2(LMP2),a proteasome immune subunit,in the development of mouse colon 26(C26)adenocarcinoma.Methods:The functions of the LMP2 subunit in tumor development in Balb/c mice were studied using its irreversible inhibitor KZR-504.LMP2 activity was detected by the hydrolysis of the fluorogenic substrate Ac-Pro-Ala-Leu-AMC.Western blotting and Quantitative Reverse Transcription Polymerase Chain Reaction(qRT-PCR)were used.We applied fluorescent tests for cell proliferation and apoptosis.M2 macrophages were obtained by polarization of mouse bone marrow-derived macrophages using the corresponding cytokines.Results:KZR-504 showed high specificity only for the LMP2 subunit and had no negative effect on C26 cells in culture.However,KZR-504 suppressed the formation of tumor conglomerates(by 74%,p<0.001)after C26 cell transplantation in vivo,inhibited the expression of chitinase-<3-like protein 3(Chil3)gene(by 90%,p<0.001),a key marker of immunosuppressive M2 macrophages,in the tumor<microenvironment,and reduced the tumor weight compared to the control(by 48%,p<0.01).KZR-504 also suppressed<the expression of Chil3(by 68%,p<0.05)and arginase-1(Arg1)(by 90%,p<0.001),another marker gene,in M2<<macrophages and violated M0-M2 macrophage polarization in culture.Conclusion:We discovered earlier unknown functions of the proteasome LMP2 subunit to facilitate the formation of tumor conglomerates and maintain Chil3 and Arg1 expression in immunosuppressive M2 macrophages.Our work demonstrates that the proteasome LMP2 subunit can be a target for antitumor treatment.
基金supported by the National Key Research and Development Program of China(NKPs)(2022YFC2604101)the National Science and Technology Major Project of China(2020ZX10001016-002)。
文摘Avian H9N2 viruses have wide host range among the influenza A viruses.However,knowledge of H9N2 mammalian adaptation is limited.To explore the molecular basis of the adaptation to mammals,we performed serial lung passaging of the H9N2 strain A/chicken/Hunan/8.27 YYGK3W3-OC/2018(3W3)in mice and identified six mutations in the hemagglutinin(HA)and polymerase acidic(PA)proteins.Mutations L226Q,T511I,and A528V of HA were responsible for enhanced pathogenicity and viral replication in mice;notably,HA-L226Q was the key determinant.Mutations T97I,I545V,and S594G of PA contributed to enhanced polymerase activity in mammalian cells and increased viral replication levels in vitro and in vivo.PA-T97I increased viral polymerase activity by accelerating the viral polymerase complex assembly.Our findings revealed that the viral replication was affected by the presence of PA-97I and/or PA-545V in combination with a triple-point HA mutation.Furthermore,the double-and triple-point PA mutations demonstrated antagonistic effect on viral replication when combined with HA-226Q.Notably,any combination of PA mutations,along with double-point HA mutations,resulted in antagonistic effect on viral replication.We also observed antagonism in viral replication between PA-545V and PA-97I,as well as between HA-528V and PA-545V.Our findings demonstrated that several antagonistic mutations in HA and PA proteins affect viral replication,which may contribute to the H9N2 virus adaptation to mice and mammalian cells.These findings can potentially contribute to the monitoring of H9N2 field strains for assessing their potential risk in mammals.
基金supported by the Basic Research Program of the Guizhou Science Cooperation Foundation Project(Grant Number:ZK[2021]466)Guizhou Provincial Health Commission(Grant Number:gzwkj2022-062).
文摘Background:Terpinen-4-ol(T4O),a key constituent of tea tree essential oil and various aromatic plants,has shown promising antiproliferative and pro-apoptotic effects in melanoma and other cancer types.However,its efficacy against cutaneous squamous cell carcinoma(cSCC)remains unclear.Thus,in this study,we investigated the in vivo and in vitro effects of T4O on cSCC cell lines and preliminarily explored its impacting pathways.Methods:Using CCK8 and assay colony formation,we assessed the viability of cSCC A431,SCL-1,and COLO-16 cells treated with T40 at varying concentrations(0,1,2,and 4μM).Flow cytometry was employed to evaluate T4O’s effect on cSCC cell’s cycle progression and apoptosis induction.Additionally,western blotting was utilized to examine the expression intensities of N-cadherin and E-cadherin,two indicative markers of the epithelial-mesenchymal transition(EMT)pathway.T4O’s in vivo effect on inhibiting tumor progression was evaluated on an established xenograft tumor model.Then,the molecular mechanisms of T4O’s antitumor effect were explored by an integrated genome-wide transcriptomics and proteomics study on cSCC A431c cells.Finally,calpain-2’s potential mediator role in T4O’s anti-tumor mechanism was investigated in calpain-2 knockdown cell lines prepared via siRNA transfection.Result:It’s demonstrated that T4O treatment inhibited cSCC proliferation,clonogenicity,migration,and invasion while inducing apoptosis and suppressing the EMT pathway.T4O administration also inhibited cSCC tumorigenesis in the xenograft tumor model.RNA-sequencing and iTRAQ analysis detected significant upregulation of calpain-2 expression in T4O-treated cSCC cells.Western blotting confirmed that T4O significantly increased calpain-2 expression and promoted proteolytic cleavage ofβ-catenin and caspase-12,two calpain-2 target proteins.Importantly,siRNA-mediated calpain-2 knockdown relieved T4O’s suppressive effect on cSCC cell proliferation and motility.Mechanistically,T4O upregulates calpain-2 expression and promotes the cleavage ofβ-catenin and caspase-12,with siRNA-mediated calpain-2 knockdown mitigating T4O’s suppressive effects.Conclusion:These findings suggest that T4O’s antitumor activity in cSCC is mediated through the upregulation of calpain-2 expression and subsequent modulation ofβ-catenin and caspase-12.
基金supported by the Youth Program of National Natural Science Foundation of China(Grant No.82001539 to Leilei Gao)the Zhejiang Province Health Innovation Talent Project(Grant No.2021RC001 to Zhen Jin)+1 种基金the General Program of the National Natural Science Foundation of China(Grant No.31671561 to Dong Zhang)the Regional Program of National Natural Science Foundation of China(Grant No.82260126 to Xiaocong Liu).
文摘Microtubule-severing enzymes(MTSEs)play important roles in mitosis and meiosis of the primitive organisms.However,their roles in mammalian female meiosis,which accounts for over 80%of gamete-originated human reproductive diseases,remain unexplored.In the current study,we reported that katanin-like 2(KL2)was the only MTSE concentrating at chromosomes.Furthermore,the knockdown of KL2 significantly reduced the chromosome-based increase in the microtubule(MT)polymer,increased aberrant kinetochore-MT(K-MT)attachment,delayed meiosis,and severely affected normal fertility.We demonstrated that the inhibition of aurora B,a key kinase for correcting aberrant K-MT attachment,significantly eliminated KL2 expression from chromosomes.Additionally,KL2 interacted with phosphorylated eukaryotic elongation factor-2 kinase,and they competed for chromosome binding.Phosphorylated KL2 was also localized at spindle poles,with its phosphorylation regulated by extracellular signal-regulated kinase 1/2.In summary,the current study reveals a novel function of MTSEs in mammalian female meiosis and demonstrates that multiple kinases coordinate to regulate the levels of KL2 at chromosomes.
基金supported by grants from the National Natural Science Foundation of China(82002127,81971500,82025001,82172240)National Key R&D Program of China(2021YFC2301700,2022YFC2604100)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2022B1515020059,2021B1515130005)R&D Program of Guangzhou Laboratory(EKPG21-30-2).
文摘Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),the causative agent of COVID-19,encodes several accessory proteins that have been shown to play crucial roles in regulating the innate immune response.However,their expressions in infected cells and immunogenicity in infected humans and mice are still not fully understood.This study utilized various techniques such as luciferase immunoprecipitation system(LIPS),immunofluorescence assay(IFA),and western blot(WB)to detect accessory protein-specific antibodies in sera of COVID-19 patients.Specific antibodies to proteins 3a,3b,7b,8 and 9c can be detected by LIPS,but only protein 3a antibody was detected by IFA or WB.Antibodies against proteins 3a and 7b were only detected in ICU patients,which may serve as a marker for predicting disease progression.Further,we investigated the expression of accessory proteins in SARS-CoV-2-infected cells and identified the expressions of proteins 3a,6,7a,8,and 9b.We also analyzed their ability to induce antibodies in immunized mice and found that only proteins 3a,6,7a,8,9b and 9c were able to induce measurable antibody productions,but these antibodies lacked neutralizing activities and did not protect mice from SARS-CoV-2 infection.Our findings validate the expression of SARS-CoV-2 accessory proteins and elucidate their humoral immune response,providing a basis for protein detection assays and their role in pathogenesis.
基金the financial support received from the Natural Science Foundation of China(32202202 and 31871735)the Zhejiang Provincial Natural Science Foundation of China(LGN22C200027)the Open Fund of the Key Laboratory of Biosafety Detection for Zhejiang Market Regulation(2022BS004)。
文摘Cutaneous exposure to food allergens through a disrupted skin barrier is recognized as an important cause of food allergy,and the cutaneous sensitized mouse model has been established to investigate relevant allergic disorders.However,the role of different genetic backgrounds of mice on immune responses to food allergens upon epicutaneous sensitization is largely unknown.In this study,two strains of mice,i.e.,the BALB/c and C57BL/6 mice,were epicutaneously sensitized with ovalbumin on atopic dermatitis(AD)-like skin lesions,followed by intragastric challenge to induce IgE-mediated food allergy.Allergic outcomes were measured as clinical signs,specific antibodies and cytokines,and immune cell subpopulations,as well as changes in intestinal barrier function and gut microbiota.Results showed that both strains of mice exhibited typical food-allergic symptoms with a Th2-skewed response.The C57BL/6 mice,rather than the BALB/c mice,were fitter for establishing an epicutaneously sensitized model of food allergy since a stronger Th2-biased response and severer disruptions in the intestinal barrier and gut homeostasis were observed.This study provides knowledge for selecting an appropriate mouse model to study food-allergic responses associated with AD-like skin lesions and highlights the role of genetic variations in the immune mechanism underlying pathogenesis of food allergy.
基金supported by the National Basic Research Program of China (973 Program),No.2003CB517104the National Natural Science Foundation of China,No.30973513+3 种基金Beijing Municipal Science and Technology Program,No.D0206001043191the Natural Science Foundation of Beijing,No.7112061Beijing Key Foundation of Traditional Chinese Medicine,No.KJTS2011-04Beijing Health and Technical Personal of High-Level Plan,No.2009-3-66
文摘In the present study, we hypothesized that 5-hydroxymethyl-2-furfural could attenuate ischemic brain damage by reducing oxidative injury. Thus, mice were subjected to bilateral common carotid artery occlusion to establish a model of permanent forebrain ischemia. The mice were intraperitoneally injected with 5-hydroxymethyl-2-furfura130 minutes before ischemia or 5 minutes after ischemia. The survival time of mice injected with 5-hydroxymethyl-2-furfural was longer compared with untreated mice. The mice subjected to ischemia for 30 minutes and reperfusion for 5 minutes were intraperitoneally injected with 5-hydroxymethyl-2-furfural 5 minutes prior to reperfusion, which increased superoxide dismutase content and reduced malondialdehyde content, similar to the effects of Edaravone, a hydroxyl radical scavenger used for the treatment of stroke. These findings indicate that intraperitoneal injection of 5-hydroxymethyl-2-furfural can prolong the survival of mice with permanent forebrain ischemia. This outcome may be mediated by its antioxidative effects.
基金This project was supported by a grant from the National Natural Sciences Foundation of China (No 30471753)
文摘To study the cartilage differentiation of mouse mesenchymal stem cells (MSCs) induced by cartilage-derived morphogenetic proteins-2 in vitro, the MSCs were isolated from mouse bone marrow and cultured in vitro. The cells in passage 3 were induced into chondrogenic differentiation with different concentrations of recombinant human cartilage-derived morphogenetic proteins-2 (0, 10, 20, 50 and 100 ng/mL). After 14 days of induction, morphology of cells was observed under phase-contrast microscope. Collagen Ⅱ mRNA and protein were examined with RT-PCR, Western blotting and immunocytochemistry respectively and the sulfate glycosaminoglycan was measured by Alcian blue staining. RT-PCR showed that CDMP-2 could promote expression of collagen Ⅱ mRNA in an dose-dependant manner, especially at the concentration of 50 ng/mL and 100 ng/mL. Immunocytochemistry and Western blotting revealed a similar change. Alcian blue staining exhibited deposition of typical cartilage extracellular matrix. Our results suggest that mouse bone marrow mesencymal stem cells can differentiate into chondrogenic phonotype with the induction of CDMP-2 in vitro, which provides a basis for further research on the role of CDMP-2 in chondrogenesis.
基金Supported by So Paulo Research Foundation (FAPESP), Proc 05/04752-0
文摘AIM:To examine whether the ob/ob mouse model of obesity is accompanied by enteric nervous system ab-normalities such as altered motility METHODS:The study examined the distribution of the P2X 2 receptor (P2X 2 R) in myenteric neurons of female ob/ob mice. Specifically, we used immunohistochemistry to analyze the co-expression of the P2X 2 R with neuronal nitric oxide synthase (nNOS), choline acetyltrans-ferase (ChAT), and calretinin (CalR) in neurons of the small intestine myenteric plexus in ob/ob and control female mice In these sections, we used scanning confocal microscopy to analyze the co-localization of these markers as well as the neuronal density (cm 2 ) and area profile (μm2) of P2X 2 R-positive neurons In addition, enteric neurons were labeled using the nicotinamide adenine dinucleotide (NA H) diaphorase method and analyzed with light microscopy as an alternate means by which to analyze neuronal density and areaRESULTS:In the present study, we observed a 29 6% increase in the body weight of the ob/ob animals (OG) compared to the control group (CG) In addition, the average small intestine area was increased by approxi-mately 29 6% in the OG compared to the CG Immu-noreactivity (IR) for the P2X 2 R, nNOS, ChAT and CalR was detectable in the myenteric plexus, as well as in the smooth muscle, in both groups This IR appeared to be mainly cytoplasmic and was also associated with the cell membrane of the myenteric plexus neurons, where it outlined the neuronal cell bodies and their processes P2X 2 R-IR was observed to co-localize 100% with that for nNOS, ChAT and CalR in neurons of both groups In the ob/ob group, however, we observed that the neuronal density (neuron/cm 2 ) of P2X 2 R-IR cells was in-creased by 62% compared to CG, while that of NOS-IR and ChAT-IR neurons was reduced by 49% and 57%, respectively, compared to control mice The neuronal density of CalR-IR neurons was not different between the groups Morphometric studies further demonstrated that the cell body profile area (μm2) of nNOS-IR, ChAT-IR and CalR-IR neurons was increased by 34%, 20% and 55%, respectively, in the OG compared to controls Staining for NA H diaphorase activity is widely used to detect alterations in the enteric nervous system; however, our qualitative examination of NA H-diaphorase positive neurons in the myenteric ganglia revealed an overall similarity between the two groups CONCLUSION:We demonstrate increases in P2X2R expression and alterations in nNOS, ChAT and CalR IR in ileal myenteric neurons of female ob/ob mice compared to wild-type controls.
基金supported by the National Natural Science Foundation of China(82041017)Chinese Academy of Medical Sciences(CAMS)Innovation Fund for Medical Sciences(2016-I2M-1-014)。
文摘Understanding the pathogenesis of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)and clarifying antiviral immunity in hosts are critical aspects for the development of vaccines and antivirals.Mice are frequently used to generate animal models of infectious diseases due to their convenience and ability to undergo genetic manipulation.However,normal adult mice are not susceptible to SARS-CoV-2.Here,we developed a viral receptor(human angiotensin-converting enzyme 2,hACE2)pulmonary transfection mouse model to establish SARS-CoV-2 infection rapidly in the mouse lung.Based on the model,the virus successfully infected the mouse lung 2 days after transfection.Viral RNA/protein,innate immune cell infiltration,inflammatory cytokine expression,and pathological changes in the infected lungs were observed after infection.Further studies indicated that neutrophils were the first and most abundant leukocytes to infiltrate the infected lungs after viral infection.In addition,using infected CXCL5-knockout mice,chemokine CXCL5 was responsible for neutrophil recruitment.CXCL5 knockout decreased lung inflammation without diminishing viral clearance,suggesting a potential target for controlling pneumonia.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) (XDB29010102)National Natural Science Foundation of China (NSFC) (91957124,82161148010,32041010)+4 种基金Self-supporting Program of Guangzhou Laboratory (SRPG22-001)National Science and Technology Infrastructure of China (National Pathogen Resource Center-NPRC-32)Management Strategy of the Tertiary Prevention and Treatment of Diabetes Based on DIP system (supported by China Health Promotion Foundation)supported by the Youth Innovation Promotion Association of CAS (Y2021034)Innovation Team and Talents Cultivation Program of the National Administration of Traditional Chinese Medicine (ZYYCXTD-D-202208)。
文摘Severe acute respiratory syndrome coronavirus 2(SARSCo V-2)infection can result in more severe syndromes and poorer outcomes in patients with diabetes and obesity.However,the precise mechanisms responsible for the combined impact of coronavirus disease 2019(COVID-19)and diabetes have not yet been elucidated,and effective treatment options for SARS-Co V-2-infected diabetic patients remain limited.To investigate the disease pathogenesis,K18-h ACE2 transgenic(h ACE2^(Tg))mice with a leptin receptor deficiency(h ACE2-Lepr^(-/-))and high-fat diet(h ACE2-HFD)background were generated.The two mouse models were intranasally infected with a 5×10^(5) median tissue culture infectious dose(TCID_(50))of SARSCo V-2,with serum and lung tissue samples collected at 3days post-infection.The h ACE2-Lepr^(-/-)mice were then administered a combination of low-molecular-weight heparin(LMWH)(1 mg/kg or 5 mg/kg)and insulin via subcutaneous injection prior to intranasal infection with1×10^(4) TCID_(50)of SARS-Co V-2.Daily drug administration continued until the euthanasia of the mice.Analyses of viral RNA loads,histopathological changes in lung tissue,and inflammation factors were conducted.Results demonstrated similar SARS-Co V-2 susceptibility in h ACE2^(Tg)mice under both lean(chow diet)and obese(HFD)conditions.However,compared to the h ACE2-Lepr^(+/+)mice,h ACE2-Lepr^(-/-)mice exhibited more severe lung injury,enhanced expression of inflammatory cytokines and hypoxia-inducible factor-1α(HIF-1α),and increased apoptosis.Moreover,combined LMWH and insulin treatment effectively reduced disease progression and severity,attenuated lung pathological changes,and mitigated inflammatory responses.In conclusion,preexisting diabetes can lead to more severe lung damage upon SARS-Co V-2 infection,and LMWH may be a valuable therapeutic approach for managing COVID-19patients with diabetes.
文摘This study examined the expression and distribution of angiopoietin-1/-2 (Ang-1/-2) in the endometrium of early pregnant mice. The expression of Ang-1/-2 was detected by immunohistochemical staining and in situ hybridization respectively. Computerized image analysis system was used to measure the average optical intensity of Ang-1/-2 in endometria at different time points after gestation. Mice were randomly divided into 5 groups: control group, D2 group (2 days after pregnancy), D4 group (4 days after pregnancy), D6 group (6 days after pregnancy) and D8 group (8 days after pregnancy), each containing 15 mice. The results showed that the expression of Ang-1 and Ang-2 was very different among 4 groups (P〈0.01). Immunohistochemical staining revealed that Ang-1 was localized in the cytoplasma of stromal cells 2 days after pregnancy (day 2), and in luminal epithelial cells on day 4. The protein of Ang-2 was mainly expressed in the cytoplasma of glandular epithelia and stromal cells. With gestation time, the positive reactions of Ang-1/-2 were stronger in the endometria of the pregnant mice (P〈0.01). In situ hybridization showed Ang-I mRNA in stromal cells on day 2. Hybridization signal was localized in both stromal cells and vessel epithelial cells on day 4; Ang-2 mRNA was expressed in stromal cells and glandular epithelia on day 2; high mRNA levels appeared in stromal cells, glandular epithelia and vascular endothelia on day 4; an increasing in mRNA expression of Ang-1/-2 was observed on day 6 and day 8 (P〈0.01). It is suggested that Ang-1/-2 may play an important role in the cross-talk between blastocyst and maternal endometrium during the process of embryo implantation.
文摘GPX-GI is a cytosolic tetrameric Se-dependent glutathione peroxidase, similar in properties to GPX-1. Unlike the almost ubiquitous GPX-1, GPX-GI is mainly expressed in the epithelium of gastrointestinal tract. GPX-GI contributes to at least fifty percent of GPX activity in rodent small intestmal epithelium. The total GPX activity consists of at least 70% of selenium-dependent GPX activity in this compartment.By analyzing a panel of mouse mterspecies DNA from the Jackson Laboratory's backcross resource,we mapped Gpx2 gene to mouse chromosome 12 between D12Mit4 and D12Mit5, near the Ccs1 locus which contains a colon cancer susceptibility gene. A pseudogene, Gpx2-ps is mapped to mouse chromosome 7.Comparison of Gpx2 gene expression in three pairs of C57BL/6Ha and ICR/Ha mice which are respectively resistant and sensitive to dimethylhydrazine-induced colon cancer, we found a higher Gpx2 mRNA level in C57BL/6Ha colon than ICR/Ha colon. Interestingly, a lower level of GPX activity is found in the resistant strain of mice. Because GPX-1 has three times higher specific activity than GPX GI, our data suggest that the decreased GPX activity may result from a higher level of Gpx2 gene expression in those cells co-express GPx1 gene
基金This work was supported by Guangdong Scientific researchfund (NO. 2006J1-C0051)
文摘Purpose:To characterizes the progression of glaucoma in DBA/2J mice by measuring intraocular pressure(IOP) and retinal ganglion cells(RGCs) numbers in mice of various ages. Methods:A quantitative assessment of the pathophysiology of the DBA/2J mice was performed and the C57/BL6 mice was used as control. The IOP was measured by the servo-null micropipette system; the regional patterns of the loss of RGCs were determined by cell count of retrogradely-labeled RGCs. Results:The baseline IOP for DBA/2J mice at 7 weeks was (16.6 ± 1.2)mm Hg.Then IOP increased extend to 12 months, with the peak of (25.2 ± 1.2)mm Hg at 6 months of age. Retinal ganglion cell numbers did not decrease relative to control until 12 months of age(P=0.006), when the loss was proportionally higher in peripheral regions(P<0.05). Conclusion:The elevation in IOP precedes the loss of RGCs by several months. RGCs cell loss occurs particularly in peripheral regions of the retina. These findings expand our understanding of the changes in DBA/2J mice and provide information for experiments design when they are used as a glaucoma model for future studies of RGCs degeneration in glaucoma.
基金Israeli Science Foundation (ISF),Grant/Award Number 1085/18German Israeli Science Foundation (GIF),Grant/Award Number I-63-410.20-2017+1 种基金Binational Science Foundation (BSF),Grant/Award Number 2015077Tel-Aviv University
文摘Background: Host genetic background and sex, play central roles in defining the pathogenesis of type 2 diabetes(T2 D), obesity and infectious diseases. Our previous studies demonstrated the utilization of genetically highly diverse inbred mouse lines, namely collaborative cross(CC), for dissecting host susceptibility for the development of T2 D and obesity, showing significant variations following high-fat(42% fat) diet(HFD). Here, we aimed to assessing the host genetic background and sex effects on T2 D and obesity development in response to oral-mixed bacterial infection and HFD using the CC lines.Materials and Methods: Study cohort consists of 97 mice from 2 CC lines(both sexes), maintained on either HFD or Standard diet(CHD) for 12 weeks. At week 5 a group of mice from each diet were infected with Porphyromonas gingivalis(Pg) and Fusobacterium nucleatum(Fn) bacteria(control groups without infection). Body weight(BW) and glucose tolerance ability were assessed at the end time point of the experiment.Results: The CC lines varied(P <.05) at their BW gain and glucose tolerance ability(with sex effect) in response to diets and/or infection, showing opposite responses despite sharing the same environmental conditions. The combination of diet and infection enhances BW accumulation for IL1912, while restraints it for IL72. As for glucose tolerance ability, only females(both lines) were deteriorated in response to infection.Conclusions: This study emphasizes the power of the CC mouse population for the characterization of host genetic makeup for defining the susceptibility of the individual to development of obesity and/or impaired glucose tolerance.