The hydrophobic sonosensitizer IR780 iodide(IR780)was loaded into liposomes to form Liposome@IR780 nanoparticles(NPs)for triple-negative breast cancer(TNBC)to enhance SDT via low-intensity ultrasound(LIU)irradiation.T...The hydrophobic sonosensitizer IR780 iodide(IR780)was loaded into liposomes to form Liposome@IR780 nanoparticles(NPs)for triple-negative breast cancer(TNBC)to enhance SDT via low-intensity ultrasound(LIU)irradiation.The NPs were characterized using various physicochemical methods including size distribution,zeta potential,and morphology.In vitro experiments show that the Liposome@IR780 NPs can generate more reactive oxygen species(ROS)upon LIU irradiation.The apoptosis experiment results further demonstrate that Liposome@IR780 NPs show better apoptosis rate against 4T1 cells.Our results indicate that Liposome@IR780 NPs will provide a promising approach for TNBC upon SDT treatment.展开更多
Photodynamic therapy (PDT) is a clinically approved cancer treatment that uses energy of light to generate active substances that cause damage to the cancer. Photosensitizers are employed to absorb light and generate ...Photodynamic therapy (PDT) is a clinically approved cancer treatment that uses energy of light to generate active substances that cause damage to the cancer. Photosensitizers are employed to absorb light and generate toxic reactive oxygen species (ROS) to damage biomolecules like DNA. At the same time, some chemotherapy drugs like nucleotide analogues can provide mechanism-guided promotion in the treatment efficacy of PDT. However, the photosensitizer and chemotherapy drugs used in PDT is usually organic molecules, which suffers from bad solubility, fast clearance, and acute toxicity. To achieve targeted treatment, a reasonable delivery system is necessary. Therefore, we reported a metal-phenolic network where IR780 and gemcitabine were coupled chemically to overcome these shortcomings. The enhanced PDT effects can be realized by the promoted cell death both in vitro and in vivo. Moreover, the synergistic therapy also induced T-cell mediated anti-tumor immune response, which was significant for the inhibition of distant tumor growth. This work expanded the biomedical application of metal-phenolic materials and contribute to the wider application of photodynamic cancer therapy.展开更多
Efficient determination of tumor exosomes using portable devices is crucial for the establishment of facile and convenient early cancer diagnostic methods. However, it is still challenging to effectively amplify the d...Efficient determination of tumor exosomes using portable devices is crucial for the establishment of facile and convenient early cancer diagnostic methods. However, it is still challenging to effectively amplify the detection signal to achieve tumor exosomes detection with high sensitivity by portable devices. To address this issue, we developed a portable multi-amplified temperature sensing strategy for highly sensitive detecting tumor exosomes based on multifunctional manganese dioxide/IR780 nanosheets(MnO_(2)/IR780 NSs) nanozyme with high oxidase-like activity and enhanced photothermal performance.Inspiringly, MnO_(2)/IR780 NSs were synthesized via a facile one-step method with mild experimental conditions, which not only exhibited a stronger photothermal effect than that of MnO_(2) but also showed excellent oxidase-like activity that can catalyze the oxidation of 3',3',5',5'-tetramethylbenzidine(TMB) to generate TMB oxide(oxTMB) with a robust photothermal property, thus conjoining with MnO_(2)/IR780 NSs to further enhance the temperature signal. The present assay enables highly sensitive determination of tumor exosomes with the detection limit down to 5.1×10~3 particles/mL, which was comparable or superior to those of the most previously reported sensors. Furthermore, detection of tumor exosomes spiked in biological samples was successfully realized. More importantly, our method showed the recommendable portability, robust applicability, and easy manipulation. By taking advantages of these features,this high-performance photothermal sensor offered a promising alternative means for nondestructive early cancer diagnosis and treatment efficacy evaluation.展开更多
Background:Hypertrophic scars(HS)represent one of the most common clinical challenges due to unsatisfactory therapeutic results.HS formation is associated with the abnormal activation of fibroblasts and their excessiv...Background:Hypertrophic scars(HS)represent one of the most common clinical challenges due to unsatisfactory therapeutic results.HS formation is associated with the abnormal activation of fibroblasts and their excessive fibrotic behavior.Glycolysis dysregulation has been shown to participate in the incidence and progression of various fibrotic diseases and shows potential as a means of controlling HS formation.This work aimed to discuss the impact of augmented glycolysis on HS and to propose a method for controlling HS formation through glycolysis regulation.Methods:Here,augmented glycolysis was confirmed together with enhanced fibrotic activity in both HS fibroblasts(HFs)and HS tissues,and the suppression of glycolysis also attenuated fibroblast activation.We also introduced IR780,a heptamethine cyanine dye,to regulate glycolysis for the control of HS formation.Results:In vitro,cell studies indicated that IR780 significantly down-regulated glycolysis and suppressed the fibrotic activity of HFs.In vivo,the intralesional injection of IR780 into rabbit HS models led to the downregulation of glycolysis and the control of HS formation.Furthermore,IR780 accumulated preferentially in activated fibroblasts in both in vitro and in vivo studies,and thus specifically downregulated glycolysis and efficiently controlled fibrosis by targeting activated fibroblasts.Conclusions:This work identified a strategy for controlling fibrosis and HS formation from the perspective of glycolysis regulation with IR780 targeting of activated fibroblasts.展开更多
Near-infrared(NIR)laser-induced phototherapy through NIR agents has demonstrated the great potential for cancer therapy.However,insufficient tumor killing due to the nonuniform heat or cytotoxic singlet oxygen(1 O2)di...Near-infrared(NIR)laser-induced phototherapy through NIR agents has demonstrated the great potential for cancer therapy.However,insufficient tumor killing due to the nonuniform heat or cytotoxic singlet oxygen(1 O2)distribution over tumors from phototherapy results in tumor recurrence and inferior outcomes.To achieve high tumor killing efficacy,one of the solutions is to employ the combinational treatment of phototherapy with other modalities,especially with chemotherapeutic agents.In this paper,a simple and effective multimodal therapeutic system was designed via combining chemotherapy,photothermal therapy(PTT),and photodynamic therapy(PDT)to achieve the polytherapy of malignant glioma which is one of the most aggressive tumors in the brain.IR-780(IR780)dye-labeled tube-forming peptoids(PepIR)were synthesized and self-assembled into crystalline nanotubes(PepIR nanotubes).These PepIR nanotubes showed an excellent efficacy for PDT/PTT because the IR780 photosensitizers were effectively packed and separated from each other within crystalline nanotubes by tuning IR780 density;thus,a self-quenching of these IR780 molecules was significantly reduced.Moreover,the efficient DOX loading achieved due to the nanotube large surface area contributed to an efficient and synergistic chemotherapy against glioma cells.Given the unique properties of peptoids and peptoid nanotubes,we believe that the developed multimodal DOX-loaded PepIR nanotubes in this work offer great promises for future glioma therapy in clinic.展开更多
The cyanine dyes represented by IR780 can achieve synergistic photodynamic therapy(PDT)and photothermal therapy(PTT)under the stimulation of near-infrared(NIR)light(commonly 808 nm).Unfortunately,the stability of NIR-...The cyanine dyes represented by IR780 can achieve synergistic photodynamic therapy(PDT)and photothermal therapy(PTT)under the stimulation of near-infrared(NIR)light(commonly 808 nm).Unfortunately,the stability of NIR-excited cyanine dyes is not satisfactory.These cyanine dyes can be attacked by self-generated reactive oxygen species(ROS)during PDT processes,resulting in structural damage and rapid degradation,which is fatal for phototherapy.To address this issue,a novel non-cyanine dye(IR890)was elaborately designed and synthesized by our team.The maximum absorption wavelength of IR890 was located in the deep NIR region(ca.890 nm),which was beneficial for further improving tissue penetration depth.Importantly,IR890 exhibited good stability when continuously illuminated by deep NIR light.To improve the hydrophilicity and biocompatibility,the hydrophobic IR890 dye was grafted onto the side chain of hydrophilic polymer(POEGMA-b-PGMA-g-C≡CH)via click chemistry.Then,the synthesized POEGMA-b-PGMA-g-IR890 amphiphilic polymerwas utilized to prepare P-IR890 nano-photosensitizer via self-assembly method.Under irradiation with deep NIR light(850 nm,0.5 W/cm^(2),10 min),the dye degradation rate of P-IR890 was less than 5%.However,IR780 was almost completely degraded with the same light output power density and irradiation duration.In addition,P-IR890 could stably generate a large number of ROS and heat at the same time.It was rarely reported that the stable synergistic combination therapy of PDT and PTT could be efficiently performed by a single photosensitizer via irradiation with deep NIR light.P-IR890 exhibited favorable anti-tumor outcomes through apoptosis pathway.Therefore,the P-IR890 could provide a new insight into the design of photosensitizers and new opportunities for synergistic combination therapy of PDT and PTT.展开更多
文摘The hydrophobic sonosensitizer IR780 iodide(IR780)was loaded into liposomes to form Liposome@IR780 nanoparticles(NPs)for triple-negative breast cancer(TNBC)to enhance SDT via low-intensity ultrasound(LIU)irradiation.The NPs were characterized using various physicochemical methods including size distribution,zeta potential,and morphology.In vitro experiments show that the Liposome@IR780 NPs can generate more reactive oxygen species(ROS)upon LIU irradiation.The apoptosis experiment results further demonstrate that Liposome@IR780 NPs show better apoptosis rate against 4T1 cells.Our results indicate that Liposome@IR780 NPs will provide a promising approach for TNBC upon SDT treatment.
基金the National Natural Science Foundation of China(NSFC,Nos.32171318,32222090 and 32101069)the Faculty of Health Sciences,University of Macao,the Multi-Year Research Grant(MYRG)of University of Macao(No.MYRG2022-00011-FHS)+2 种基金the Science and Technology Development Fund,Macao SAR(Nos.0103/2021/A and 0002/2021/AKP)Shenzhen Science and Technology Innovation Commission,Shenzhen-Hong Kong-Macao Science and Technology Plan C(No.SGDX20201103093600004)Dr.Stanley Ho Medical Development Foundation(No.SHMDF-OIRFS/2022/002)。
文摘Photodynamic therapy (PDT) is a clinically approved cancer treatment that uses energy of light to generate active substances that cause damage to the cancer. Photosensitizers are employed to absorb light and generate toxic reactive oxygen species (ROS) to damage biomolecules like DNA. At the same time, some chemotherapy drugs like nucleotide analogues can provide mechanism-guided promotion in the treatment efficacy of PDT. However, the photosensitizer and chemotherapy drugs used in PDT is usually organic molecules, which suffers from bad solubility, fast clearance, and acute toxicity. To achieve targeted treatment, a reasonable delivery system is necessary. Therefore, we reported a metal-phenolic network where IR780 and gemcitabine were coupled chemically to overcome these shortcomings. The enhanced PDT effects can be realized by the promoted cell death both in vitro and in vivo. Moreover, the synergistic therapy also induced T-cell mediated anti-tumor immune response, which was significant for the inhibition of distant tumor growth. This work expanded the biomedical application of metal-phenolic materials and contribute to the wider application of photodynamic cancer therapy.
基金financially supported by the National Natural Science Foundation of China(Nos.22174083 and 22076090)Shandong Provincial Natural Science Foundation(No.ZR2020ZD37)+2 种基金Special Foundation for Taishan Scholar of Shandong Province(No.TSQN202103093)Shandong Province Higher Educational Program for Young Innovation Talentsthe Research Foundation for Distinguished Scholars of Qingdao Agricultural University(No.6651119006)。
文摘Efficient determination of tumor exosomes using portable devices is crucial for the establishment of facile and convenient early cancer diagnostic methods. However, it is still challenging to effectively amplify the detection signal to achieve tumor exosomes detection with high sensitivity by portable devices. To address this issue, we developed a portable multi-amplified temperature sensing strategy for highly sensitive detecting tumor exosomes based on multifunctional manganese dioxide/IR780 nanosheets(MnO_(2)/IR780 NSs) nanozyme with high oxidase-like activity and enhanced photothermal performance.Inspiringly, MnO_(2)/IR780 NSs were synthesized via a facile one-step method with mild experimental conditions, which not only exhibited a stronger photothermal effect than that of MnO_(2) but also showed excellent oxidase-like activity that can catalyze the oxidation of 3',3',5',5'-tetramethylbenzidine(TMB) to generate TMB oxide(oxTMB) with a robust photothermal property, thus conjoining with MnO_(2)/IR780 NSs to further enhance the temperature signal. The present assay enables highly sensitive determination of tumor exosomes with the detection limit down to 5.1×10~3 particles/mL, which was comparable or superior to those of the most previously reported sensors. Furthermore, detection of tumor exosomes spiked in biological samples was successfully realized. More importantly, our method showed the recommendable portability, robust applicability, and easy manipulation. By taking advantages of these features,this high-performance photothermal sensor offered a promising alternative means for nondestructive early cancer diagnosis and treatment efficacy evaluation.
基金supported by National Natural Science Foundation of China(82172222 and 82102328)ShanghaiMunicipal Education Commission-Gaofeng Clinical Medicine Grant Support(20152227)+3 种基金ClinicalMulti-Disciplinary Team Research Program of ninth People’s Hospital,Shanghai Jiao Tong University School of Medicine(2017-1-007)Cross Research Project of Ninth People’s Hospital,Shanghai Jiao Tong University School of Medicine(JYJC202009)Shanghai Health Industry Clinical Research Special Project(20204Y0443)Shanghai Municipal Key Clinical Specialty(shslczdzk00901).
文摘Background:Hypertrophic scars(HS)represent one of the most common clinical challenges due to unsatisfactory therapeutic results.HS formation is associated with the abnormal activation of fibroblasts and their excessive fibrotic behavior.Glycolysis dysregulation has been shown to participate in the incidence and progression of various fibrotic diseases and shows potential as a means of controlling HS formation.This work aimed to discuss the impact of augmented glycolysis on HS and to propose a method for controlling HS formation through glycolysis regulation.Methods:Here,augmented glycolysis was confirmed together with enhanced fibrotic activity in both HS fibroblasts(HFs)and HS tissues,and the suppression of glycolysis also attenuated fibroblast activation.We also introduced IR780,a heptamethine cyanine dye,to regulate glycolysis for the control of HS formation.Results:In vitro,cell studies indicated that IR780 significantly down-regulated glycolysis and suppressed the fibrotic activity of HFs.In vivo,the intralesional injection of IR780 into rabbit HS models led to the downregulation of glycolysis and the control of HS formation.Furthermore,IR780 accumulated preferentially in activated fibroblasts in both in vitro and in vivo studies,and thus specifically downregulated glycolysis and efficiently controlled fibrosis by targeting activated fibroblasts.Conclusions:This work identified a strategy for controlling fibrosis and HS formation from the perspective of glycolysis regulation with IR780 targeting of activated fibroblasts.
基金supported by Washington State University(WSU)start-up fund.Peptoid synthesis work was supported by the Materials Synthesis and Simulation Across Scales(MS3)Initiative through the LDRD fund at Pacific Northwest National Laboratory(PNNL)Assembly of peptoid nanotubes and their structural characterizations were supported by the U.S.Department of Energy,Office of Basic Energy Sciences,Biomolecular Materials Program at PNNL+1 种基金the Advanced Light Source with support from the Molecular Foundry,at Lawrence Berkeley National Laboratory,both of which are supported by the Office of Science,under Contract No.DE-AC02-05CH11231PNNL is a multiprogram national laboratory operated for Department of Energy by Battelle under Contract No.DE-AC05-76RL01830.
文摘Near-infrared(NIR)laser-induced phototherapy through NIR agents has demonstrated the great potential for cancer therapy.However,insufficient tumor killing due to the nonuniform heat or cytotoxic singlet oxygen(1 O2)distribution over tumors from phototherapy results in tumor recurrence and inferior outcomes.To achieve high tumor killing efficacy,one of the solutions is to employ the combinational treatment of phototherapy with other modalities,especially with chemotherapeutic agents.In this paper,a simple and effective multimodal therapeutic system was designed via combining chemotherapy,photothermal therapy(PTT),and photodynamic therapy(PDT)to achieve the polytherapy of malignant glioma which is one of the most aggressive tumors in the brain.IR-780(IR780)dye-labeled tube-forming peptoids(PepIR)were synthesized and self-assembled into crystalline nanotubes(PepIR nanotubes).These PepIR nanotubes showed an excellent efficacy for PDT/PTT because the IR780 photosensitizers were effectively packed and separated from each other within crystalline nanotubes by tuning IR780 density;thus,a self-quenching of these IR780 molecules was significantly reduced.Moreover,the efficient DOX loading achieved due to the nanotube large surface area contributed to an efficient and synergistic chemotherapy against glioma cells.Given the unique properties of peptoids and peptoid nanotubes,we believe that the developed multimodal DOX-loaded PepIR nanotubes in this work offer great promises for future glioma therapy in clinic.
基金This project was supported by National Natural Science Foundation of China(Grant No.82271629 and 82301790)Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(Grant No.2023R01002)Ningbo Natural Science Foundation(Grant No.2023J054).
文摘The cyanine dyes represented by IR780 can achieve synergistic photodynamic therapy(PDT)and photothermal therapy(PTT)under the stimulation of near-infrared(NIR)light(commonly 808 nm).Unfortunately,the stability of NIR-excited cyanine dyes is not satisfactory.These cyanine dyes can be attacked by self-generated reactive oxygen species(ROS)during PDT processes,resulting in structural damage and rapid degradation,which is fatal for phototherapy.To address this issue,a novel non-cyanine dye(IR890)was elaborately designed and synthesized by our team.The maximum absorption wavelength of IR890 was located in the deep NIR region(ca.890 nm),which was beneficial for further improving tissue penetration depth.Importantly,IR890 exhibited good stability when continuously illuminated by deep NIR light.To improve the hydrophilicity and biocompatibility,the hydrophobic IR890 dye was grafted onto the side chain of hydrophilic polymer(POEGMA-b-PGMA-g-C≡CH)via click chemistry.Then,the synthesized POEGMA-b-PGMA-g-IR890 amphiphilic polymerwas utilized to prepare P-IR890 nano-photosensitizer via self-assembly method.Under irradiation with deep NIR light(850 nm,0.5 W/cm^(2),10 min),the dye degradation rate of P-IR890 was less than 5%.However,IR780 was almost completely degraded with the same light output power density and irradiation duration.In addition,P-IR890 could stably generate a large number of ROS and heat at the same time.It was rarely reported that the stable synergistic combination therapy of PDT and PTT could be efficiently performed by a single photosensitizer via irradiation with deep NIR light.P-IR890 exhibited favorable anti-tumor outcomes through apoptosis pathway.Therefore,the P-IR890 could provide a new insight into the design of photosensitizers and new opportunities for synergistic combination therapy of PDT and PTT.