期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
YOLO-Fastest-IR:Ultra-lightweight thermal infrared face detection method for infrared thermal camera
1
作者 LI Xi-Cai ZHU Jia-He +1 位作者 DONG Peng-Xiang WANG Yuan-Qing 《红外与毫米波学报》 北大核心 2025年第5期790-800,共11页
This paper presents a high-speed and robust dual-band infrared thermal camera based on an ARM CPU.The system consists of a low-resolution long-wavelength infrared detector,a digital temperature and humid⁃ity sensor,an... This paper presents a high-speed and robust dual-band infrared thermal camera based on an ARM CPU.The system consists of a low-resolution long-wavelength infrared detector,a digital temperature and humid⁃ity sensor,and a CMOS sensor.In view of the significant contrast between face and background in thermal infra⁃red images,this paper explores a suitable accuracy-latency tradeoff for thermal face detection and proposes a tiny,lightweight detector named YOLO-Fastest-IR.Four YOLO-Fastest-IR models(IR0 to IR3)with different scales are designed based on YOLO-Fastest.To train and evaluate these lightweight models,a multi-user low-resolution thermal face database(RGBT-MLTF)was collected,and the four networks were trained.Experiments demon⁃strate that the lightweight convolutional neural network performs well in thermal infrared face detection tasks.The proposed algorithm outperforms existing face detection methods in both positioning accuracy and speed,making it more suitable for deployment on mobile platforms or embedded devices.After obtaining the region of interest(ROI)in the infrared(IR)image,the RGB camera is guided by the thermal infrared face detection results to achieve fine positioning of the RGB face.Experimental results show that YOLO-Fastest-IR achieves a frame rate of 92.9 FPS on a Raspberry Pi 4B and successfully detects 97.4%of faces in the RGBT-MLTF test set.Ultimate⁃ly,an infrared temperature measurement system with low cost,strong robustness,and high real-time perfor⁃mance was integrated,achieving a temperature measurement accuracy of 0.3℃. 展开更多
关键词 artificial intelligence infrared face detection ultra-lightweight network infrared thermal camera YOLO-Fastest-IR
在线阅读 下载PDF
基于红外热成像与改进YOLOV3的夜间野兔监测方法 被引量:20
2
作者 易诗 李欣荣 +2 位作者 吴志娟 朱竞铭 袁学松 《农业工程学报》 EI CAS CSCD 北大核心 2019年第19期223-229,共7页
随生态改善,野兔数量增多,对农田与林地的危害日益加重。野兔活动多为夜间,目标小,运动速度快,且出现环境较复杂,监控兔害,需要一种高效智能化的方法。针对野兔活动习性,该文提出了使用红外热成像实时监控,结合改进的YOLOV3目标检测方... 随生态改善,野兔数量增多,对农田与林地的危害日益加重。野兔活动多为夜间,目标小,运动速度快,且出现环境较复杂,监控兔害,需要一种高效智能化的方法。针对野兔活动习性,该文提出了使用红外热成像实时监控,结合改进的YOLOV3目标检测方法对夜间野兔进行检测。根据YOLOV3目标检测网络基本结构提出了一种针对红外图像中野兔的实时检测的网络(infrared rabbit detection YOLO,IR-YOLO),该网络特征提取部分压缩YOLOV3特征提取网络深度,利用浅层卷积层特征以提高低分辨率红外小目标检测精度,降低运算量,网络检测部分使用基于CenterNet结构的检测方式以提高检测速度。使用热成像野外实时采集的夜间野兔图像作为数据集,包括不同距离,尺度,出现环境不同的野兔共计6000幅红外图像制作训练集与测试集,比例为5:1。试验结果表明,IR-YOLO在红外热成像视频中复杂环境下出现的野兔检测率达75%,平均检测速度51帧/s,相对改进前YOLOV3检测率提高15个百分点,相对改进前YOLOV3检测速度提高5帧/s。相比其他目标检测算法各项检测指标更为优良,检测率方面相对Faster-RCNN与RFCN-RESNET101分别提高45个百分点与20个百分点,检测速度方面相对Faster-RCNN与RFCN-RESNET101分别提高30和与45帧/s。该方法可高效快速地对夜间复杂环境下出现的野兔进行检测,也可广泛应用于夜间对其他类型农业害兽的检测。 展开更多
关键词 红外热成像 图像处理 野兔 检测 ir-yolo CENTER Net检测结构 小目标检测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部