As is known,centralized federated learning faces risks of a single point of failure and privacy breaches,and blockchain-based federated learning frameworks can address these challenges to a certain extent in recent wo...As is known,centralized federated learning faces risks of a single point of failure and privacy breaches,and blockchain-based federated learning frameworks can address these challenges to a certain extent in recent works.However,malicious clients may still illegally access the blockchain to upload malicious data or steal on-chain data.In addition,blockchain-based federated training suffers from a heavy storage burden and excessive network communication overhead.To address these issues,we propose an asynchronous,tiered federated learning storage scheme based on blockchain and IPFS.It manages the execution of federated learning tasks through smart contracts deployed on the blockchain,decentralizing the entire training process.Additionally,the scheme employs a secure and efficient blockchain-based asynchronous tiered architecture,integrating attribute-based access control technology for resource exchange between the clients and the blockchain network.It dynamically manages access control policies during training and adopts a hybrid data storage strategy combining blockchain and IPFS.Experiments with multiple sets of image classification tasks are conducted,indicating that the storage strategy used in this scheme saves nearly 50 percent of the communication overhead and significantly reduces the on-chain storage burden compared to the traditional blockchain-only storage strategy.In terms of training effectiveness,it maintains similar accuracy as centralized training and minimizes the probability of being attacked.展开更多
In the digital information age,distributed file storage technologies like the InterPlanetary File System(IPFS)have gained considerable traction as a means of storing and disseminating media content.Despite the advanta...In the digital information age,distributed file storage technologies like the InterPlanetary File System(IPFS)have gained considerable traction as a means of storing and disseminating media content.Despite the advantages of decentralized storage,the proliferation of decentralized technologies has highlighted the need to address the issue of file ownership.The aim of this paper is to address the critical issues of source verification and digital copyright protection for IPFS image files.To this end,an innovative approach is proposed that integrates blockchain,digital signature,and blind watermarking.Blockchain technology functions as a decentralized and tamper-resistant ledger,recording and verifying the source information of files,thereby establishing credible evidence of file origin.A digital signature serves to authenticate the identity and integrity of the individual responsible for uploading the file,ensuring data security.Furthermore,blind watermarking is employed to embed invisible information within images,thereby safeguarding digital copyrights and enabling file traceability.To further optimize the efficiency of file retrieval within IPFS,a dual-layer Distributed Hash Table(DHT)indexing structure is proposed.This structure divides file index information into a global index layer and a local index layer,significantly reducing retrieval time and network overhead.The feasibility of the proposed approach is demonstrated through practical examples,providing an effective solution to the copyright protection issues associated with IPFS image files.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52331012)the Natural Science Foundation of Shanghai Municipality(Grant No.21ZR1426500)the Program for Cultivation of Graduate Students’Top-notch Innovative Talents of Shanghai Maritime University(Grant No.2023YBR007).
文摘As is known,centralized federated learning faces risks of a single point of failure and privacy breaches,and blockchain-based federated learning frameworks can address these challenges to a certain extent in recent works.However,malicious clients may still illegally access the blockchain to upload malicious data or steal on-chain data.In addition,blockchain-based federated training suffers from a heavy storage burden and excessive network communication overhead.To address these issues,we propose an asynchronous,tiered federated learning storage scheme based on blockchain and IPFS.It manages the execution of federated learning tasks through smart contracts deployed on the blockchain,decentralizing the entire training process.Additionally,the scheme employs a secure and efficient blockchain-based asynchronous tiered architecture,integrating attribute-based access control technology for resource exchange between the clients and the blockchain network.It dynamically manages access control policies during training and adopts a hybrid data storage strategy combining blockchain and IPFS.Experiments with multiple sets of image classification tasks are conducted,indicating that the storage strategy used in this scheme saves nearly 50 percent of the communication overhead and significantly reduces the on-chain storage burden compared to the traditional blockchain-only storage strategy.In terms of training effectiveness,it maintains similar accuracy as centralized training and minimizes the probability of being attacked.
基金supported by the Doctoral Research Foundation of Chongqing Normal University(Nos.21XLB030,21XLB029)the Key Program of Chongqing Education Science Planning Project(No.K22YE205098).
文摘In the digital information age,distributed file storage technologies like the InterPlanetary File System(IPFS)have gained considerable traction as a means of storing and disseminating media content.Despite the advantages of decentralized storage,the proliferation of decentralized technologies has highlighted the need to address the issue of file ownership.The aim of this paper is to address the critical issues of source verification and digital copyright protection for IPFS image files.To this end,an innovative approach is proposed that integrates blockchain,digital signature,and blind watermarking.Blockchain technology functions as a decentralized and tamper-resistant ledger,recording and verifying the source information of files,thereby establishing credible evidence of file origin.A digital signature serves to authenticate the identity and integrity of the individual responsible for uploading the file,ensuring data security.Furthermore,blind watermarking is employed to embed invisible information within images,thereby safeguarding digital copyrights and enabling file traceability.To further optimize the efficiency of file retrieval within IPFS,a dual-layer Distributed Hash Table(DHT)indexing structure is proposed.This structure divides file index information into a global index layer and a local index layer,significantly reducing retrieval time and network overhead.The feasibility of the proposed approach is demonstrated through practical examples,providing an effective solution to the copyright protection issues associated with IPFS image files.