The precipitation behavior and its influence on the electrical resistivity of the Al-0.96Mg2Si alloy during aging were investigated with in-situ resistivity measurement and transmission electron microscopy (TEM). Th...The precipitation behavior and its influence on the electrical resistivity of the Al-0.96Mg2Si alloy during aging were investigated with in-situ resistivity measurement and transmission electron microscopy (TEM). The precipitates of the peak aged alloy include both β" and if, but the amount ratio of β" to β" varies with the aging temperature and time increasing. The precipitates during aging at 175 ℃ are dominated by needle-like β" phases (including pre-β" phase), the size of which increases with the time prolonging, but does not increase substantially after further aging. The evolution of electrical conductivity is directly related to such microstructural evolution. However, the hardness of the alloy stays at the peak value for a long term. When the alloy is aged at 195 ℃, the ratio of β" to β' becomes the main factor to influence relative resistivity (Ap) value. The higher the temperature is, the smaller the ratio is, and the faster the Ap value decreases. Moreover, the hardness peak drops with the decrease of the ratio. With the size and distribution parameters measured from TEM images, a semi-quantitative relationship between precipitates and the electrical resistivity was established.展开更多
Proton exchange membrane water electrolysis(PEMWE)is one of the most promising strategies to pro-duce green hydrogen energy,and it is crucial to exploit highly conductive and good corrosion-resistant coatings on bipol...Proton exchange membrane water electrolysis(PEMWE)is one of the most promising strategies to pro-duce green hydrogen energy,and it is crucial to exploit highly conductive and good corrosion-resistant coatings on bipolar plates(BPs),one of the core components in PEMWE cells.In this work,NbN coatings are deposited on Ti BPs by magnetron sputtering to improve the corrosion resistance and conductivity,for which the critical process parameters,such as the working pressure,partial nitrogen pressure and de-position temperature are well optimized.It is found that the compact microstructure,highly conductive δ-NbN and uniform nanoparticles play a dominant role in the synergistic improvement of the corrosion resistance and electrical conductivity of NbN coatings.The optimized NbN coatings exhibit excellent cor-rosion resistance with the low corrosion current density of 1.1×10^(-8) A cm^(-2),a high potential value of-0.005 V vs.SCE and a low ICR value of 15.8 mΩcm2@1.5 MPa.Accordingly,NbN coatings can be a promising candidate for the development of the low-cost and high-anti-corrosion Ti BPs of PEMWE.展开更多
In order to interpret the vertical electrical sounding data more reliably and effectively in the case of lacking proper priori information, two inverse schemes are proposed to invert combined re- sistivity and induced...In order to interpret the vertical electrical sounding data more reliably and effectively in the case of lacking proper priori information, two inverse schemes are proposed to invert combined re- sistivity and induced polarization data by using particle swarm optimization technique. Based on the computational formula of induced polarization, the inversion for chargeability/polarizability data can be transformed into inverting equivalent resistivity data. Then, the inversion for combined data can be decomposed into two procedures: inverting resistivity data and inverting equivalent resistivity data. A sequential inversion scheme is presented to run the two procedures sequentially. Contrast to the se- quential scheme, a simultaneous one is proposed to invert resistivity and induced polarization data si- multaneously. Both the sequential and simultaneous schemes are performed via centered-progressive particle swarm optimization algorithm for more exploratory purpose. Numerical experiments show that both the designed inversion algorithms can invert resistivity and induced polarization data suc- cessfully with fast convergence and high accuracy, even performed in a large search space. The inverse results are comparable to the results from generalized linear method. As an approximate importance sampler, the particle swarm optimization based algorithm can provide posterior analysis conveniently. We employ the posterior probability distributions of inverted model parameters to evaluate the per- formance and uncertainty of inversion. The posterior analysis and further field data testing show that the proposed inversion algorithms perform good sampling of the equivalence region and make sure that the global optimum can locate in the high probability areas.展开更多
The development of fissures in expansive soils has a great effect on the stability of slope. Of the three phases of soils,the gas phase and solid phase are relatively insulated,so the average resistivity of soils can ...The development of fissures in expansive soils has a great effect on the stability of slope. Of the three phases of soils,the gas phase and solid phase are relatively insulated,so the average resistivity of soils can be calculated from the resistivity of the liquid phase. On this basis,the two-part model of resistivity changing with the water saturation of the expansive soil can be deduced. A 2-D resistance grid model is established based on simulating the resistance of ver-tically developed fissures. Variation in measured resistance of vertically developed fissures at different positions can be calculated from this model. Fissure development can be inversely determined from the variation in the measured resis-tance. Finally,the model is verified by an indoor resistivity test for remolded soil samples,indicating that the test result agrees well with that of the model established.展开更多
This study addresses the challenge of real-time resistivity gradient measurement in the Czochralski(CZ)silicon production process.Due to the inability to directly measure this parameter,we propose a Long Short-Term Me...This study addresses the challenge of real-time resistivity gradient measurement in the Czochralski(CZ)silicon production process.Due to the inability to directly measure this parameter,we propose a Long Short-Term Memory soft-sensing model based on Convolutional Neural Network(CNN)and attention mechanism(CNN-ALSTM)that enhances traditional LSTM by integrating CNN and attention mechanism to overcome time lag variations during silicon pulling.The CNN module extracts spatial features from multi-source sensor data,while the attention-enhanced LSTM(ALSTM)dynamically adjusts historical parameter weights,enabling accurate resistivity gradient prediction.Experiments with real production data show that CNN-ALSTM outperforms SVR,FNN,RNN,XGBoost,and GRU,improving prediction accuracy by 11.76%,16.67%,21.05%,30.23%,and 9.09%,respectively.This soft-sensing approach enhances real-time monitoring and optimization of monocrystalline silicon growth.展开更多
Effects of polarization and p-type GaN resistivity on the spectral response of InGaN/GaN multiple quantum well (MQW) solar cells are investigated. It is found that due to the reduction of piezoelectric polarization ...Effects of polarization and p-type GaN resistivity on the spectral response of InGaN/GaN multiple quantum well (MQW) solar cells are investigated. It is found that due to the reduction of piezoelectric polarization and the enhancement of tunneling transport of photo-generated carriers in MQWs, the external quantum efficiency (EQE) of the solar cells increases in a low energy spectral range (λ 〉 370 nm) when the barrier thickness value decreases from 15 nm to 7.5 nm. But the EQE decreases abruptly when the barrier thickness value decreases down to 3.75 nm. The reasons for these experimental results are analyzed. We are aware that the reduction of depletion width in MQW region, caused by the high resistivity of the p-type GaN layer may be the main reason for the abnormally low EQE value at long wavelengths (λ 〉 370 nm).展开更多
Rock fractures or faults could be reactivated by the thermal stress generated during the decay process of the high-level radioactive waste in deep geological repositories(DGRs).Understanding thermoshearing behavior an...Rock fractures or faults could be reactivated by the thermal stress generated during the decay process of the high-level radioactive waste in deep geological repositories(DGRs).Understanding thermoshearing behavior and its influencing factors are important for the long-term performance assessment of DGRs.We designed multistage mechanical(M)shear tests and thermomechanical(TM)shear tests on three 100 mm-cubic granite specimens,each containing a single inclined sawcut fracture with distinct microroughness of 8-15μm.M test results have shown that the static friction coefficient of the granite fracture decreases in proportion to the increase in the logarithm of the loading rate within the range of 1-15 kPa/s.For the given heating and boundary conditions,thermal loading rate,i.e.,thermal stress increment with heating time,is measured to be around 1 kPa/s in the fractured granite.Thermoshearing can be well predicted by the linear Mohr-Coulomb failure envelope deduced from M shear tests employing a loading rate that is comparable with the thermal loading rate.The granite fractures exhibited two distinct slip patterns during the mechanical shearing,i.e.,stick-slip observed in the smooth fracture and stable sliding in the relatively rough surface.In contrast,the mechanical loading rate(1-15 kPa/s)investigated in this study appears to not influence the slip pattern.Unlike those in M shear tests,thermoshearing in both smooth and relatively rough fractures show stable sliding with a very slow peak velocity of around 0.002μm/s.展开更多
Aim: To determine the relationship of carotid plaque, intima media thickness (IMT), resistivity index (RI) and pulsatility index (PI) and prevalence of different risk factors with acute ischemic stroke and stroke subt...Aim: To determine the relationship of carotid plaque, intima media thickness (IMT), resistivity index (RI) and pulsatility index (PI) and prevalence of different risk factors with acute ischemic stroke and stroke subtypes in both diabetic and non-diabetic subjects. Materials and methods: 80 cases of acute ischemic strokes and 40 healthy controls were included in the study. The plaque, IMT, RI and PI were measured by carotid duplex ultrasound. Results: 31 subjects were Type 2 diabetic, 54 hypertensive while 25 were both diabetic and hypertensive. 23 cases (28.75%) had lacunar stroke (LACI), 32 (40%) stroke involving partial anterior circulation(PACI), 10(12.5%) stroke in posterior circulation (PACI) and 15(18.75%) stroke involving total anterior circulation(TACI) respectively. The mean IMT (0.88 ± 0.19mm), RI(0.76 ± 0.05) and PI(1.71 ± 0.19) of patients and mean IMT (0.6±0.09mm), RI (0.61 ± 0.06) and PI (1.53 ± 0.11) of controls were statistically significant (p-0.000). The mean values of IMT, PI and RI were significantly higher in diabetics (IMT-0.90 ± 0.16 VS 0.64 ± 0.11, p-0.013;PI-1.76 ± 0.20 VS 1.49 ± 0.09, P-0.000 and RI-0.76 ± 0.04 VS 0.59 ± 0.06, P-0.000) and similarly the mean values for IMT, PI and RI in hypertensives as compared to controls (IMT-0.88 ± 0.16 vs 0.65 ± 0.10, P-0.006;PI1.69 ± 0.18 vs 1.49 ± 0.09, P-0.000 and RI 0.76 ± 0.04 vs 0.59 ± 0.06, P-0.000). The mean IMT, PI and RI were increased significantly in smokers compared to controls (IMT-0.93 ± 0.20 vs 0.63 ± 0.06, P-0.000;PI-1.82 ± 0.22 vs 1.49 ± 0.09, P-0.000 and RI-0.77 ± 0.04 vs 0.59 ± 0.06, P-0.000). Type 3 plaque accounted for 27 (56.2%) cases and Type 2 plaque 12 (25%) cases. The total number of plaques in patients as compared to controls were significantly more (P-0.0034) and the mean plaque area was 46 mm2 for cases and 20 mm2 for control (P-0.0001). TACI was the most common type of ischemic stroke seen in DM (60%), HTN (66.6%) and smokers (66.7%). Plaques (73.3%), IMT (0.90 ± 0.12), PI(1.72 ± 0.14) and RI (0.76 ± 0.13) were more commonly associated with TACI subtype. On multivariate analysis using ANOVA, the mean PI was highly significant (0.000) in relation to types of plaque. Summary and Conclusions: IMT, RI, PI and plaque type are useful diagnostic parameters for acute ischemic stroke and its subtypes. They can be used as noninvasive tools for predicting and preventing ischemic stroke in smokers as well as subjects with DM and hypertension.展开更多
TaN coatings were deposited on Ti bipolar plates by magnetron sputtering to improve corrosion resistance and service life.The influence of N_(2) flow rate on the surface morphology,hydrophobicity,crystallinity,corrosi...TaN coatings were deposited on Ti bipolar plates by magnetron sputtering to improve corrosion resistance and service life.The influence of N_(2) flow rate on the surface morphology,hydrophobicity,crystallinity,corrosion resistance,and interfacial contact resistance of TaN coatings was studied.Results show that as the N_(2) flow rate increases,the roughness of TaN coatings decreases firstly and then increases,and the hydrophobicity increases firstly and then decreases.At the N_(2) flow rate of 3 mL/min,TaN coating with larger grain size presents lower roughness and high hydrophobicity.The coating possesses the lowest corrosion current density of 2.82µA·cm^(−2) and the highest corrosion potential of−0.184 V vs.SCE in the simulated proton exchange membrane water electrolyser environment.After a potentiostatic polarization test for 10 h,a few corrosion pits are observed on the TaN coatings deposited at an N_(2) flow rate of 3 mL/min.After 75 h of electrolytic water performance testing,the TaN coating on bipolar plate improves the corrosion resistance and thus enhances the electrolysis efficiency(68.87%),greatly reducing the cost of bipolar plates.展开更多
The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and st...The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and stored in two parts separately. One part is associated with the volume integral and the other is associated with the subsurface boundary integral. The equivalent multiple linear systems with closer right-hand sides than the original systems were constructed. A recycling Krylov subspace technique was employed to solve the multiple linear systems. The solution of the seed system was used as an initial guess for the subsequent systems. The results of two numerical experiments show that the improved algorithm reduces the iterations and CPU time by almost 50%, compared with the classical preconditioned conjugate gradient method.展开更多
Plutella xylostella,a major pest of cruciferous vegetables worldwide,has developed resistance to diamide insecticides.Thiotraniliprole,a novel synthetic diamide insecticide,exhibits excellent activity against P.xylost...Plutella xylostella,a major pest of cruciferous vegetables worldwide,has developed resistance to diamide insecticides.Thiotraniliprole,a novel synthetic diamide insecticide,exhibits excellent activity against P.xylostella.In the present study,we aimed to confirm the resistance risk,cross-resistance,and mechanisms of resistance to thiotraniliprole in P.xylostella.After 40 consecutive generations of thiotraniliprole selection,we obtained a thiotraniliprole-resistance P.xylostella strain with a 5141.58-fold resistance ratio(RR)to thiotraniliprole.The overall realized heritability(h^(2))value of resistance was estimated as 0.9 using threshold trait analysis,indicating that the risk of developing resistance to thiotraniliprole is high in P.xylostella.The thiotraniliprole-resistant(TR)strain showed noticeable cross-resistance to chlorantraniliprole(RR=44670.05),cyantraniliprole(RR=7038.58),and tetrachlorantraniliprole(RR=1506.01),but no cross-resistance to tolfenpyrad,indoxacarb,diafenthiuron,or abamectin compared with the susceptible(S)strain.The enzyme assay data showed that the activities of glutathione-S transferase(GST),carboxylesterase(CarE),and the content of cytochrome P450 monooxygenase(P450s)were significantly higher in the TR strain than in the S strain.Sequencing of the full-length PxRyR cDNA revealed the gene site I4790K in the TR strain with a 100%frequency.This mutation in PxRyR likely underlies the high-level cross-resistance between thiotraniliprole and three other diamide insecticides.These findings provide valuable information for optimizing resistance management strategies to delay thiotraniliprole resistance development and ensure sustainable control of P.xylostella.展开更多
BACKGROUND In the absence of effective antimicrobials,transplant surgery is not viable,and antirejection immunosuppressants cannot be administered,as resistant infections compromise the life-saving goal of organ trans...BACKGROUND In the absence of effective antimicrobials,transplant surgery is not viable,and antirejection immunosuppressants cannot be administered,as resistant infections compromise the life-saving goal of organ transplantation.AIM To evaluate the efficacy of antimicrobials in preventing resistance in solid organ transplant recipients.METHODS A systematic review was conducted using a search methodology consistent with the preferred reporting items for systematic reviews and meta-analyses.This review included randomized clinical trials that evaluated the efficacy of antimicrobial agents(prophylactic or therapeutic)aimed at preventing antimicrobial resistance.The search strategy involved analyzing multiple databases,including PubMed/MEDLINE,Web of Science,Embase,Scopus,and SciELO,as well as examining gray literature sources on Google Scholar.A comprehensive electronic database search was conducted from the databases’inception until May 2024,with no language restrictions.RESULTS After the final phase of the eligibility assessment,this systematic review ultimate-ly included 7 articles.A total of 2318 patients were studied.The most studied microorganisms were cytomegalovirus,although vancomycinresistant enterococci,Clostridioides difficile,and multidrug-resistant Enterobacterales were also analyzed.The antimicrobials used in the interventions were mainly maribavir,valganciclovir,gancic-lovir,and colistin-neomycin.Of concern,all clinical trials showed significant proportions of resistant microorga-nisms after the interventions,with no statistically significant differences between the groups(mean resistance 13.47%vs 14.39%),except for two studies that demonstrated greater efficacy of maribavir and valganciclovir(mean resistance 22.2%vs 41.1%in the control group;P<0.05).The total reported deaths in three clinical trials were 75,and there were 24 graft rejections in two studies.CONCLUSION All clinical trials reported significant proportions of antimicrobial-resistant microorganisms following interventions.More high-quality randomized clinical trials are needed to corroborate these results.展开更多
In the experiments, a high-density resistivity method is used to explore the electric structure of landslip mass, and a resistivity-changing anisotropy method is used to monitor the orientation and speed of main fract...In the experiments, a high-density resistivity method is used to explore the electric structure of landslip mass, and a resistivity-changing anisotropy method is used to monitor the orientation and speed of main fracture extending of landslip mass. The results are as follows. 1 The exploring experiments have verified a part of creep deformation borderline, the depth and thickness of groundwater horizon, and the property of superstrata in the landslip mass investigated formerly, which have proved that the landslip belts contain rich groundwater; 2 The main fracture extending orientation inferred from the resistivity-changing anisotropy accords with the strike of fracture belt of landslip mass deduced from GPS displacement. Moreover, the changing rates of resistivity-changing anisotropy coefficient matches with the changing speeds of deep displacement of landslip mass were measured by suing clinometer in the borehole.展开更多
To enhance the resistance of honeycomb sandwich panel against local impact,this study delved into the matching relationship between face sheets and core.An integrated approach,combining experiment,simulation,and theor...To enhance the resistance of honeycomb sandwich panel against local impact,this study delved into the matching relationship between face sheets and core.An integrated approach,combining experiment,simulation,and theoretical methods,was used.Local loading experiments were conducted to validate the accuracy of the finite element model.Furthermore,a control equation was formulated to correlate structural parameters with response modes,and a matching coefficientλ(representing the ratio of core thickness to face sheet thickness)was introduced to establish a link between these parameters and impact characteristics.A demand-driven reverse design methodology for structural parameters was developed,with numerical simulations employed to assess its effectiveness.The results indicate that the proposed theory can accurately predict response modes and key indicators.An increase in theλbolsters the structural indentation resistance while concurrently heightens the likelihood of penetration.Conversely,a decrease in theλimproves the resistance to penetration,albeit potentially leading to significant deformations in the rear face sheet.Numerical simulations demonstrate that the reverse design methodology significantly enhances the structural penetration resistance.Comparative analyses indicate that appropriate matching reduces indentation depth by 27.4% and indentation radius by 41.8%of the proposed structure.展开更多
The predominant causal agent of poplar leaf blight is the pathogenic fungus Alternaria alternata (Fr.) Keissl., which exhibits host specificity toward Populus species. To elucidate the molecular response mechanisms of...The predominant causal agent of poplar leaf blight is the pathogenic fungus Alternaria alternata (Fr.) Keissl., which exhibits host specificity toward Populus species. To elucidate the molecular response mechanisms of A. alternata under fludioxonil fungicide stress, the fungus was cultured at the half-maximal effective concentration (EC₅₀) of fludioxonil. Transcriptomic and metabolomic profiles were analyzed using mycelia harvested under these conditions. Comparative analysis revealed 1,001 differentially expressed genes (DEGs) in the resistant strain (RS) relative to the wild-type strain (WT), comprising 628 upregulated and 373 downregulated genes. Concurrently, 524 differentially accumulated metabolites (DAMs) were identified, with 336 upregulated and 188 downregulated metabolites. KEGG pathway enrichment demonstrated pronounced upregulation in glycerophospholipid metabolism, α-linolenic acid metabolism, nucleic acid biosynthesis, and glycosylation processes. Conversely, arachidonic acid and galactose metabolism pathways were suppressed. Significant downregulation was observed in phosphatidylinositol signaling, aflatoxin biosynthesis, and cutin/suberin/wax biosynthesis pathways. Transcriptomic profiling further indicated that upregulated DEGs were predominantly associated with amino sugar/nucleotide sugar metabolism, ABC transporters, aflatoxin biosynthesis, and purine metabolism, while downregulated DEGs were enriched in N-glycan biosynthesis, endoplasmic reticulum protein processing, steroid biosynthesis, and riboflavin metabolism. Fludioxonil exerted substantial inhibitory effects on fungal growth, pathogenicity, and metabolic activity. Mechanistically, A. alternata counteracted fungicide-induced stress through modulation of its antioxidant defense system. This integrative multi-omics study delineates the dynamic gene expression and metabolic reprogramming in A. alternata under fludioxonil exposure, providing novel insights into potential molecular targets and informing the development of next-generation fungicidal strategies for phytopathogen control.展开更多
Pectobacterium carotovorum(Pc)is a necrotrophic bacterial pathogen that causes soft rot disease in Brassica rapa crops,including Chinese cabbage(B.rapa ssp.pekinensis),resulting in significant yield losses worldwide(R...Pectobacterium carotovorum(Pc)is a necrotrophic bacterial pathogen that causes soft rot disease in Brassica rapa crops,including Chinese cabbage(B.rapa ssp.pekinensis),resulting in significant yield losses worldwide(Roh et al.,2010).Deployment of resistant Chinese cabbage varieties and mining novel resistance genes for breeding resistant varieties against soft rot are key approaches that are currently used to prevent soft rot infections and ensure high yield and quality in Chinese cabbage.However,the highly adapted pathogen can easily overcome resistance(R)gene-mediated defense responses.Thus,discovering novel resistance genes and understanding the molecular mechanisms underlying R-mediated resistance against soft rot are sustained strategies for Chinese cabbage breeding.展开更多
Postgrouting at the pile tip enhances the performance of cast-in-place piles.To clarify the performance of tip and side resistances,this study analyzed static load test data from two test piles before and after grouti...Postgrouting at the pile tip enhances the performance of cast-in-place piles.To clarify the performance of tip and side resistances,this study analyzed static load test data from two test piles before and after grouting.Mechanisms underlying an improvement in tip resistance and the influence of postgrouting on side resistance were investigated via theoretical analysis.Finally,a design method for tip resistance control via settlement was proposed.Results indicate that the ultimate bearing capacity of piles increases after grouting compared to before,underscoring the importance of tip grouting in gravelly soils and its profound impact on load transmission in pile foundations.Postgrouting at the pile tip enhances the strength as well as initial stiffness of the bearing stratum,ultimately elevating the overall pile foundation-bearing capacity.Additionally,tip grouting helps in strengthening over-all side resistance,especially around the pile tip.The grouting procedure has an impact on the soil’s arching effect at the pile tip;the extent of the arching effect and an increase in horizontal tension close to the pile tip are positively correlated with the effectiveness of grouting reinforcement.The design method for tip resistance control via settlement based on measured data statistics was validated using engineering examples,and the method has a practical reference value.展开更多
基金Project(51105139)supported by the National Natural Science Foundation of ChinaProject(2010CB731706)supported by the National Basic Research Program of China
文摘The precipitation behavior and its influence on the electrical resistivity of the Al-0.96Mg2Si alloy during aging were investigated with in-situ resistivity measurement and transmission electron microscopy (TEM). The precipitates of the peak aged alloy include both β" and if, but the amount ratio of β" to β" varies with the aging temperature and time increasing. The precipitates during aging at 175 ℃ are dominated by needle-like β" phases (including pre-β" phase), the size of which increases with the time prolonging, but does not increase substantially after further aging. The evolution of electrical conductivity is directly related to such microstructural evolution. However, the hardness of the alloy stays at the peak value for a long term. When the alloy is aged at 195 ℃, the ratio of β" to β' becomes the main factor to influence relative resistivity (Ap) value. The higher the temperature is, the smaller the ratio is, and the faster the Ap value decreases. Moreover, the hardness peak drops with the decrease of the ratio. With the size and distribution parameters measured from TEM images, a semi-quantitative relationship between precipitates and the electrical resistivity was established.
基金supported by the National Key Re-search and Development Program of China(No.2022YFB4002100)the National Natural Science Foundation of China(No.52271136)the Natural Science Foundation of Shaanxi Province(Nos.2019TD-020 and 2021JC-06).
文摘Proton exchange membrane water electrolysis(PEMWE)is one of the most promising strategies to pro-duce green hydrogen energy,and it is crucial to exploit highly conductive and good corrosion-resistant coatings on bipolar plates(BPs),one of the core components in PEMWE cells.In this work,NbN coatings are deposited on Ti BPs by magnetron sputtering to improve the corrosion resistance and conductivity,for which the critical process parameters,such as the working pressure,partial nitrogen pressure and de-position temperature are well optimized.It is found that the compact microstructure,highly conductive δ-NbN and uniform nanoparticles play a dominant role in the synergistic improvement of the corrosion resistance and electrical conductivity of NbN coatings.The optimized NbN coatings exhibit excellent cor-rosion resistance with the low corrosion current density of 1.1×10^(-8) A cm^(-2),a high potential value of-0.005 V vs.SCE and a low ICR value of 15.8 mΩcm2@1.5 MPa.Accordingly,NbN coatings can be a promising candidate for the development of the low-cost and high-anti-corrosion Ti BPs of PEMWE.
基金supported by the National Natural Science Foundation of China(No.41574123)
文摘In order to interpret the vertical electrical sounding data more reliably and effectively in the case of lacking proper priori information, two inverse schemes are proposed to invert combined re- sistivity and induced polarization data by using particle swarm optimization technique. Based on the computational formula of induced polarization, the inversion for chargeability/polarizability data can be transformed into inverting equivalent resistivity data. Then, the inversion for combined data can be decomposed into two procedures: inverting resistivity data and inverting equivalent resistivity data. A sequential inversion scheme is presented to run the two procedures sequentially. Contrast to the se- quential scheme, a simultaneous one is proposed to invert resistivity and induced polarization data si- multaneously. Both the sequential and simultaneous schemes are performed via centered-progressive particle swarm optimization algorithm for more exploratory purpose. Numerical experiments show that both the designed inversion algorithms can invert resistivity and induced polarization data suc- cessfully with fast convergence and high accuracy, even performed in a large search space. The inverse results are comparable to the results from generalized linear method. As an approximate importance sampler, the particle swarm optimization based algorithm can provide posterior analysis conveniently. We employ the posterior probability distributions of inverted model parameters to evaluate the per- formance and uncertainty of inversion. The posterior analysis and further field data testing show that the proposed inversion algorithms perform good sampling of the equivalence region and make sure that the global optimum can locate in the high probability areas.
基金Project 50579017 supported by the National Natural Science Foundation of China
文摘The development of fissures in expansive soils has a great effect on the stability of slope. Of the three phases of soils,the gas phase and solid phase are relatively insulated,so the average resistivity of soils can be calculated from the resistivity of the liquid phase. On this basis,the two-part model of resistivity changing with the water saturation of the expansive soil can be deduced. A 2-D resistance grid model is established based on simulating the resistance of ver-tically developed fissures. Variation in measured resistance of vertically developed fissures at different positions can be calculated from this model. Fissure development can be inversely determined from the variation in the measured resis-tance. Finally,the model is verified by an indoor resistivity test for remolded soil samples,indicating that the test result agrees well with that of the model established.
文摘This study addresses the challenge of real-time resistivity gradient measurement in the Czochralski(CZ)silicon production process.Due to the inability to directly measure this parameter,we propose a Long Short-Term Memory soft-sensing model based on Convolutional Neural Network(CNN)and attention mechanism(CNN-ALSTM)that enhances traditional LSTM by integrating CNN and attention mechanism to overcome time lag variations during silicon pulling.The CNN module extracts spatial features from multi-source sensor data,while the attention-enhanced LSTM(ALSTM)dynamically adjusts historical parameter weights,enabling accurate resistivity gradient prediction.Experiments with real production data show that CNN-ALSTM outperforms SVR,FNN,RNN,XGBoost,and GRU,improving prediction accuracy by 11.76%,16.67%,21.05%,30.23%,and 9.09%,respectively.This soft-sensing approach enhances real-time monitoring and optimization of monocrystalline silicon growth.
基金supported by the National Natural Science Fundation for Distinguished Young Scholars,China(Grant No.60925017)the National Natural Science Foundation of China(Grant Nos.61223005,10990100,and 61176126)the Tsinghua National Laboratory for Information Science and Technology Cross-Discipline Foundation,China
文摘Effects of polarization and p-type GaN resistivity on the spectral response of InGaN/GaN multiple quantum well (MQW) solar cells are investigated. It is found that due to the reduction of piezoelectric polarization and the enhancement of tunneling transport of photo-generated carriers in MQWs, the external quantum efficiency (EQE) of the solar cells increases in a low energy spectral range (λ 〉 370 nm) when the barrier thickness value decreases from 15 nm to 7.5 nm. But the EQE decreases abruptly when the barrier thickness value decreases down to 3.75 nm. The reasons for these experimental results are analyzed. We are aware that the reduction of depletion width in MQW region, caused by the high resistivity of the p-type GaN layer may be the main reason for the abnormally low EQE value at long wavelengths (λ 〉 370 nm).
基金supported by the International Collaborative Research Program(fundamental research,2021-2023)funded by Korea Institute of Civil Engineering and Building Technology(KICT).
文摘Rock fractures or faults could be reactivated by the thermal stress generated during the decay process of the high-level radioactive waste in deep geological repositories(DGRs).Understanding thermoshearing behavior and its influencing factors are important for the long-term performance assessment of DGRs.We designed multistage mechanical(M)shear tests and thermomechanical(TM)shear tests on three 100 mm-cubic granite specimens,each containing a single inclined sawcut fracture with distinct microroughness of 8-15μm.M test results have shown that the static friction coefficient of the granite fracture decreases in proportion to the increase in the logarithm of the loading rate within the range of 1-15 kPa/s.For the given heating and boundary conditions,thermal loading rate,i.e.,thermal stress increment with heating time,is measured to be around 1 kPa/s in the fractured granite.Thermoshearing can be well predicted by the linear Mohr-Coulomb failure envelope deduced from M shear tests employing a loading rate that is comparable with the thermal loading rate.The granite fractures exhibited two distinct slip patterns during the mechanical shearing,i.e.,stick-slip observed in the smooth fracture and stable sliding in the relatively rough surface.In contrast,the mechanical loading rate(1-15 kPa/s)investigated in this study appears to not influence the slip pattern.Unlike those in M shear tests,thermoshearing in both smooth and relatively rough fractures show stable sliding with a very slow peak velocity of around 0.002μm/s.
文摘Aim: To determine the relationship of carotid plaque, intima media thickness (IMT), resistivity index (RI) and pulsatility index (PI) and prevalence of different risk factors with acute ischemic stroke and stroke subtypes in both diabetic and non-diabetic subjects. Materials and methods: 80 cases of acute ischemic strokes and 40 healthy controls were included in the study. The plaque, IMT, RI and PI were measured by carotid duplex ultrasound. Results: 31 subjects were Type 2 diabetic, 54 hypertensive while 25 were both diabetic and hypertensive. 23 cases (28.75%) had lacunar stroke (LACI), 32 (40%) stroke involving partial anterior circulation(PACI), 10(12.5%) stroke in posterior circulation (PACI) and 15(18.75%) stroke involving total anterior circulation(TACI) respectively. The mean IMT (0.88 ± 0.19mm), RI(0.76 ± 0.05) and PI(1.71 ± 0.19) of patients and mean IMT (0.6±0.09mm), RI (0.61 ± 0.06) and PI (1.53 ± 0.11) of controls were statistically significant (p-0.000). The mean values of IMT, PI and RI were significantly higher in diabetics (IMT-0.90 ± 0.16 VS 0.64 ± 0.11, p-0.013;PI-1.76 ± 0.20 VS 1.49 ± 0.09, P-0.000 and RI-0.76 ± 0.04 VS 0.59 ± 0.06, P-0.000) and similarly the mean values for IMT, PI and RI in hypertensives as compared to controls (IMT-0.88 ± 0.16 vs 0.65 ± 0.10, P-0.006;PI1.69 ± 0.18 vs 1.49 ± 0.09, P-0.000 and RI 0.76 ± 0.04 vs 0.59 ± 0.06, P-0.000). The mean IMT, PI and RI were increased significantly in smokers compared to controls (IMT-0.93 ± 0.20 vs 0.63 ± 0.06, P-0.000;PI-1.82 ± 0.22 vs 1.49 ± 0.09, P-0.000 and RI-0.77 ± 0.04 vs 0.59 ± 0.06, P-0.000). Type 3 plaque accounted for 27 (56.2%) cases and Type 2 plaque 12 (25%) cases. The total number of plaques in patients as compared to controls were significantly more (P-0.0034) and the mean plaque area was 46 mm2 for cases and 20 mm2 for control (P-0.0001). TACI was the most common type of ischemic stroke seen in DM (60%), HTN (66.6%) and smokers (66.7%). Plaques (73.3%), IMT (0.90 ± 0.12), PI(1.72 ± 0.14) and RI (0.76 ± 0.13) were more commonly associated with TACI subtype. On multivariate analysis using ANOVA, the mean PI was highly significant (0.000) in relation to types of plaque. Summary and Conclusions: IMT, RI, PI and plaque type are useful diagnostic parameters for acute ischemic stroke and its subtypes. They can be used as noninvasive tools for predicting and preventing ischemic stroke in smokers as well as subjects with DM and hypertension.
基金National Key Research and Development Program of China(2022YFB4002100)National Natural Science Foundation of China(52271136)Natural Science Foundation of Shaanxi Province(2021JC-06)。
文摘TaN coatings were deposited on Ti bipolar plates by magnetron sputtering to improve corrosion resistance and service life.The influence of N_(2) flow rate on the surface morphology,hydrophobicity,crystallinity,corrosion resistance,and interfacial contact resistance of TaN coatings was studied.Results show that as the N_(2) flow rate increases,the roughness of TaN coatings decreases firstly and then increases,and the hydrophobicity increases firstly and then decreases.At the N_(2) flow rate of 3 mL/min,TaN coating with larger grain size presents lower roughness and high hydrophobicity.The coating possesses the lowest corrosion current density of 2.82µA·cm^(−2) and the highest corrosion potential of−0.184 V vs.SCE in the simulated proton exchange membrane water electrolyser environment.After a potentiostatic polarization test for 10 h,a few corrosion pits are observed on the TaN coatings deposited at an N_(2) flow rate of 3 mL/min.After 75 h of electrolytic water performance testing,the TaN coating on bipolar plate improves the corrosion resistance and thus enhances the electrolysis efficiency(68.87%),greatly reducing the cost of bipolar plates.
基金Projects(40974077,41164004)supported by the National Natural Science Foundation of ChinaProject(2007AA06Z134)supported by the National High Technology Research and Development Program of China+2 种基金Projects(2011GXNSFA018003,0832263)supported by the Natural Science Foundation of Guangxi Province,ChinaProject supported by Program for Excellent Talents in Guangxi Higher Education Institution,ChinaProject supported by the Foundation of Guilin University of Technology,China
文摘The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and stored in two parts separately. One part is associated with the volume integral and the other is associated with the subsurface boundary integral. The equivalent multiple linear systems with closer right-hand sides than the original systems were constructed. A recycling Krylov subspace technique was employed to solve the multiple linear systems. The solution of the seed system was used as an initial guess for the subsequent systems. The results of two numerical experiments show that the improved algorithm reduces the iterations and CPU time by almost 50%, compared with the classical preconditioned conjugate gradient method.
基金Supported by the Zhejiang Provincial Public Welfare Technology Application Research Program(No:LGN21C140001).
文摘Plutella xylostella,a major pest of cruciferous vegetables worldwide,has developed resistance to diamide insecticides.Thiotraniliprole,a novel synthetic diamide insecticide,exhibits excellent activity against P.xylostella.In the present study,we aimed to confirm the resistance risk,cross-resistance,and mechanisms of resistance to thiotraniliprole in P.xylostella.After 40 consecutive generations of thiotraniliprole selection,we obtained a thiotraniliprole-resistance P.xylostella strain with a 5141.58-fold resistance ratio(RR)to thiotraniliprole.The overall realized heritability(h^(2))value of resistance was estimated as 0.9 using threshold trait analysis,indicating that the risk of developing resistance to thiotraniliprole is high in P.xylostella.The thiotraniliprole-resistant(TR)strain showed noticeable cross-resistance to chlorantraniliprole(RR=44670.05),cyantraniliprole(RR=7038.58),and tetrachlorantraniliprole(RR=1506.01),but no cross-resistance to tolfenpyrad,indoxacarb,diafenthiuron,or abamectin compared with the susceptible(S)strain.The enzyme assay data showed that the activities of glutathione-S transferase(GST),carboxylesterase(CarE),and the content of cytochrome P450 monooxygenase(P450s)were significantly higher in the TR strain than in the S strain.Sequencing of the full-length PxRyR cDNA revealed the gene site I4790K in the TR strain with a 100%frequency.This mutation in PxRyR likely underlies the high-level cross-resistance between thiotraniliprole and three other diamide insecticides.These findings provide valuable information for optimizing resistance management strategies to delay thiotraniliprole resistance development and ensure sustainable control of P.xylostella.
文摘BACKGROUND In the absence of effective antimicrobials,transplant surgery is not viable,and antirejection immunosuppressants cannot be administered,as resistant infections compromise the life-saving goal of organ transplantation.AIM To evaluate the efficacy of antimicrobials in preventing resistance in solid organ transplant recipients.METHODS A systematic review was conducted using a search methodology consistent with the preferred reporting items for systematic reviews and meta-analyses.This review included randomized clinical trials that evaluated the efficacy of antimicrobial agents(prophylactic or therapeutic)aimed at preventing antimicrobial resistance.The search strategy involved analyzing multiple databases,including PubMed/MEDLINE,Web of Science,Embase,Scopus,and SciELO,as well as examining gray literature sources on Google Scholar.A comprehensive electronic database search was conducted from the databases’inception until May 2024,with no language restrictions.RESULTS After the final phase of the eligibility assessment,this systematic review ultimate-ly included 7 articles.A total of 2318 patients were studied.The most studied microorganisms were cytomegalovirus,although vancomycinresistant enterococci,Clostridioides difficile,and multidrug-resistant Enterobacterales were also analyzed.The antimicrobials used in the interventions were mainly maribavir,valganciclovir,gancic-lovir,and colistin-neomycin.Of concern,all clinical trials showed significant proportions of resistant microorga-nisms after the interventions,with no statistically significant differences between the groups(mean resistance 13.47%vs 14.39%),except for two studies that demonstrated greater efficacy of maribavir and valganciclovir(mean resistance 22.2%vs 41.1%in the control group;P<0.05).The total reported deaths in three clinical trials were 75,and there were 24 graft rejections in two studies.CONCLUSION All clinical trials reported significant proportions of antimicrobial-resistant microorganisms following interventions.More high-quality randomized clinical trials are needed to corroborate these results.
基金National Natural Science Foundation of China (40521002 and 40774047)
文摘In the experiments, a high-density resistivity method is used to explore the electric structure of landslip mass, and a resistivity-changing anisotropy method is used to monitor the orientation and speed of main fracture extending of landslip mass. The results are as follows. 1 The exploring experiments have verified a part of creep deformation borderline, the depth and thickness of groundwater horizon, and the property of superstrata in the landslip mass investigated formerly, which have proved that the landslip belts contain rich groundwater; 2 The main fracture extending orientation inferred from the resistivity-changing anisotropy accords with the strike of fracture belt of landslip mass deduced from GPS displacement. Moreover, the changing rates of resistivity-changing anisotropy coefficient matches with the changing speeds of deep displacement of landslip mass were measured by suing clinometer in the borehole.
基金Project(2022A02480004)supported by the Major Project of China Railway Design CorporationProject(2023RC1011)supported by the Science and Technology Innovation Program of Hunan Province,China+2 种基金Project(2024JJ6515)supported by the Hunan Provincial Natural Science Foundation,ChinaProject(kq2402220)supported by the Natural Science Foundation of Changsha City,ChinaProject(52402438)supported by the National Natural Science Foundation of China。
文摘To enhance the resistance of honeycomb sandwich panel against local impact,this study delved into the matching relationship between face sheets and core.An integrated approach,combining experiment,simulation,and theoretical methods,was used.Local loading experiments were conducted to validate the accuracy of the finite element model.Furthermore,a control equation was formulated to correlate structural parameters with response modes,and a matching coefficientλ(representing the ratio of core thickness to face sheet thickness)was introduced to establish a link between these parameters and impact characteristics.A demand-driven reverse design methodology for structural parameters was developed,with numerical simulations employed to assess its effectiveness.The results indicate that the proposed theory can accurately predict response modes and key indicators.An increase in theλbolsters the structural indentation resistance while concurrently heightens the likelihood of penetration.Conversely,a decrease in theλimproves the resistance to penetration,albeit potentially leading to significant deformations in the rear face sheet.Numerical simulations demonstrate that the reverse design methodology significantly enhances the structural penetration resistance.Comparative analyses indicate that appropriate matching reduces indentation depth by 27.4% and indentation radius by 41.8%of the proposed structure.
基金supported by the Northeast Asia Biodiversity Research Center(grant number 411147021003).
文摘The predominant causal agent of poplar leaf blight is the pathogenic fungus Alternaria alternata (Fr.) Keissl., which exhibits host specificity toward Populus species. To elucidate the molecular response mechanisms of A. alternata under fludioxonil fungicide stress, the fungus was cultured at the half-maximal effective concentration (EC₅₀) of fludioxonil. Transcriptomic and metabolomic profiles were analyzed using mycelia harvested under these conditions. Comparative analysis revealed 1,001 differentially expressed genes (DEGs) in the resistant strain (RS) relative to the wild-type strain (WT), comprising 628 upregulated and 373 downregulated genes. Concurrently, 524 differentially accumulated metabolites (DAMs) were identified, with 336 upregulated and 188 downregulated metabolites. KEGG pathway enrichment demonstrated pronounced upregulation in glycerophospholipid metabolism, α-linolenic acid metabolism, nucleic acid biosynthesis, and glycosylation processes. Conversely, arachidonic acid and galactose metabolism pathways were suppressed. Significant downregulation was observed in phosphatidylinositol signaling, aflatoxin biosynthesis, and cutin/suberin/wax biosynthesis pathways. Transcriptomic profiling further indicated that upregulated DEGs were predominantly associated with amino sugar/nucleotide sugar metabolism, ABC transporters, aflatoxin biosynthesis, and purine metabolism, while downregulated DEGs were enriched in N-glycan biosynthesis, endoplasmic reticulum protein processing, steroid biosynthesis, and riboflavin metabolism. Fludioxonil exerted substantial inhibitory effects on fungal growth, pathogenicity, and metabolic activity. Mechanistically, A. alternata counteracted fungicide-induced stress through modulation of its antioxidant defense system. This integrative multi-omics study delineates the dynamic gene expression and metabolic reprogramming in A. alternata under fludioxonil exposure, providing novel insights into potential molecular targets and informing the development of next-generation fungicidal strategies for phytopathogen control.
基金supported by the Natural Science Foundation of Hebei(Grant Nos.C2022204116 and C2024204246)Hundred Talents Program for the introduction of high-level overseas talents in Hebei Province(Grant No.E2020100004)+3 种基金the Key Research and Development Program of Hebei(Grant No.21326311D-2)the Basic Research Project of Hebei Universities in Shijiazhuang(Grant No.241791217A)the Science Research Project of Hebei Education Department(Grant No.BJK2024079)S&T Program of Hebei(Grant No.246Z6302G)。
文摘Pectobacterium carotovorum(Pc)is a necrotrophic bacterial pathogen that causes soft rot disease in Brassica rapa crops,including Chinese cabbage(B.rapa ssp.pekinensis),resulting in significant yield losses worldwide(Roh et al.,2010).Deployment of resistant Chinese cabbage varieties and mining novel resistance genes for breeding resistant varieties against soft rot are key approaches that are currently used to prevent soft rot infections and ensure high yield and quality in Chinese cabbage.However,the highly adapted pathogen can easily overcome resistance(R)gene-mediated defense responses.Thus,discovering novel resistance genes and understanding the molecular mechanisms underlying R-mediated resistance against soft rot are sustained strategies for Chinese cabbage breeding.
基金The National Natural Science Foundation of China(No.52008100,52178317)the Natural Science Foundation of Jiangsu Province(No.BK20200400)+1 种基金China Postdoctoral Science Foundation(No.2022M723534)the Natural Science Foundation of Jiangsu Higher Education Institutions of China(No.23KJA560005).
文摘Postgrouting at the pile tip enhances the performance of cast-in-place piles.To clarify the performance of tip and side resistances,this study analyzed static load test data from two test piles before and after grouting.Mechanisms underlying an improvement in tip resistance and the influence of postgrouting on side resistance were investigated via theoretical analysis.Finally,a design method for tip resistance control via settlement was proposed.Results indicate that the ultimate bearing capacity of piles increases after grouting compared to before,underscoring the importance of tip grouting in gravelly soils and its profound impact on load transmission in pile foundations.Postgrouting at the pile tip enhances the strength as well as initial stiffness of the bearing stratum,ultimately elevating the overall pile foundation-bearing capacity.Additionally,tip grouting helps in strengthening over-all side resistance,especially around the pile tip.The grouting procedure has an impact on the soil’s arching effect at the pile tip;the extent of the arching effect and an increase in horizontal tension close to the pile tip are positively correlated with the effectiveness of grouting reinforcement.The design method for tip resistance control via settlement based on measured data statistics was validated using engineering examples,and the method has a practical reference value.