Internet of Things(IoT)refers to the infrastructures that connect smart devices to the Internet,operating autonomously.This connectivitymakes it possible to harvest vast quantities of data,creating new opportunities f...Internet of Things(IoT)refers to the infrastructures that connect smart devices to the Internet,operating autonomously.This connectivitymakes it possible to harvest vast quantities of data,creating new opportunities for the emergence of unprecedented knowledge.To ensure IoT securit,various approaches have been implemented,such as authentication,encoding,as well as devices to guarantee data integrity and availability.Among these approaches,Intrusion Detection Systems(IDS)is an actual security solution,whose performance can be enhanced by integrating various algorithms,including Machine Learning(ML)and Deep Learning(DL),enabling proactive and accurate detection of threats.This study proposes to optimize the performance of network IDS using an ensemble learning method based on a voting classification algorithm.By combining the strengths of three powerful algorithms,Random Forest(RF),K-Nearest Neighbors(KNN),and Support Vector Machine(SVM)to detect both normal behavior and different categories of attack.Our analysis focuses primarily on the NSL-KDD dataset,while also integrating the recent Edge-IIoT dataset,tailored to industrial IoT environments.Experimental results show significant enhancements on the Edge-IIoT and NSL-KDD datasets,reaching accuracy levels between 72%to 99%,with precision between 87%and 99%,while recall values and F1-scores are also between 72%and 99%,for both normal and attack detection.Despite the promising results of this study,it suffers from certain limitations,notably the use of specific datasets and the lack of evaluations in a variety of environments.Future work could include applying this model to various datasets and evaluating more advanced ensemble strategies,with the aim of further enhancing the effectiveness of IDS.展开更多
The rapid advancement of the Internet of Things(IoT)has led to the proliferation of connected devices across various domains,including smart cities,industrial automation,and healthcare.However,interoperability challen...The rapid advancement of the Internet of Things(IoT)has led to the proliferation of connected devices across various domains,including smart cities,industrial automation,and healthcare.However,interoperability challenges arising from heterogeneous communication protocols,diverse data formats,and fragmented standardization efforts hinder the seamless integration of IoT systems.This paper explores the current state of IoT interoperability,analyzing key challenges,existing standardization initiatives,and emerging technological solutions.We examine the role of middleware,gateway solutions,artificial intelligence(AI),blockchain,and edge computing in facilitating interoperability.Furthermore,we provide a comparative analysis of major IoT standards and discuss the potential for greater convergence among standardization efforts.The findings highlight that while significant progress has been made,a unified and widely accepted interoperability framework remains elusive.Addressing these challenges requires collaborative efforts among industry stakeholders,researchers,and policymakers to establish robust and scalable interoperability solutions,ensuring the continued growth and efficiency of IoT ecosystems.展开更多
Due to their resource constraints,Internet of Things(IoT)devices require authentication mechanisms that are both secure and efficient.Elliptic curve cryptography(ECC)meets these needs by providing strong security with...Due to their resource constraints,Internet of Things(IoT)devices require authentication mechanisms that are both secure and efficient.Elliptic curve cryptography(ECC)meets these needs by providing strong security with shorter key lengths,which significantly reduces the computational overhead required for authentication algorithms.This paper introduces a novel ECC-based IoT authentication system utilizing our previously proposed efficient mapping and reverse mapping operations on elliptic curves over prime fields.By reducing reliance on costly point multiplication,the proposed algorithm significantly improves execution time,storage requirements,and communication cost across varying security levels.The proposed authentication protocol demonstrates superior performance when benchmarked against relevant ECC-based schemes,achieving reductions of up to 35.83%in communication overhead,62.51%in device-side storage consumption,and 71.96%in computational cost.The security robustness of the scheme is substantiated through formal analysis using the Automated Validation of Internet Security Protocols and Applications(AVISPA)tool and Burrows-Abadir-Needham(BAN)logic,complemented by a comprehensive informal analysis that confirms its resilience against various attack models,including impersonation,replay,and man-in-the-middle attacks.Empirical evaluation under simulated conditions demonstrates notable gains in efficiency and security.While these results indicate the protocol’s strong potential for scalable IoT deployments,further validation on real-world embedded platforms is required to confirm its applicability and robustness at scale.展开更多
The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability...The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability,operational efficiency,and security depends on the identification of anomalies in these dynamic and resource-constrained systems.Due to their high computational requirements and inability to efficiently process continuous data streams,traditional anomaly detection techniques often fail in IoT systems.This work presents a resource-efficient adaptive anomaly detection model for real-time streaming data in IoT systems.Extensive experiments were carried out on multiple real-world datasets,achieving an average accuracy score of 96.06%with an execution time close to 7.5 milliseconds for each individual streaming data point,demonstrating its potential for real-time,resourceconstrained applications.The model uses Principal Component Analysis(PCA)for dimensionality reduction and a Z-score technique for anomaly detection.It maintains a low computational footprint with a sliding window mechanism,enabling incremental data processing and identification of both transient and sustained anomalies without storing historical data.The system uses a Multivariate Linear Regression(MLR)based imputation technique that estimates missing or corrupted sensor values,preserving data integrity prior to anomaly detection.The suggested solution is appropriate for many uses in smart cities,industrial automation,environmental monitoring,IoT security,and intelligent transportation systems,and is particularly well-suited for resource-constrained edge devices.展开更多
Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran...Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.展开更多
针对当前换流站一次设备温度监测中非接触式红外测温存在成本高、准确率低、时效性差等问题,提出一种面向高压场景的温度监控方案。该方案结合5G无源物联网(Passive Internet of Things,P-IoT)技术与Transformer模型。通过在高压设备关...针对当前换流站一次设备温度监测中非接触式红外测温存在成本高、准确率低、时效性差等问题,提出一种面向高压场景的温度监控方案。该方案结合5G无源物联网(Passive Internet of Things,P-IoT)技术与Transformer模型。通过在高压设备关键部位部署无源温度传感器,利用反向散射通信技术实现低功耗数据传输,并借助5G网络将数据传输至边缘服务器处理。随后,采用基于Transformer的异常检测模型,通过多头注意力机制有效捕捉温度数据中的时序特征,结合最大池化操作实现对异常温度的准确识别与预警。实验结果表明,该方案在高电磁干扰环境下的传输成功率达到99.0%,在温度异常检测任务中的精度、召回率和F1值分别为98.7%、97.5%和96.9%,显著优于LSTM和GRU等传统时序模型。研究成果验证了所提方法在复杂高压场景下的适用性和稳定性,可为后续在更高电压等级的特高压设备中推广应用奠定技术基础。展开更多
The accelerated advancement of the Internet of Things(IoT)has generated substantial data,including sensitive and private information.Consequently,it is imperative to guarantee the security of data sharing.While facili...The accelerated advancement of the Internet of Things(IoT)has generated substantial data,including sensitive and private information.Consequently,it is imperative to guarantee the security of data sharing.While facilitating fine-grained access control,Ciphertext Policy Attribute-Based Encryption(CP-ABE)can effectively ensure the confidentiality of shared data.Nevertheless,the conventional centralized CP-ABE scheme is plagued by the issues of keymisuse,key escrow,and large computation,which will result in security risks.This paper suggests a lightweight IoT data security sharing scheme that integrates blockchain technology and CP-ABE to address the abovementioned issues.The integrity and traceability of shared data are guaranteed by the use of blockchain technology to store and verify access transactions.The encryption and decryption operations of the CP-ABE algorithm have been implemented using elliptic curve scalarmultiplication to accommodate lightweight IoT devices,as opposed to themore arithmetic bilinear pairing found in the traditional CP-ABE algorithm.Additionally,a portion of the computation is delegated to the edge nodes to alleviate the computational burden on users.A distributed key management method is proposed to address the issues of key escrow andmisuse.Thismethod employs the edge blockchain to facilitate the storage and distribution of attribute private keys.Meanwhile,data security sharing is enhanced by combining off-chain and on-chain ciphertext storage.The security and performance analysis indicates that the proposed scheme is more efficient and secure.展开更多
文章介绍了窄带物联网(narrow band internet of things, NB-IoT)技术,借助NB-IoT技术进行了城市照明智能单灯控制系统设计,包括系统总体框架、单灯控制器和集中控制器的组网设计,并分析了该系统的具体应用。研究表明,智能单灯控制系统...文章介绍了窄带物联网(narrow band internet of things, NB-IoT)技术,借助NB-IoT技术进行了城市照明智能单灯控制系统设计,包括系统总体框架、单灯控制器和集中控制器的组网设计,并分析了该系统的具体应用。研究表明,智能单灯控制系统提高了照明管理效率,降低了能耗和维护成本,有利于推动城市照明向节能、高效、智能化方向发展。展开更多
中波发射天线极易受到地理位置、天气及电磁环境等影响,严重时可导致安全播出事故。针对这一问题,设计一个基于物联网(Internet of Things,Io T)技术的中波发射天线状态监测系统,分别对发射天线的拉力、倾斜角、温度以及风速等状态参数...中波发射天线极易受到地理位置、天气及电磁环境等影响,严重时可导致安全播出事故。针对这一问题,设计一个基于物联网(Internet of Things,Io T)技术的中波发射天线状态监测系统,分别对发射天线的拉力、倾斜角、温度以及风速等状态参数进行智能监测,实现数据全程采集、参数科学分析、状态精确判断及故障实时预警等功能,有效满足中波发射台站对设备健康管理的实时性需求。实地测试和数据分析验证了所设计系统在提升中波发射系统安全性和运维效率方面的可行性与技术优势。展开更多
文摘Internet of Things(IoT)refers to the infrastructures that connect smart devices to the Internet,operating autonomously.This connectivitymakes it possible to harvest vast quantities of data,creating new opportunities for the emergence of unprecedented knowledge.To ensure IoT securit,various approaches have been implemented,such as authentication,encoding,as well as devices to guarantee data integrity and availability.Among these approaches,Intrusion Detection Systems(IDS)is an actual security solution,whose performance can be enhanced by integrating various algorithms,including Machine Learning(ML)and Deep Learning(DL),enabling proactive and accurate detection of threats.This study proposes to optimize the performance of network IDS using an ensemble learning method based on a voting classification algorithm.By combining the strengths of three powerful algorithms,Random Forest(RF),K-Nearest Neighbors(KNN),and Support Vector Machine(SVM)to detect both normal behavior and different categories of attack.Our analysis focuses primarily on the NSL-KDD dataset,while also integrating the recent Edge-IIoT dataset,tailored to industrial IoT environments.Experimental results show significant enhancements on the Edge-IIoT and NSL-KDD datasets,reaching accuracy levels between 72%to 99%,with precision between 87%and 99%,while recall values and F1-scores are also between 72%and 99%,for both normal and attack detection.Despite the promising results of this study,it suffers from certain limitations,notably the use of specific datasets and the lack of evaluations in a variety of environments.Future work could include applying this model to various datasets and evaluating more advanced ensemble strategies,with the aim of further enhancing the effectiveness of IDS.
文摘The rapid advancement of the Internet of Things(IoT)has led to the proliferation of connected devices across various domains,including smart cities,industrial automation,and healthcare.However,interoperability challenges arising from heterogeneous communication protocols,diverse data formats,and fragmented standardization efforts hinder the seamless integration of IoT systems.This paper explores the current state of IoT interoperability,analyzing key challenges,existing standardization initiatives,and emerging technological solutions.We examine the role of middleware,gateway solutions,artificial intelligence(AI),blockchain,and edge computing in facilitating interoperability.Furthermore,we provide a comparative analysis of major IoT standards and discuss the potential for greater convergence among standardization efforts.The findings highlight that while significant progress has been made,a unified and widely accepted interoperability framework remains elusive.Addressing these challenges requires collaborative efforts among industry stakeholders,researchers,and policymakers to establish robust and scalable interoperability solutions,ensuring the continued growth and efficiency of IoT ecosystems.
文摘Due to their resource constraints,Internet of Things(IoT)devices require authentication mechanisms that are both secure and efficient.Elliptic curve cryptography(ECC)meets these needs by providing strong security with shorter key lengths,which significantly reduces the computational overhead required for authentication algorithms.This paper introduces a novel ECC-based IoT authentication system utilizing our previously proposed efficient mapping and reverse mapping operations on elliptic curves over prime fields.By reducing reliance on costly point multiplication,the proposed algorithm significantly improves execution time,storage requirements,and communication cost across varying security levels.The proposed authentication protocol demonstrates superior performance when benchmarked against relevant ECC-based schemes,achieving reductions of up to 35.83%in communication overhead,62.51%in device-side storage consumption,and 71.96%in computational cost.The security robustness of the scheme is substantiated through formal analysis using the Automated Validation of Internet Security Protocols and Applications(AVISPA)tool and Burrows-Abadir-Needham(BAN)logic,complemented by a comprehensive informal analysis that confirms its resilience against various attack models,including impersonation,replay,and man-in-the-middle attacks.Empirical evaluation under simulated conditions demonstrates notable gains in efficiency and security.While these results indicate the protocol’s strong potential for scalable IoT deployments,further validation on real-world embedded platforms is required to confirm its applicability and robustness at scale.
基金funded by the Ongoing Research Funding Program(ORF-2025-890)King Saud University,Riyadh,Saudi Arabia and was supported by the Competitive Research Fund of theUniversity of Aizu,Japan.
文摘The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability,operational efficiency,and security depends on the identification of anomalies in these dynamic and resource-constrained systems.Due to their high computational requirements and inability to efficiently process continuous data streams,traditional anomaly detection techniques often fail in IoT systems.This work presents a resource-efficient adaptive anomaly detection model for real-time streaming data in IoT systems.Extensive experiments were carried out on multiple real-world datasets,achieving an average accuracy score of 96.06%with an execution time close to 7.5 milliseconds for each individual streaming data point,demonstrating its potential for real-time,resourceconstrained applications.The model uses Principal Component Analysis(PCA)for dimensionality reduction and a Z-score technique for anomaly detection.It maintains a low computational footprint with a sliding window mechanism,enabling incremental data processing and identification of both transient and sustained anomalies without storing historical data.The system uses a Multivariate Linear Regression(MLR)based imputation technique that estimates missing or corrupted sensor values,preserving data integrity prior to anomaly detection.The suggested solution is appropriate for many uses in smart cities,industrial automation,environmental monitoring,IoT security,and intelligent transportation systems,and is particularly well-suited for resource-constrained edge devices.
基金research was funded by Science and Technology Project of State Grid Corporation of China under grant number 5200-202319382A-2-3-XG.
文摘Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.
文摘针对当前换流站一次设备温度监测中非接触式红外测温存在成本高、准确率低、时效性差等问题,提出一种面向高压场景的温度监控方案。该方案结合5G无源物联网(Passive Internet of Things,P-IoT)技术与Transformer模型。通过在高压设备关键部位部署无源温度传感器,利用反向散射通信技术实现低功耗数据传输,并借助5G网络将数据传输至边缘服务器处理。随后,采用基于Transformer的异常检测模型,通过多头注意力机制有效捕捉温度数据中的时序特征,结合最大池化操作实现对异常温度的准确识别与预警。实验结果表明,该方案在高电磁干扰环境下的传输成功率达到99.0%,在温度异常检测任务中的精度、召回率和F1值分别为98.7%、97.5%和96.9%,显著优于LSTM和GRU等传统时序模型。研究成果验证了所提方法在复杂高压场景下的适用性和稳定性,可为后续在更高电压等级的特高压设备中推广应用奠定技术基础。
文摘The accelerated advancement of the Internet of Things(IoT)has generated substantial data,including sensitive and private information.Consequently,it is imperative to guarantee the security of data sharing.While facilitating fine-grained access control,Ciphertext Policy Attribute-Based Encryption(CP-ABE)can effectively ensure the confidentiality of shared data.Nevertheless,the conventional centralized CP-ABE scheme is plagued by the issues of keymisuse,key escrow,and large computation,which will result in security risks.This paper suggests a lightweight IoT data security sharing scheme that integrates blockchain technology and CP-ABE to address the abovementioned issues.The integrity and traceability of shared data are guaranteed by the use of blockchain technology to store and verify access transactions.The encryption and decryption operations of the CP-ABE algorithm have been implemented using elliptic curve scalarmultiplication to accommodate lightweight IoT devices,as opposed to themore arithmetic bilinear pairing found in the traditional CP-ABE algorithm.Additionally,a portion of the computation is delegated to the edge nodes to alleviate the computational burden on users.A distributed key management method is proposed to address the issues of key escrow andmisuse.Thismethod employs the edge blockchain to facilitate the storage and distribution of attribute private keys.Meanwhile,data security sharing is enhanced by combining off-chain and on-chain ciphertext storage.The security and performance analysis indicates that the proposed scheme is more efficient and secure.
文摘文章介绍了窄带物联网(narrow band internet of things, NB-IoT)技术,借助NB-IoT技术进行了城市照明智能单灯控制系统设计,包括系统总体框架、单灯控制器和集中控制器的组网设计,并分析了该系统的具体应用。研究表明,智能单灯控制系统提高了照明管理效率,降低了能耗和维护成本,有利于推动城市照明向节能、高效、智能化方向发展。
文摘中波发射天线极易受到地理位置、天气及电磁环境等影响,严重时可导致安全播出事故。针对这一问题,设计一个基于物联网(Internet of Things,Io T)技术的中波发射天线状态监测系统,分别对发射天线的拉力、倾斜角、温度以及风速等状态参数进行智能监测,实现数据全程采集、参数科学分析、状态精确判断及故障实时预警等功能,有效满足中波发射台站对设备健康管理的实时性需求。实地测试和数据分析验证了所设计系统在提升中波发射系统安全性和运维效率方面的可行性与技术优势。