To improve the inference efficiency of convolutional neural networks(CNN),the existing neural networks mainly adopt heuristic and dynamic programming algorithms to realize parallel scheduling among operators.Heuristic...To improve the inference efficiency of convolutional neural networks(CNN),the existing neural networks mainly adopt heuristic and dynamic programming algorithms to realize parallel scheduling among operators.Heuristic scheduling algorithms can generate local optima easily,while the dynamic programming algorithm has a long convergence time for complex structural models.This paper mainly studies the parallel scheduling between operators and proposes an inter-operator parallelism schedule(IOPS)scheduling algorithm that guarantees the minimum similar execution delay.Firstly,a graph partitioning algorithm based on the largest block is designed to split the neural network model into multiple subgraphs.Then,the operators that meet the conditions is replaced according to the defined operator replacement rules.Finally,the optimal scheduling method based on backtracking is used to schedule the computational graph.Network models such as Inception-v3,ResNet-50,and RandWire are selected for testing.The experimental results show that the algorithm designed in this paper can achieve a 1.6×speedup compared with the existing sequential execution methods.展开更多
The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogram...The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogrammetry has witnessed a surge in popularity.Typically,UAVs are equipped with low-cost non-metric cameras and a Position and Orientation System(POS).Unfortunately,the Interior Orientation Parameters(IOPs)of the non-metric cameras are not fixed.Whether the lens distortions are large or small,they effect the image coordinates accordingly.Additionally,Inertial Measurement Units(IMUs)often have observation errors.To address these challenges and improve parameter estimation for UAVs Light Detection and Ranging(LiDAR)and photogrammetry,this paper analyzes the accuracy of POS observations obtained from Global Navigation Satellite System Real Time Kinematic(GNSS-RTK)and IMU data.A method that incorporates additional known conditions for parameter estimation,a series of algorithms to simultaneously solve for IOPs,Exterior Orientation Parameters(EOPs),and camera lens distortion correction parameters are proposed.Extensive experiments demonstrate that the coordinates measured by GNSS-RTK can be directly used as linear EOPs;however,angular EOP measurements from IMUs exhibit relatively large errors compared to adjustment results and require correction during the adjustment process.The IOPs of non-metric cameras vary slightly between images but need to be treated as unknown parameters in high precision applications.Furthermore,it is found that the Ebner systematic error model is sensitive to the choice of the magnification parameter of the photographic baseline length in images,it should be set as less than or equal to one third of the photographic baseline to ensure stable solutions.展开更多
Chinese Physics Letters(CPL)is a peer-reviewed,international and multidisciplinary journal sponsored by the Chinese Physical Society(CPS)and Institute of Physics,CAS,and hosted online by IOP Publishing Ltd.Launched in...Chinese Physics Letters(CPL)is a peer-reviewed,international and multidisciplinary journal sponsored by the Chinese Physical Society(CPS)and Institute of Physics,CAS,and hosted online by IOP Publishing Ltd.Launched in 1984 as the flagship journal of CPS,CPL has become one of the most prestigious periodicals published in China,and been among the good choices for worldwide physicists to disseminate their most important breakthroughs.Nowadays it is dedicated to build an internationally recognized platform for researchers to publish original research works in all the branches of fundamental,applied,and interdisciplinary physics.展开更多
Chinese Physics Letters(CPL)is a peer-reviewed,international and multidisciplinary journal sponsored by the Chinese Physical Society(CPS)and Institute of Physics,CAS,and hosted online by IOP Publishing Ltd.Launched in...Chinese Physics Letters(CPL)is a peer-reviewed,international and multidisciplinary journal sponsored by the Chinese Physical Society(CPS)and Institute of Physics,CAS,and hosted online by IOP Publishing Ltd.Launched in 1984 asthe flagship journal of CPS.展开更多
Chinese Physics Letters(CPL)is a peer-reviewed,international and multidisciplinary journal sponsored by the Chinese Physical Society(CPS)and Institute of Physics,CAS,and hosted online by IOP Publishing Ltd.Launched in...Chinese Physics Letters(CPL)is a peer-reviewed,international and multidisciplinary journal sponsored by the Chinese Physical Society(CPS)and Institute of Physics,CAS,and hosted online by IOP Publishing Ltd.Launched in 1984 as the flagship journal of CPS,CPL has become one of the most prestigious periodicals published in China,and been among the good choices for worldwide physicists to disseminate their most important breakthroughs.Nowadays it is dedicated to build an internationally recognized platform for researchers to publish original research works in all the branches of fundamental,applied,and interdisciplinary physics.展开更多
Chinese Physics Letters(CPL) is a peer-reviewed, international and multidisciplinary journal sponsored by the Chinese Physical Society(CPS) and Institute of Physics, CAS,and hosted online by IOP Publishing Ltd. Launch...Chinese Physics Letters(CPL) is a peer-reviewed, international and multidisciplinary journal sponsored by the Chinese Physical Society(CPS) and Institute of Physics, CAS,and hosted online by IOP Publishing Ltd. Launched in 1984 as the flagship journal of CPS, CPL has become one of the most prestigious periodicals published in China, and been among the good choices for worldwide physicists to disseminate their most important breakthroughs.展开更多
Chinese Physics Letters(CPL)is a peer-reviewed,international and multidisciplinary journal sponsored by the Chinese Physical Society(CPS)and Institute of Physics,CAS,and hosted online by IOP Publishing Ltd.Launched in...Chinese Physics Letters(CPL)is a peer-reviewed,international and multidisciplinary journal sponsored by the Chinese Physical Society(CPS)and Institute of Physics,CAS,and hosted online by IOP Publishing Ltd.Launched in 1984 as the flagship journal of CPS,CPL has become one of the most prestigious periodicals published in China,and been among the good choices for worldwide physicists to disseminate their most important breakthroughs.展开更多
Chinese Physics Letters(CPL) is a peer-reviewed, international and multidisciplinary journal sponsored by the Chinese Physical Society(CPS) and Institute of Physics, CAS,and hosted online by IOP Publishing Ltd. Launch...Chinese Physics Letters(CPL) is a peer-reviewed, international and multidisciplinary journal sponsored by the Chinese Physical Society(CPS) and Institute of Physics, CAS,and hosted online by IOP Publishing Ltd. Launched in 1984 as the flagship journal of CPS, CPL has become one of the most prestigious periodicals published in China, and been among the good choices for worldwide physicists to disseminate their most important breakthroughs. Nowadays it is dedicated to build an internationally recognized platform for researchers to publish original research works in all the branches of fundamental,applied, and interdisciplinary physics.展开更多
基金Supported by the National Key Research and Development Project of China(No.2020AAA0104603)the National Natural Science Foundation of China(No.61834005,61772417)the Shaanxi Province Key R&D Plan(No.2021GY-029).
文摘To improve the inference efficiency of convolutional neural networks(CNN),the existing neural networks mainly adopt heuristic and dynamic programming algorithms to realize parallel scheduling among operators.Heuristic scheduling algorithms can generate local optima easily,while the dynamic programming algorithm has a long convergence time for complex structural models.This paper mainly studies the parallel scheduling between operators and proposes an inter-operator parallelism schedule(IOPS)scheduling algorithm that guarantees the minimum similar execution delay.Firstly,a graph partitioning algorithm based on the largest block is designed to split the neural network model into multiple subgraphs.Then,the operators that meet the conditions is replaced according to the defined operator replacement rules.Finally,the optimal scheduling method based on backtracking is used to schedule the computational graph.Network models such as Inception-v3,ResNet-50,and RandWire are selected for testing.The experimental results show that the algorithm designed in this paper can achieve a 1.6×speedup compared with the existing sequential execution methods.
基金Natural Science Foundation of Hunan Province,China(No.2024JJ8335)Open Topic of Hunan Geospatial Information Engineering and Technology Research Center,China(No.HNGIET2023004).
文摘The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogrammetry has witnessed a surge in popularity.Typically,UAVs are equipped with low-cost non-metric cameras and a Position and Orientation System(POS).Unfortunately,the Interior Orientation Parameters(IOPs)of the non-metric cameras are not fixed.Whether the lens distortions are large or small,they effect the image coordinates accordingly.Additionally,Inertial Measurement Units(IMUs)often have observation errors.To address these challenges and improve parameter estimation for UAVs Light Detection and Ranging(LiDAR)and photogrammetry,this paper analyzes the accuracy of POS observations obtained from Global Navigation Satellite System Real Time Kinematic(GNSS-RTK)and IMU data.A method that incorporates additional known conditions for parameter estimation,a series of algorithms to simultaneously solve for IOPs,Exterior Orientation Parameters(EOPs),and camera lens distortion correction parameters are proposed.Extensive experiments demonstrate that the coordinates measured by GNSS-RTK can be directly used as linear EOPs;however,angular EOP measurements from IMUs exhibit relatively large errors compared to adjustment results and require correction during the adjustment process.The IOPs of non-metric cameras vary slightly between images but need to be treated as unknown parameters in high precision applications.Furthermore,it is found that the Ebner systematic error model is sensitive to the choice of the magnification parameter of the photographic baseline length in images,it should be set as less than or equal to one third of the photographic baseline to ensure stable solutions.
文摘Chinese Physics Letters(CPL)is a peer-reviewed,international and multidisciplinary journal sponsored by the Chinese Physical Society(CPS)and Institute of Physics,CAS,and hosted online by IOP Publishing Ltd.Launched in 1984 as the flagship journal of CPS,CPL has become one of the most prestigious periodicals published in China,and been among the good choices for worldwide physicists to disseminate their most important breakthroughs.Nowadays it is dedicated to build an internationally recognized platform for researchers to publish original research works in all the branches of fundamental,applied,and interdisciplinary physics.
文摘Chinese Physics Letters(CPL)is a peer-reviewed,international and multidisciplinary journal sponsored by the Chinese Physical Society(CPS)and Institute of Physics,CAS,and hosted online by IOP Publishing Ltd.Launched in 1984 asthe flagship journal of CPS.
文摘Chinese Physics Letters(CPL)is a peer-reviewed,international and multidisciplinary journal sponsored by the Chinese Physical Society(CPS)and Institute of Physics,CAS,and hosted online by IOP Publishing Ltd.Launched in 1984 as the flagship journal of CPS,CPL has become one of the most prestigious periodicals published in China,and been among the good choices for worldwide physicists to disseminate their most important breakthroughs.Nowadays it is dedicated to build an internationally recognized platform for researchers to publish original research works in all the branches of fundamental,applied,and interdisciplinary physics.
文摘Chinese Physics Letters(CPL) is a peer-reviewed, international and multidisciplinary journal sponsored by the Chinese Physical Society(CPS) and Institute of Physics, CAS,and hosted online by IOP Publishing Ltd. Launched in 1984 as the flagship journal of CPS, CPL has become one of the most prestigious periodicals published in China, and been among the good choices for worldwide physicists to disseminate their most important breakthroughs.
文摘Chinese Physics Letters(CPL)is a peer-reviewed,international and multidisciplinary journal sponsored by the Chinese Physical Society(CPS)and Institute of Physics,CAS,and hosted online by IOP Publishing Ltd.Launched in 1984 as the flagship journal of CPS,CPL has become one of the most prestigious periodicals published in China,and been among the good choices for worldwide physicists to disseminate their most important breakthroughs.
文摘Chinese Physics Letters(CPL) is a peer-reviewed, international and multidisciplinary journal sponsored by the Chinese Physical Society(CPS) and Institute of Physics, CAS,and hosted online by IOP Publishing Ltd. Launched in 1984 as the flagship journal of CPS, CPL has become one of the most prestigious periodicals published in China, and been among the good choices for worldwide physicists to disseminate their most important breakthroughs. Nowadays it is dedicated to build an internationally recognized platform for researchers to publish original research works in all the branches of fundamental,applied, and interdisciplinary physics.