期刊文献+
共找到89,814篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of mesoscale gravity waves on sporadic E simulated by a one-dimensional dynamic model 被引量:1
1
作者 Xu Zhou ZeZhong Li +1 位作者 XinAn Yue LiBo Liu 《Earth and Planetary Physics》 EI CAS 2025年第1期1-9,共9页
In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale G... In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale GWs on the Es layers determined by using a newly developed model,MISE-1D(one-dimensional Model of Ionospheric Sporadic E),with low numerical dissipation and high resolution.Driven by the wind fields resolved by the high-resolution version of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension(WACCM-X),the MISE-1D simulation revealed that GWs significantly influence the evolution of the Es layer above 100 km but have a very limited effect at lower altitudes.The effects of GWs are diverse and complex,generally including the generation of fluctuating wavelike structures on the Es layer with frequencies similar to those of the GWs.The mesoscale GWs can also cause increases in the density of Es layers,or they can disperse or diffuse the Es layers and increase their thickness.In addition,the presence of GWs is a key factor in sustaining the Es layers in some cases. 展开更多
关键词 sporadic E ion tidal layer gravity waves numerical simulation
在线阅读 下载PDF
Complexation and Fluorescence Enhancement of Bay-site Carboxyl Modified Perylene Dimide with Calcium Ion 被引量:2
2
作者 GU Dandan ZHAO Haoru +4 位作者 JIANG Xiaoze QI Haohan LIAO Zuogui CHEN Jia SUN Bin 《发光学报》 北大核心 2025年第3期474-485,共12页
Bay-site carboxyl functionalized perylene diimide derivative 1,7-COOH-PDI-C_(12)(PDI-COOH)was synthesized and distinct enhanced fluorescence was observed through combining with calcium ion(Ca^(2+))in THF/H_(2)O soluti... Bay-site carboxyl functionalized perylene diimide derivative 1,7-COOH-PDI-C_(12)(PDI-COOH)was synthesized and distinct enhanced fluorescence was observed through combining with calcium ion(Ca^(2+))in THF/H_(2)O solution.The assembly and fluorescence behavior of PDI-COOH/Ca^(2+)were studied in detail by changing hydration state with different concentrations.Based on the differences in assembly morphology and stoichiometric ratios of PDICOOH/Ca^(2+),we proposed the fluorescence emission mechanism of PDI-COOH/Ca^(2+)in THF/H_(2)O and THF,respectively.This work reveals a novel strategy of aggregated state fluorescence enhancement and reminds us of the important role of water in molecular fluorescence emission and assembly. 展开更多
关键词 carboxyl functionalized fluorescence behavior perylene diimide photoinduced electron transfer effect calcium ion
在线阅读 下载PDF
Efficient Perovskite Quantum Dots Light-emitting Diodes:Challenges and Optimization 被引量:2
3
作者 LI Mengjiao WANG Ye +1 位作者 WANG Yakun LIAO Liangsheng 《发光学报》 北大核心 2025年第3期452-461,共10页
Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yiel... Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yield(PLQY).Despite significant advancements in their performance,challenges such as defects and ion migration still hinder their long-term stability and operational efficiency.To address these issues,various optimization strategies,including ligand engineering,interface passivation,and self-assembly strategy,are being actively researched.This review focuses on the synthesis methods,challenges and optimization of perovskite quantum dots,which are critical for the commercialization and large-scale production of high-performance and stable Pe-QLEDs. 展开更多
关键词 perovskite quantum dot light-emitting diodes(Pe-QLEDs) PHOTOLUMINESCENCE DEFECTS ion migration
在线阅读 下载PDF
Conditionally restricted fluorescent probe for Fe^(3+)and Cu^(2+)based on the naphthalimide structure 被引量:1
4
作者 ZHU Yuan ZHANG Xiaoda +2 位作者 WANG Shasha WEI Peng YI Tao 《无机化学学报》 北大核心 2025年第1期183-192,共10页
To address the lack of systematic studies on heavy metal fluorescent probes in typical buffer solutions,this study developed a Fe^(3+)and Cu^(2+)fluorescent probe,DHU‑NP‑4,based on a naphthalimide fluorophore.Comparat... To address the lack of systematic studies on heavy metal fluorescent probes in typical buffer solutions,this study developed a Fe^(3+)and Cu^(2+)fluorescent probe,DHU‑NP‑4,based on a naphthalimide fluorophore.Comparative analysis of the probe's performance in various buffer systems revealed that buffers with high organic content are unsuitable for evaluating such probes.Furthermore,the pH of the solvent system was found to significantly influence the probe's behavior.Under highly acidic conditions(pH≤2),DHU‑NP‑4 exhibited exceptional specificity for Fe^(3+),while in alkaline conditions,it demonstrated high specificity for Cu^(2+).Leveraging these properties,the probe enabled the quantitative detection of Fe^(3+)and Cu^(2+)in solution. 展开更多
关键词 fluorescent probe NAPHTHALIMIDE copper(Ⅱ)ion iron(Ⅲ)ion buffer solution
在线阅读 下载PDF
Machine learning-assisted fluorescence visualization for sequential quantitative detection of aluminum and fluoride ions 被引量:2
5
作者 Qiang Zhang Xin Li +5 位作者 Long Yu Lingxiao Wang Zhiqing Wen Pengchen Su Zhenli Sun Suhua Wang 《Journal of Environmental Sciences》 2025年第3期68-78,共11页
The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approac... The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approach is presented that leverages the power of machine learning to enhance the accuracy and efficiency of fluorescence-based detection for sequential quantitative analysis of aluminum(Al^(3+))and fluoride(F^(−))ions in aqueous solutions.The proposed method involves the synthesis of sulfur-functionalized carbon dots(C-dots)as fluorescence probes,with fluorescence enhancement upon interaction with Al^(3+)ions,achieving a detection limit of 4.2 nmol/L.Subsequently,in the presence of F^(−)ions,fluorescence is quenched,with a detection limit of 47.6 nmol/L.The fingerprints of fluorescence images are extracted using a cross-platform computer vision library in Python,followed by data preprocessing.Subsequently,the fingerprint data is subjected to cluster analysis using the K-means model from machine learning,and the average Silhouette Coefficient indicates excellent model performance.Finally,a regression analysis based on the principal component analysis method is employed to achieve more precise quantitative analysis of aluminum and fluoride ions.The results demonstrate that the developed model excels in terms of accuracy and sensitivity.This groundbreaking model not only showcases exceptional performance but also addresses the urgent need for effective environmental monitoring and risk assessment,making it a valuable tool for safeguarding our ecosystems and public health. 展开更多
关键词 Machine learning Aluminum ion detection Fluorine ion detection Fluorescence probe K-means model
原文传递
Interaction of Ca^(2+)and Fe^(3+)in co-precipitation process induced by Virgibacillus dokdonensis and its application 被引量:1
6
作者 Huaxiao Yan Yuping Liu +10 位作者 Haojuan Zhang Shengping Jin Zuozhen Han Jusun Woo Maurice E.Tucker Long Meng Xiangqun Chi Chao Han Yanyang Zhao Yueming Zhao Hui Zhao 《Journal of Environmental Sciences》 2025年第1期131-152,共22页
Biomineralization has garnered significant attention in the field of wastewater treatment due to its notable cost reduction compared to conventional methods.The reinjection water from oilfields containing an exceeding... Biomineralization has garnered significant attention in the field of wastewater treatment due to its notable cost reduction compared to conventional methods.The reinjection water from oilfields containing an exceedingly high concentration of calcium and ferric ions will pose amajor hazard in production.However,the utilization of biomineralization for precipitating these ions has been scarcely investigated due to limited tolerance among halophiles towards such extreme conditions.In this study,free and immobilized halophiles Virgibacillus dokdonensis were used to precipitate these ions and the effects were compared,at the same time,biomineralizationmechanisms and mineral characteristicswere further explored.The results showthat bacterial concentration and carbonic anhydrase activitywere higher when additionally adding ferric ion based on calcium ion;the content of protein,polysaccharides,deoxyribonucleic acid and humic substances in the extracellular polymers also increased compared to control.Calcium ions were biomineralized into calcite and vaterite with mul-tiple morphology.Due to iron doping,the crystallinity and thermal stability of calcium carbonate decreased,the content of O-C=O,N-C=OandC-O-PO_(3) increased,the stable carbon isotope values became much more negative,andβ-sheet in minerals disappeared.Higher calcium concentrations facilitated ferric ion precipitation,while ferric ions hindered calcium precipitation.The immobilized bacteria performed better in ferric ion removal,with a precipitation ratio exceeding 90%.Free bacteria performed better in calcium removal,and the precipitation ratio reached a maximum of 56%.This research maybe provides some reference for the co-removal of calcium and ferric ions from the oilfield wastewater. 展开更多
关键词 Calcium carbonate Calcium ion Ferric ion BIOMINERALIZATion Co-removal IMMOBILIZATion
原文传递
Mini review:Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries 被引量:2
7
作者 Lingjiang Kou Yong Wang +5 位作者 Jiajia Song Taotao Ai Wenhu Li Mohammad Yeganeh Ghotbi Panya Wattanapaphawong Koji Kajiyoshi 《Chinese Chemical Letters》 2025年第1期214-224,共11页
As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability... As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability of cathode materials under high-voltage conditions remains a critical challenge in improving its energy density.This review systematically explores the failure mechanisms of high-voltage cathode materials in AZIBs,including hydrogen evolution reaction,phase transformation and dissolution phenomena.To address these challenges,we propose a range of advanced strategies aimed at improving the stability of cathode materials.These strategies include surface coating and doping techniques designed to fortify the surface properties and structure integrity of the cathode materials under high-voltage conditions.Additionally,we emphasize the importance of designing antioxidant electrolytes,with a focus on understanding and optimizing electrolyte decomposition mechanisms.The review also highlights the significance of modifying conductive agents and employing innovative separators to further enhance the stability of AZIBs.By integrating these cutting-edge approaches,this review anticipates substantial advancements in the stability of high-voltage cathode materials,paving the way for the broader application and development of AZIBs in energy storage. 展开更多
关键词 Aqueous zinc ion battery High-voltage cathode materials Stability enhancement Failure mechanisms Electrolyte optimization
原文传递
A narrow-band blue emitting phosphor by co-doping Bi^(3+)and alkali metal ions(Li^(+),Na^(+)and K^(+))with dual luminescence center 被引量:1
8
作者 Lang Ruan Zeyun Zhou +5 位作者 Yi Hu Ruifeng Peng Xiaoyan Chen Ming Cheng Zhi Zhou Mao Xia 《Journal of Rare Earths》 2025年第3期543-551,I0005,共10页
The technology of solid-state lighting has developed for decades in various industries.Phosphor,as an element part,determines the application domain of lighting products.For instance,blue and redemitting phosphors are... The technology of solid-state lighting has developed for decades in various industries.Phosphor,as an element part,determines the application domain of lighting products.For instance,blue and redemitting phosphors are required in the process of plant supplementing light,arrow-band emitting phosphors are applied to backlight displays,etc.In this work,a Bi^(3+)-activated blue phosphor was obtained in a symmetrical and co mpact crystal structure of Gd3Sb07(GSO).Then,the co-doping strategy of alkali metal ions(Li^(+),Na^(+),and K^(+))was used to optimize the performance.The result shows that the photoluminescence intensity is increased by 2.1 times and 1.3 times respectively by introducing Li~+and K^(+)ions.Not only that,it also achieves narrow-band emitting with the full width of half-maximum(FWHM)reaching 42 nm through Na^(+)doping,and its excitation peak position also shifts from 322 to 375 nm,which can be well excited by near-ultraviolet(NUV)light emitting diode(LED)chips(365 nm).Meanwhile,the electroluminescence spectrum of GSO:0.6 mol%Bi^(3+),3 wt%Na^(+)matches up to 93.39%of the blue part of the absorption spectrum of chlorophyll a.In summary,the Bi^(3+)-activated blue phosphor reported in this work can synchronously meet the requirements of plant light replenishment and field emission displays. 展开更多
关键词 Bismuth ion Alkali metal ion Narrow-band blue emitting Dual luminescent centers Rare earths
原文传递
Effects of metal ion implantation(Fe,Ti,Zn and Zr)on mechanical properties,corrosion resistance and biocompatibility of WE43 Mg alloy 被引量:1
9
作者 Lianhui Li Zhiqiang Zhang +4 位作者 Dechuang Zhang Fugang Qi Yilong Dai Wenwen Wei Xiaoping Ouyang 《Journal of Magnesium and Alloys》 2025年第1期296-310,共15页
To improve the corrosion resistance of biodegradable Mg alloys,WE43 alloys were implanted with Fe,Ti,Zn and Zr ions at the same implantation dose.The surface morphology,valence state of elements,nano-hardness(NH),elas... To improve the corrosion resistance of biodegradable Mg alloys,WE43 alloys were implanted with Fe,Ti,Zn and Zr ions at the same implantation dose.The surface morphology,valence state of elements,nano-hardness(NH),elastic modulus(EM),degradation rate and in vitro cell experiments of the modified WE43 alloys were systematically studied.A modified layer composed of Mg,MgO,the implanted elements and their oxides was formed on the modified alloys.Since high-speed metal ions caused severe surface lattice damage,the surface hardness of the substrate considerable increased.Electrochemical tests demonstrated a substantial enhancement in the corrosion resistance of the modified alloys via the implantation of Ti and Zr ions,resulting in a reduction of the corrosion current density to 88.1±9.9 and 15.6±11.4μA cm^(−2),respectively,compared with the implantation of Fe and Zn ions.Biocompatibility tests showed that the implantation of Fe,Ti,Zn and Zr ions enhanced the anticoagulant and hemolytic resistance of the WE43 alloy.All surface-modified samples showed negligible cytotoxicity(0-1)at 12.5%extract concentration.Moreover,the alloys implanted with Fe,Ti and Zn ions significantly promoted proliferation of human umbilical vein endothelial cells(HUVEC)compared with the unmodified alloy.The results demonstrate that Ti ion implantation is the best choice for WE43 alloy modification to achieve outstanding corrosion resistance and biocompatibility. 展开更多
关键词 Biomaterial ion implantation Surface mechanical properties Corrosion rate BIOCOMPATIBILITY
在线阅读 下载PDF
Failure mechanisms of AlGaN/GaN HEMTs irradiated by high-energy heavy ions with and without bias 被引量:1
10
作者 Pei-Pei Hu Li-Jun Xu +9 位作者 Sheng-Xia Zhang Peng-Fei Zhai Ling Lv Xiao-Yu Yan Zong-Zhen Li Yan-Rong Cao Xue-Feng Zheng Jian Zeng Yuan He Jie Liu 《Nuclear Science and Techniques》 2025年第1期49-58,共10页
Gallium nitride(GaN)-based devices have significant potential for space applications.However,the mechanisms of radiation damage to the device,particularly from strong ionizing radiation,remains unknown.This study inve... Gallium nitride(GaN)-based devices have significant potential for space applications.However,the mechanisms of radiation damage to the device,particularly from strong ionizing radiation,remains unknown.This study investigates the effects of radiation on p-gate AlGaN/GaN high-electron-mobility transistors(HEMTs).Under a high voltage,the HEMT leakage current increased sharply and was accompanied by a rapid increase in power density that caused"thermal burnout"of the devices.In addition,a burnout signature appeared on the surface of the burned devices,proving that a single-event burnout effect occurred.Additionally,degradation,including an increase in the on-resistance and a decrease in the breakdown voltage,was observed in devices irradiated with high-energy heavy ions and without bias.The latent tracks induced by heavy ions penetrated the heterojunction interface and extended into the GaN layer.Moreover,a new type of N_(2)bubble defect was discovered inside the tracks using Fresnel analysis.The accumulation of N_(2)bubbles in the heterojunction and buffer layers is more likely to cause leakage and failure.This study indicates that electrical stress accelerates the failure rate and that improving heat dissipation is an effective reinforcement method for GaN-based devices. 展开更多
关键词 GaN HEMTs Heavy ions Single-event burnout Latent tracks Degradation
在线阅读 下载PDF
Carbon-based quantum dots/nanodots materials for potassium ion storage 被引量:1
11
作者 Zhanheng Yan Weiqing Su +6 位作者 Weiwei Xu Qianhui Mao Lisha Xue Huanxin Li Wuhua Liu Xiu Li Qiuhui Zhang 《Chinese Chemical Letters》 2025年第4期83-95,共13页
With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ... With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ion battery is promising to replace the lithium-ion battery in the field of large-scale energy storage by virtue of its low price and environmental friendliness.At present,the research on the anode materials of potassium ion batteries mainly focuses on carbon materials and the design of various nanostructured metal-based materials.Problems such as poor rate performance and inferior cycle life caused by electrode structure comminution during charge and discharge have not been solved.Quantum dots/nanodots materials are a new type of nanomaterials that can effectively improve the utilization of electrode materials and reduce production costs.In addition,quantum dots/nanodots materials can enhance the electrode reaction kinetics,reduce the stress generated in cycling,and effectively alleviate the agglomeration and crushing of electrode materials.In this review,we will systematically introduce the synthesis methods,K+storage properties and K+storage mechanisms of carbon quantum dots and carbon-based transition metal compound quantum dots composites.This review will have significant references for potassium ion battery researchers. 展开更多
关键词 Quantum dots NANODOTS Potassium ion battery ANODE Composite material
原文传递
Novel titanium vanadate with superior Na^(+) transport kinetics for rapid charging and low-temperature sodium ion batteries 被引量:1
12
作者 Dan Lv Liehao Wei +6 位作者 Cheng Wang Mingyue Wang Zhongchao Bai Yameng Fan Dongdong Wang Nana Wang Jian Yang 《Green Energy & Environment》 2025年第2期374-381,共8页
Sodium-ion batteries(SIBs)hold great promise for large-scale energy storage in the post-lithium-ion battery era due to their high rate performance and long lifespan,although their sluggish Na^(+) transformation kineti... Sodium-ion batteries(SIBs)hold great promise for large-scale energy storage in the post-lithium-ion battery era due to their high rate performance and long lifespan,although their sluggish Na^(+) transformation kinetics still require improvement.Encouraged by the excellent electrochemical performance of titanium-based anode materials,here,we present a novel titanium vanadate@carbon(TVO@C)material as anode for SIBs.Our TVO@C material is synthesized via a facile coprecipitation method,with the following annealing process in an acetylene atomosphere.The opened ion channel and the oxygen vacancies within TVO@C facilitate the diffusion of Na^(+) ions,reducing their diffusion barrier.Thus,an ultrahigh rate of 100 A g^(-1)and long life of 10,000 cycles have been achieved.Furthermore,the TVO@C electrode exhibits stable performance,not only at room temperature,but also at temperatures as low as 20 C.The TVO@CjjNa_(3)V_(2)(PO_(4))_(3)@C full cells have also achieved stable discharge/charge for 500 cycles.It is believed that this strategy provides new insight into the development of advanced electrodes and provides a new opportunity for constructing novel high rate electrodes. 展开更多
关键词 Anode High rate Titanium vanadate Sodium ion batteries
在线阅读 下载PDF
Ion-modulation optoelectronic neuromorphic devices:mechanisms,characteristics,and applications 被引量:1
13
作者 Xiaohan Meng Runsheng Gao +1 位作者 Xiaojian Zhu Run-Wei Li 《Journal of Semiconductors》 2025年第2期24-36,共13页
The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorph... The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorphic computing,inspired by the architecture of the human brain,offers a promising alternative by integrating memory and computational func-tions,enabling parallel,high-speed,and energy-efficient information processing.Among various neuromorphic technologies,ion-modulated optoelectronic devices have garnered attention due to their excellent ionic tunability and the availability of multi-dimensional control strategies.This review provides a comprehensive overview of recent progress in ion-modulation optoelec-tronic neuromorphic devices.It elucidates the key mechanisms underlying ionic modulation of light fields,including ion migra-tion dynamics and capture and release of charge through ions.Furthermore,the synthesis of active materials and the proper-ties of these devices are analyzed in detail.The review also highlights the application of ion-modulation optoelectronic devices in artificial vision systems,neuromorphic computing,and other bionic fields.Finally,the existing challenges and future direc-tions for the development of optoelectronic neuromorphic devices are discussed,providing critical insights for advancing this promising field. 展开更多
关键词 ion migration optoelectronic modulation optoelectronic device neuromorphic computing artificial vision system
在线阅读 下载PDF
pH modulation and molecular layer construction for stable zinc batteries 被引量:1
14
作者 Donghong Wang Qiwang Shao +5 位作者 Xianjia Cao Mengxuan Qin Yizhu He Lei Zhu Qing Li Dongming Liu 《Journal of Energy Chemistry》 2025年第3期179-188,共10页
Aqueous zinc-ion batteries(AZIBs)have regained interest due to their inherent safety and costeffectiveness.However,the zinc anode is notorious for side reactions and dendrite growth,which plague the practical applicat... Aqueous zinc-ion batteries(AZIBs)have regained interest due to their inherent safety and costeffectiveness.However,the zinc anode is notorious for side reactions and dendrite growth,which plague the practical application of AZIBs.Adjusting the interfacial pH to reduce the by-products has been proven to be effective in protecting the zinc anode.Nevertheless,the dynamic regulation of the inherently unstable zinc interface during prolonged cycling remains a significant challenge.Herein,zwitterionic N-tris(hydroxymethyl)methylglycine(TMG)integrated with negative-COO^(-)and positive NH_(2)^(+)groups is proposed to stabilize the Zn anode and extend the lifespan as a self-regulating interfacial additive.The anionic portion serves as a trapping site to balance the interfacial pH and thus mitigate the unintended side reactions.Simultaneously,the NH_(2)^(+)cations are anchored on the zinc surface,forming a water-shielding,zincophilic molecular layer that guides three-dimensional diffusion and promotes uniform electro-deposition.Thus,an average plating efficiency of 99.74%over 3300 cycles at a current density of2 mA cm^(-2)is achieved.Notably,the TMG additive actualizes ultralong life in Zn‖Zn symmetrical cells(5500 h,exceeding 229 days,1 mA cm^(-2)/1 mA h cm^(-2)),and enables the Zn‖I_(2)cells to reach capacity retention rate of 89.4%after 1000 cycles at 1 A g^(-1). 展开更多
关键词 Aqueous zinc ion battery Zn dendrites pHDynamic regulation Molecular layer Zn-12
在线阅读 下载PDF
Multiple yolks-shell cobalt phosphosulfide nanocrystals encapsulating into rich heteroatoms co-doped carbon frameworks for advanced sodium/potassium ion batteries 被引量:1
15
作者 Yining Li Shimei Wu +3 位作者 Lantao Chen Haosen Fan Yufei Zhang Lingxing Zeng 《Chinese Chemical Letters》 2025年第9期678-683,共6页
In recent years,metal phosphosulfides have attracted great attention as the promising anode materials in sodium/potassium batteries because of their incorporation of the advantages of metal phosphides and sulfides.How... In recent years,metal phosphosulfides have attracted great attention as the promising anode materials in sodium/potassium batteries because of their incorporation of the advantages of metal phosphides and sulfides.However,they are also confronted with the problem of unstable battery performance due to the heavy volume expansion and sluggish ion reaction kinetics.Herein,yolk-shell cobalt phosphosulfide nanocrystals encapsulating into multi-heterogeneous atom(N,P,S)-doped carbon framework(Co_(9)S_(8)/CoP@NPSC)were constructed by employing dodecahedral ZIF-67 as precursor and a polymer as carbon sources through simultaneous sulfidation and phosphorization processes.The synergistic effect of Co_(9)S_(8)and CoP component and the yolk-shell structure greatly improve the bettery performance and structural stability.In addition,the multiple hetero-atoms doped carbon frameworks enhance the conductivity of the electrode materials and increase the spacing of carbon layers to supply sufficient active sites and facilitate the Na^(+)/K^(+)transport.The electrochemical results demonstrated that Co_(9)S_(8)/CoP@NPSC exhibited the pleasant reversible capacity(360.47 mAh/g at 1 A/g)after 300 cycles and an unpredictable cycling stability(103.22 mAh/g after 1000 cycles)in the SIBs application.The ex-situ XRD and XPS analyses were further applied to study the sodium ion storage mechanism and the multi-step phase transition reaction of the yolk-shell heterogeneous structure.This work provides new perspectives for the preparation of novel structure metal phosphosulfide and their applications in anode materials for sodium/potassium batteries and other secondary batteries. 展开更多
关键词 Yolks-shell cobalt phosphosulfate Hetero-atoms doping Synergistic effect Sodium-ion batteries Potassium ion batteries
原文传递
Recent Advances in Fibrous Materials for Hydroelectricity Generation
16
作者 Can Ge Duo Xu +10 位作者 Xiao Feng Xing Yang Zheheng Song Yuhang Song Jingyu Chen Yingcun Liu Chong Gao Yong Du Zhe Sun Weilin Xu Jian Fang 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期109-133,共25页
Depleting fossil energy sources and conventional polluting power generation pose a threat to sustainable development.Hydroelectricity generation from ubiquitous and spontaneous phase transitions between liquid and gas... Depleting fossil energy sources and conventional polluting power generation pose a threat to sustainable development.Hydroelectricity generation from ubiquitous and spontaneous phase transitions between liquid and gaseous water has been considered a promising strategy for mitigating the energy crisis.Fibrous materials with unique flexibility,processability,multifunctionality,and practicability have been widely applied for fibrous materials-based hydroelectricity generation(FHG).In this review,the power generation mechanisms,design principles,and electricity enhancement factors of FHG are first introduced.Then,the fabrication strategies and characteristics of varied constructions including 1D fiber,1D yarn,2D fabric,2D membrane,3D fibrous framework,and 3D fibrous gel are demonstrated.Afterward,the advanced functions of FHG during water harvesting,proton dissociation,ion separation,and charge accumulation processes are analyzed in detail.Moreover,the potential applications including power supply,energy storage,electrical sensor,and information expression are also discussed.Finally,some existing challenges are considered and prospects for future development are sincerely proposed. 展开更多
关键词 HYDROELECTRICITY Fibrous material Streaming potential ion diffusion
在线阅读 下载PDF
ZIF-based heterojunction filler enhancing Li-ion transport of composite solid-state electrolytes 被引量:1
17
作者 Jianshuai Lv Yuhang Li +7 位作者 Ke Yang Xinyu Liu Ying Dou Zheng Zhang Danfeng Zhang Peiran Shi Ming Liu Yan-Bing He 《Energy Materials and Devices》 2025年第2期34-45,33,共13页
Composite solid electrolytes(CSEs)are considered among the most promising candidates for solid-state batteries.However,their practical application is hindered by low ionic conductivity and a limited lithium-ion transf... Composite solid electrolytes(CSEs)are considered among the most promising candidates for solid-state batteries.However,their practical application is hindered by low ionic conductivity and a limited lithium-ion transference number,primarily owing to the insufficient mobility of Li+.In this work,we design a heterojunc-tion nanoparticle composed of bimetallic zeolitic imidazolate frameworks(ZIFs)coupled with amorphous tita-nium oxide(TiO_(2)@Zn/Co–ZIF)as a filler to fabricate a composite solid-state electrolyte(PVZT).The amor-phous TiO_(2) coating facilitates salt dissociation through Lewis acid–base interactions with the anions of the lithium salt.Meanwhile,the Zn/Co–ZIF framework not only provides additional selective pathways for Li+transport but also effectively restricts anion migration through its confined pore size.The synergistic effect results in a high room-temperature ionic conductivity(8.8×10^(-4) S·cm^(-1))and a lithium-ion transference number of 0.47 for PVZT.A symmetrical cell using PVZT demonstrates stable Li+deposition/stripping for over 1100 h at a current density of 0.1 mA·cm^(-2).Additionally,a LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)/Li full cell using PVZT retains 75.0%of its capacity after 1200 cycles at a 2 C rate.This work offers valuable insights into the design of func-tional fillers for CSEs with highly efficient ion transport. 展开更多
关键词 ion transport heterojunction nanoparticle dissociation of lithium salt solid-state battery zeolitic imidazolate framework
在线阅读 下载PDF
Depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite
18
作者 Feng Zhang Chenyang Zhang +5 位作者 Linlin Wu Wei Sun Hongliang Zhang Jianhua Chen Yong Pei Songjiang Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期335-345,共11页
The depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite still lacked in-depth insight.Therefore,the depression mechanism of sulfite ... The depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite still lacked in-depth insight.Therefore,the depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite was further systematically investigated with experiments and density functional theory(DFT)calculations.The X-ray photoelectric spectroscopy(XPS)results,DFT calculation results,and frontier molecular orbital analysis indicated that sulfite ions were difficult to be adsorbed on sphalerite surface,suggesting that sulfite ions achieved depression effects on sphalerite through other non-adsorption mechanisms.First,the oxygen content in the surface of sphalerite treated with sulfite ions in creased,which enhanced the hydrophilicity of the sphalerite and further increased the difference in hydrophilicity between sphalerite and galena.Then,sulfite ions were chelated with lead ions to form PbSO_(3)in solution.The hydrophilic PbSO_(3)was more easily adsorbed on sphalerite than galena.The interaction between sulfite ions and lead ions could effectively inhibit the activation of sphalerite.In addition the UV spectrum showed that after adding sulfite ions,the peak of perxanthate in the sphalerite treated xanthate solution was significantly stronger than that in the galena with xanthate solution,indicating that xanthate interacted more readily with sulfite ions and oxygen mo lecules within the sphalerite system,leading to the formation of perxanthate.However,sulfite ions hardly depressed the flotation of ga lena and could promote the flotation of galena to some extent.This study deepened the understanding of the depression mechanism o sulfite ions on sphalerite and Pb^(2+)activated sphalerite. 展开更多
关键词 SPHALERITE GALENA sulfite ion density functional theory depression mechanism
在线阅读 下载PDF
In situ preparation of zincophilic covalent-organic frameworks with low surface work function and high rigidity to stabilize zinc metal anodes 被引量:1
19
作者 Yunyu Zhao Kaiyong Feng Yingjian Yu 《Journal of Energy Chemistry》 2025年第3期524-533,共10页
Zinc-ion batteries(ZIBs)are inexpensive and safe,but side reactions on the Zn anode and Zn dendrite growth hinder their practical applications.In this study,1,3,5-triformylphloroglycerol(Tp)and various diamine monomer... Zinc-ion batteries(ZIBs)are inexpensive and safe,but side reactions on the Zn anode and Zn dendrite growth hinder their practical applications.In this study,1,3,5-triformylphloroglycerol(Tp)and various diamine monomers(p-phenylenediamine(Pa),benzidine(BD),and 4,4"-diamino-p-terphenyl(DATP))were used to synthesize a series of two-dimensional covalent-organic frameworks(COFs).The resulting COFs were named TpPa,TpBD,and TpDATP,respectively,and they showed uniform zincophilic sites,different pore sizes,and high Young's moduli on the Zn anode.Among them,TpPa and TpBD showed lower surface work functions and higher ion transfer numbers,which were conducive to uniform galvanizing/stripping zinc and inhibited dendrite growth.Theoretical calculations showed that TpPa and TpBD had wider negative potential region and greater adsorption capacity for Zn2+than TpDATP,providing more electron donor sites to coordinate with Zn^(2+).Symmetric cells protected by TpPa and TpBD stably cycled for more than 2300 h,whereas TpDATP@Zn and the bare zinc symmetric cells failed after around 150 and200 h.The full cells containing TpPa and TpBD modification layers also showed excellent cycling capacity at 1 A/g.This study provides comprehensive insights into the construction of highly reversible Zn anodes via COF modification layers for advanced rechargeable ZIBs. 展开更多
关键词 Zn ion batteries Covalent organic framework DENDRITE Low surface work function High rigidity
在线阅读 下载PDF
Aligned Ion Conduction Pathway of Polyrotaxane‑Based Electrolyte with Dispersed Hydrophobic Chains for Solid‑State Lithium–Oxygen Batteries
20
作者 Bitgaram Kim Myeong‑Chang Sung +4 位作者 Gwang‑Hee Lee Byoungjoon Hwang Sojung Seo Ji‑Hun Seo Dong‑Wan Kim 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期169-186,共18页
A critical challenge hindering the practical application of lithium–oxygen batteries(LOBs)is the inevitable problems associated with liquid electrolytes,such as evaporation and safety problems.Our study addresses the... A critical challenge hindering the practical application of lithium–oxygen batteries(LOBs)is the inevitable problems associated with liquid electrolytes,such as evaporation and safety problems.Our study addresses these problems by proposing a modified polyrotaxane(mPR)-based solid polymer electrolyte(SPE)design that simultaneously mitigates solvent-related problems and improves conductivity.mPR-SPE exhibits high ion conductivity(2.8×10^(−3)S cm^(−1)at 25℃)through aligned ion conduction pathways and provides electrode protection ability through hydrophobic chain dispersion.Integrating this mPR-SPE into solid-state LOBs resulted in stable potentials over 300 cycles.In situ Raman spectroscopy reveals the presence of an LiO_(2)intermediate alongside Li_(2)O_(2)during oxygen reactions.Ex situ X-ray diffraction confirm the ability of the SPE to hinder the permeation of oxygen and moisture,as demonstrated by the air permeability tests.The present study suggests that maintaining a low residual solvent while achieving high ionic conductivity is crucial for restricting the sub-reactions of solid-state LOBs. 展开更多
关键词 Solid polymer electrolyte Lithium-oxygen batteries Polyrotaxane ion conductivity Hydrophobic chain
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部