Since the publication of Sons and Lovers,it has inspired a wide range of critical interpretation, which testifies to its enduring status as a masterpiece of twentieth-century literature. Most critics analyze and evalu...Since the publication of Sons and Lovers,it has inspired a wide range of critical interpretation, which testifies to its enduring status as a masterpiece of twentieth-century literature. Most critics analyze and evaluate Sons and Lovers by adopting a psychoanalytical or social approach. The discussion either just searches for Oedipus Complex or is confined to the content analysis. This essay attempts to integrate all the theoretical analysis which attach to the novel, Sons and Lovers.展开更多
Improving the accuracy of digital elevation is essential for reducing hydro-topographic derivation errors pertaining to, e.g., flow direction, basin borders, channel networks, depressions, flood forecasting, and soil ...Improving the accuracy of digital elevation is essential for reducing hydro-topographic derivation errors pertaining to, e.g., flow direction, basin borders, channel networks, depressions, flood forecasting, and soil drainage. This article demonstrates how a gain in this accuracy is improved through digital elevation model (DEM) fusion, and using LiDAR-derived elevation layers for conformance testing and validation. This demonstration is done for the Province of New Brunswick (NB, Canada), using five province-wide DEM sources (SRTM 90 m;SRTM 30 m;ASTER 30 m;CDED 22 m;NB-DEM 10 m) and a five-stage process that guides the re-projection of these DEMs while minimizing their elevational differences relative to LiDAR-captured bare-earth DEMs, through calibration and validation. This effort decreased the resulting non-LiDAR to LiDAR elevation differences by a factor of two, reduced the minimum distance conformance between the non-LiDAR and LiDAR-derived flow channels to ± 10 m at 8.5 times out of 10, and dropped the non-LiDAR wet-area percentages of false positives from 59% to 49%, and of false negatives from 14% to 7%. While these reductions are modest, they are nevertheless not only consistent with already existing hydrographic data layers informing about stream and wet-area locations, they also extend these data layers across the province by comprehensively locating previously unmapped flow channels and wet areas.展开更多
Objective To investigate distinctive features in drug-resistant mutations (DRMs) and interpretations for reverse transcriptase inhibitors (RTIs) between proviral DNA and paired viral RNA in HIV-l-infected patients...Objective To investigate distinctive features in drug-resistant mutations (DRMs) and interpretations for reverse transcriptase inhibitors (RTIs) between proviral DNA and paired viral RNA in HIV-l-infected patients. Methods Forty-three HIV-l-infected individuals receiving first-line antiretroviral therapy were recruited to participate in a multicenter AIDS Cohort Study in Anhui and Henan Provinces in China in 2004. Drug resistance genotyping was performed by bulk sequencing and deep sequencing on the plasma and whole blood of 77 samples, respectively. Drug-resistance interpretation was compared between viral RNA and paired proviral DNA. Results Compared with bulk sequencing, deep sequencing could detect more DRMs and samples with DRMs in both viral RNA and proviral DNA. The mutations M1841 and M2301 were more prevalent in proviral DNA than in viral RNA (Fisher's exact test, P〈0.05). Considering 'majority resistant variants', 15 samples (19.48%) showed differences in drug resistance interpretation between viral RNA and proviral DNA, and 5 of these samples with different DRMs between proviral DNA and paired viral RNA showed a higher level of drug resistance to the first-line drugs. Considering 'minority resistant variants', 22 samples (28.57%) were associated with a higher level of drug resistance to the tested RTIs for proviral DNA when compared with paired viral RNA. Conclusion Compared with viral RNA, the distinctive information of DRMs and drug resistance interpretations for proviral DNA could be obtained by deep sequencing, which could provide more detailed and precise information for drug resistance monitoring and the rational design of optimal antiretroviral therapy regimens.展开更多
The Appellate Body report in January 2012 had supported the decision of Panel in the"China-measures related to the exportation of various raw materials"case(WT/DS394,395,398)and affirmed that China's res...The Appellate Body report in January 2012 had supported the decision of Panel in the"China-measures related to the exportation of various raw materials"case(WT/DS394,395,398)and affirmed that China's restrictions(such as tariffs and quota measures)on the exportation of raw materials violated rules put forth by the WTO,which were required to be modified.In this case China's right to invoke Article 20 of GATT1994("general exception")to justify its exemption from the guidelines in Article 11.3 of the WTO Accession Protocol was denied by the Panel and the Appellate Body.This was due to the fact that the phrasing in Article 11.3 of Protocol failed to mention"GATT."This was the consequence of the two interpretation approaches the Dispute Settlement Body(DSB)adopted-a narrow textual interpretation and a subjective presumption of"legislative silence."The inappropriate use of the two methods of interpretation lead to an imbalance between the right and obligation of China under the additional obligations that were imposed upon China by the WTO,which create a negative impact on China's rare earth case and the protection of domestic natural resources.展开更多
In this paper, the author focuses on the ecourbarchitectonic physical structures created after year 2000, whose artistic-esthetic value has an iconological character. An entirely new approach in formation of the facad...In this paper, the author focuses on the ecourbarchitectonic physical structures created after year 2000, whose artistic-esthetic value has an iconological character. An entirely new approach in formation of the facade and roof planes as well as of the forms of structures whose appearance resemble sculptural creations has been analyzed. The buildings from all over the world, with different functions contents, indicate a tendency of a different understanding of interpretation of physical structures and correlation with natural and artifact environment. Water surfaces and vegetative material contribute to an effective, cultural, majestic impression of engineering-technological philosophy of city building. The examples in the paper suggest the obvious need of radical changing of the way of thinking in the application of the design strategy in conceptualization of urban agglomerations, and essentially important, conceptually inspired metabolic of relationships among the spatial structures. The world entered new non-globalization trends of creation of the city memory, of the new iconically, symbolically strong, non-cliché, non-standard forms which define the contemporary cultural-artistic and historical identity of macro-ambient entities. This is a good and encouraging sign.展开更多
This paper addresses the problem of the interpretation of the stochastic differential equations (SDE). Even if from a theoretical point of view, there are infinite ways of interpreting them, in practice only Stratonov...This paper addresses the problem of the interpretation of the stochastic differential equations (SDE). Even if from a theoretical point of view, there are infinite ways of interpreting them, in practice only Stratonovich’s and Itô’s interpretations and the kinetic form are important. Restricting the attention to the first two, they give rise to two different Fokker-Planck-Kolmogorov equations for the transition probability density function (PDF) of the solution. According to Stratonovich’s interpretation, there is one more term in the drift, which is not present in the physical equation, the so-called spurious drift. This term is not present in Itô’s interpretation so that the transition PDF’s of the two interpretations are different. Several examples are shown in which the two solutions are strongly different. Thus, caution is needed when a physical phenomenon is modelled by a SDE. However, the meaning of the spurious drift remains unclear.展开更多
Linear and circular interpretation structure maps of different relative depths are obtained by processing 1:200000 aeromagnetic data to the pole in Ailaoshan region,interpreting upward extension of 4 heights,extractin...Linear and circular interpretation structure maps of different relative depths are obtained by processing 1:200000 aeromagnetic data to the pole in Ailaoshan region,interpreting upward extension of 4 heights,extracting a vertical second derivative line of 0 value and a series of calculations. Concealed boundary of deep magnetic rocks can be delineated according to the maps. On the basis of the conclusions above,a set of economical and practical methods to graph the deep structure are summarized. In addition,the relationship between deep structure and mineralization positions is discussed.展开更多
The method and theoretical system of well logging geology have been widely used in the fields of basic geology,petroleum geology and engineering geology,but the different response sensitivity of different well logging...The method and theoretical system of well logging geology have been widely used in the fields of basic geology,petroleum geology and engineering geology,but the different response sensitivity of different well logging series to geological information and the mismatching between geophysical properties of multiple well logs and geological genesis of rocks frequently result in misunderstandings in the research process of well logging geology.Therefore,it is in an urgent need to analyze the typical misunderstanding cases in the research of well logging geology and explore the corresponding scientific ideas and countermeasures.After analyzing the typical misunderstandings in the research of well logging geology,this paper investigates vertical resolution scale of various logging series and its contradiction with detection depth and illustrates the importance of the integration of different scales of data.In addition,the factor inducing“fake logging data”and its influence on interpretation evaluation are clarified and a set of ideas for well logging evaluation of geological interpretation is put forward.And the following research results are obtained.First,the typical misunderstandings in the research of well logging geology can be classified into two categories,namely geological body interpretation misunderstanding and reservoir property parameter calculation misunderstanding.Second,special geological phenomena,such as high-density and high-resistivity mudstone can lead to logging data ambiguity,so attention shall be paid to petrophysical response mechanisms during geological logging interpretation.Third,to carry out well logging evaluation of unconventional oil and gas,it is necessary to integrate new technologies of electric imaging logging,dipole acoustic logging and nuclear magnetic resonance logging,and the calibration of core data and the integration of geological ideas can improve the interpretation accuracy.Fourth,In the process of borehole structural logging analysis,sedimentary response,geostress evaluation and fracture identification,geological ideas shall be integrated to avoid the logging interpretation misunderstanding caused by the same response of different geological phenomena in well logs.In conclusion,the dialectical and systematic thinking from geology to logging and then to geology,from practice to recognition and then to practice and from“a narrow view”to“a broad view”can provide a scientific ideas for the comprehensive research of well logging geology.展开更多
This paper offers an analysis of the approaches employed in the three interpretations of the Basic Law of the Special Administrative Region of Hong Kong by the Standing Committee of the National People's Congress (...This paper offers an analysis of the approaches employed in the three interpretations of the Basic Law of the Special Administrative Region of Hong Kong by the Standing Committee of the National People's Congress (NPC) after the return of Hong Kong to China, including textualism, structural reading and originalism. The paper stresses the application of jurisprudential theory in the skilful employment of these methods in the NPC interpretations. In the case of "the right of abode" in Hong Kong the differences between the interpretations by the Court of Final Appeal of Hong Kong and by the NPC rest mainly in whether a formalist procedural review or a substantivist presumption of intent should be adopted in the process of determining an authoritative text that embodies the original intention of the legislation. That is not just a difference of legal interpretation but also one of jurisprudential theory and political stance. Based on the above considerations, this paper criticizes the common misconception that it is not appropriate for legislators to undertake legal interpretation, and calls for an understanding of the Basic Law in the framework of Chinese constitutional government.展开更多
Heart disease remains a leading cause of mortality worldwide,emphasizing the urgent need for reliable and interpretable predictive models to support early diagnosis and timely intervention.However,existing Deep Learni...Heart disease remains a leading cause of mortality worldwide,emphasizing the urgent need for reliable and interpretable predictive models to support early diagnosis and timely intervention.However,existing Deep Learning(DL)approaches often face several limitations,including inefficient feature extraction,class imbalance,suboptimal classification performance,and limited interpretability,which collectively hinder their deployment in clinical settings.To address these challenges,we propose a novel DL framework for heart disease prediction that integrates a comprehensive preprocessing pipeline with an advanced classification architecture.The preprocessing stage involves label encoding and feature scaling.To address the issue of class imbalance inherent in the personal key indicators of the heart disease dataset,the localized random affine shadowsampling technique is employed,which enhances minority class representation while minimizing overfitting.At the core of the framework lies the Deep Residual Network(DeepResNet),which employs hierarchical residual transformations to facilitate efficient feature extraction and capture complex,non-linear relationships in the data.Experimental results demonstrate that the proposed model significantly outperforms existing techniques,achieving improvements of 3.26%in accuracy,3.16%in area under the receiver operating characteristics,1.09%in recall,and 1.07%in F1-score.Furthermore,robustness is validated using 10-fold crossvalidation,confirming the model’s generalizability across diverse data distributions.Moreover,model interpretability is ensured through the integration of Shapley additive explanations and local interpretable model-agnostic explanations,offering valuable insights into the contribution of individual features to model predictions.Overall,the proposed DL framework presents a robust,interpretable,and clinically applicable solution for heart disease prediction.展开更多
Inspired by the X(4140)structure reported in the J/ψφsystem by the CDF experiment in 2009,a series of searches have been carried out in theJ/ψφand J/ψK channels,leading to the claim of ten structures in the B→J...Inspired by the X(4140)structure reported in the J/ψφsystem by the CDF experiment in 2009,a series of searches have been carried out in theJ/ψφand J/ψK channels,leading to the claim of ten structures in the B→J/ψφK system.This article provides a comprehensive review of experimental developments,from the initial evidence of X(4140)at CDF to the amplitude analyses and diffractive process investigations by the LHCb experiment,as well as theoretical interpretations of these states.A triplet of J^(PC)=1++states with relatively large mass splittings[about 200MeV(natural units are adopted)]has been identified in the J/ψφsystem by LHCb.Their mass-squared values align approximately linearly with a possible radial quantum number,suggesting that the triplet may represent a radially excited family.For X(4140),the first state in the triplet,its width reported by LHCb is inconsistent with that measured by other experiments,and possible reasons for this discrepancy are discussed.A potential connection between an excess at 4.35 GeV in the J/ψφmass spectrum reported by the Belle experiment through a two-photon process and a potential spin-2 excess in the LHCb data is also investigated.In addition,potential parallels between the J/ψφand J/ψJ/ψsystems,both composed of two vector mesons,are discussed.The continued interest in,and complexity of,these systems underscore the necessity of further experimental exploration with increased statistical precision across a variety of experiments,particularly those with relatively flat efficiency across the Dalitz plot.The J/ψω,φφ,ρω,andρφsystems are mentioned,and the prospects for the J/ψγandγγsystems,are also highlighted.展开更多
Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze we...Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze weather conditions degrade image qualityand reduce the precision of environmental monitoring systems. To address this problem,this research proposes a remote sensing image dehazingmethod based on the atmosphericscattering model and a dark channel prior constrained network. The method consists ofa dehazing network, a dark channel information injection network (DCIIN), and a transmissionmap network. Within the dehazing network, the branch fusion module optimizesfeature weights to enhance the dehazing effect. By leveraging dark channel information,the DCIIN enables high-quality estimation of the atmospheric veil. To ensure the outputof the deep learning model aligns with physical laws, we reconstruct the haze image usingthe prediction results from the three networks. Subsequently, we apply the traditionalloss function and dark channel loss function between the reconstructed haze image and theoriginal haze image. This approach enhances interpretability and reliabilitywhile maintainingadherence to physical principles. Furthermore, the network is trained on a synthesizednon-homogeneous haze remote sensing dataset using dark channel information from cloudmaps. The experimental results show that the proposed network can achieve better imagedehazing on both synthetic and real remote sensing images with non-homogeneous hazedistribution. This research provides a new idea for solving the problem of decreased accuracyof environmental monitoring systems under haze weather conditions and has strongpracticability.展开更多
BACKGROUND To investigate the preoperative factors influencing textbook outcomes(TO)in Intrahepatic cholangiocarcinoma(ICC)patients and evaluate the feasibility of an interpretable machine learning model for preoperat...BACKGROUND To investigate the preoperative factors influencing textbook outcomes(TO)in Intrahepatic cholangiocarcinoma(ICC)patients and evaluate the feasibility of an interpretable machine learning model for preoperative prediction of TO,we developed a machine learning model for preoperative prediction of TO and used the SHapley Additive exPlanations(SHAP)technique to illustrate the prediction process.AIM To analyze the factors influencing textbook outcomes before surgery and to establish interpretable machine learning models for preoperative prediction.METHODS A total of 376 patients diagnosed with ICC were retrospectively collected from four major medical institutions in China,covering the period from 2011 to 2017.Logistic regression analysis was conducted to identify preoperative variables associated with achieving TO.Based on these variables,an EXtreme Gradient Boosting(XGBoost)machine learning prediction model was constructed using the XGBoost package.The SHAP(package:Shapviz)algorithm was employed to visualize each variable's contribution to the model's predictions.Kaplan-Meier survival analysis was performed to compare the prognostic differences between the TO-achieving and non-TO-achieving groups.RESULTS Among 376 patients,287 were included in the training group and 89 in the validation group.Logistic regression identified the following preoperative variables influencing TO:Child-Pugh classification,Eastern Cooperative Oncology Group(ECOG)score,hepatitis B,and tumor size.The XGBoost prediction model demonstrated high accuracy in internal validation(AUC=0.8825)and external validation(AUC=0.8346).Survival analysis revealed that the disease-free survival rates for patients achieving TO at 1,2,and 3 years were 64.2%,56.8%,and 43.4%,respectively.CONCLUSION Child-Pugh classification,ECOG score,hepatitis B,and tumor size are preoperative predictors of TO.In both the training group and the validation group,the machine learning model had certain effectiveness in predicting TO before surgery.The SHAP algorithm provided intuitive visualization of the machine learning prediction process,enhancing its interpretability.展开更多
Artificial intelligence(AI)has emerged as a transformative technology in accelerating drug discovery and development within natural medicines research.Natural medicines,characterized by their complex chemical composit...Artificial intelligence(AI)has emerged as a transformative technology in accelerating drug discovery and development within natural medicines research.Natural medicines,characterized by their complex chemical compositions and multifaceted pharmacological mechanisms,demonstrate widespread application in treating diverse diseases.However,research and development face significant challenges,including component complexity,extraction difficulties,and efficacy validation.AI technology,particularly through deep learning(DL)and machine learning(ML)approaches,enables efficient analysis of extensive datasets,facilitating drug screening,component analysis,and pharmacological mechanism elucidation.The implementation of AI technology demonstrates considerable potential in virtual screening,compound optimization,and synthetic pathway design,thereby enhancing natural medicines’bioavailability and safety profiles.Nevertheless,current applications encounter limitations regarding data quality,model interpretability,and ethical considerations.As AI technologies continue to evolve,natural medicines research and development will achieve greater efficiency and precision,advancing both personalized medicine and contemporary drug development approaches.展开更多
The application of machine learning in alloy design is increasingly widespread,yet traditional models still face challenges when dealing with limited datasets and complex nonlinear relationships.This work proposes an ...The application of machine learning in alloy design is increasingly widespread,yet traditional models still face challenges when dealing with limited datasets and complex nonlinear relationships.This work proposes an interpretable machine learning method based on data augmentation and reconstruction,excavating high-performance low-alloyed magnesium(Mg)alloys.The data augmentation technique expands the original dataset through Gaussian noise.The data reconstruction method reorganizes and transforms the original data to extract more representative features,significantly improving the model's generalization ability and prediction accuracy,with a coefficient of determination(R^(2))of 95.9%for the ultimate tensile strength(UTS)model and a R^(2)of 95.3%for the elongation-to-failure(EL)model.The correlation coefficient assisted screening(CCAS)method is proposed to filter low-alloyed target alloys.A new Mg-2.2Mn-0.4Zn-0.2Al-0.2Ca(MZAX2000,wt%)alloy is designed and extruded into bar at given processing parameters,achieving room-temperature strength-ductility synergy showing an excellent UTS of 395 MPa and a high EL of 17.9%.This is closely related to its hetero-structured characteristic in the as-extruded MZAX2000 alloy consisting of coarse grains(16%),fine grains(75%),and fiber regions(9%).Therefore,this work offers new insights into optimizing alloy compositions and processing parameters for attaining new high strong and ductile low-alloyed Mg alloys.展开更多
As batteries become increasingly essential for energy storage technologies,battery prognosis,and diagnosis remain central to ensure reliable operation and effective management,as well as to aid the in-depth investigat...As batteries become increasingly essential for energy storage technologies,battery prognosis,and diagnosis remain central to ensure reliable operation and effective management,as well as to aid the in-depth investigation of degradation mechanisms.However,dynamic operating conditions,cell-to-cell inconsistencies,and limited availability of labeled data have posed significant challenges to accurate and robust prognosis and diagnosis.Herein,we introduce a time-series-decomposition-based ensembled lightweight learning model(TELL-Me),which employs a synergistic dual-module framework to facilitate accurate and reliable forecasting.The feature module formulates features with physical implications and sheds light on battery aging mechanisms,while the gradient module monitors capacity degradation rates and captures aging trend.TELL-Me achieves high accuracy in end-of-life prediction using minimal historical data from a single battery without requiring offline training dataset,and demonstrates impressive generality and robustness across various operating conditions and battery types.Additionally,by correlating feature contributions with degradation mechanisms across different datasets,TELL-Me is endowed with the diagnostic ability that not only enhances prediction reliability but also provides critical insights into the design and optimization of next-generation batteries.展开更多
Topographic maps,as essential tools and sources of information for geographic research,contain precise spatial locations and rich map features,and they illustrate spatio-temporal information on the distribution and di...Topographic maps,as essential tools and sources of information for geographic research,contain precise spatial locations and rich map features,and they illustrate spatio-temporal information on the distribution and differences of various surface features.Currently,topographic maps are mainly stored in raster and vector formats.Extraction of the spatio-temporal knowledge in the maps—such as spatial distribution patterns,feature relationships,and dynamic evolution—still primarily relies on manual interpretation.However,manual interpretation is time-consuming and laborious,especially for large-scale,long-term map knowledge extraction and application.With the development of artificial intelligence technology,it is possible to improve the automation level of map knowledge interpretation.Therefore,the present study proposes an automatic interpretation method for raster topographic map knowledge based on deep learning.To address the limitations of current data-driven intelligent technology in learning map spatial relations and cognitive logic,we establish a formal description of map knowledge by mapping the relationship between map knowledge and features,thereby ensuring interpretation accuracy.Subsequently,deep learning techniques are employed to extract map features automatically,and the spatio-temporal knowledge is constructed by combining formal descriptions of geographic feature knowledge.Validation experiments demonstrate that the proposed method effectively achieves automatic interpretation of spatio-temporal knowledge of geographic features in maps,with an accuracy exceeding 80%.The findings of the present study contribute to machine understanding of spatio-temporal differences in map knowledge and advances the intelligent interpretation and utilization of cartographic information.展开更多
文摘Since the publication of Sons and Lovers,it has inspired a wide range of critical interpretation, which testifies to its enduring status as a masterpiece of twentieth-century literature. Most critics analyze and evaluate Sons and Lovers by adopting a psychoanalytical or social approach. The discussion either just searches for Oedipus Complex or is confined to the content analysis. This essay attempts to integrate all the theoretical analysis which attach to the novel, Sons and Lovers.
文摘Improving the accuracy of digital elevation is essential for reducing hydro-topographic derivation errors pertaining to, e.g., flow direction, basin borders, channel networks, depressions, flood forecasting, and soil drainage. This article demonstrates how a gain in this accuracy is improved through digital elevation model (DEM) fusion, and using LiDAR-derived elevation layers for conformance testing and validation. This demonstration is done for the Province of New Brunswick (NB, Canada), using five province-wide DEM sources (SRTM 90 m;SRTM 30 m;ASTER 30 m;CDED 22 m;NB-DEM 10 m) and a five-stage process that guides the re-projection of these DEMs while minimizing their elevational differences relative to LiDAR-captured bare-earth DEMs, through calibration and validation. This effort decreased the resulting non-LiDAR to LiDAR elevation differences by a factor of two, reduced the minimum distance conformance between the non-LiDAR and LiDAR-derived flow channels to ± 10 m at 8.5 times out of 10, and dropped the non-LiDAR wet-area percentages of false positives from 59% to 49%, and of false negatives from 14% to 7%. While these reductions are modest, they are nevertheless not only consistent with already existing hydrographic data layers informing about stream and wet-area locations, they also extend these data layers across the province by comprehensively locating previously unmapped flow channels and wet areas.
基金supported by grants from the State Key Laboratory of Infectious Disease Prevention and Control(2011SKLID102)the National Nature Science Foundation of China(81172733 and 81561128006)the 12th Five-Year National Science and Technology Major Project(2013ZX10001-006)
文摘Objective To investigate distinctive features in drug-resistant mutations (DRMs) and interpretations for reverse transcriptase inhibitors (RTIs) between proviral DNA and paired viral RNA in HIV-l-infected patients. Methods Forty-three HIV-l-infected individuals receiving first-line antiretroviral therapy were recruited to participate in a multicenter AIDS Cohort Study in Anhui and Henan Provinces in China in 2004. Drug resistance genotyping was performed by bulk sequencing and deep sequencing on the plasma and whole blood of 77 samples, respectively. Drug-resistance interpretation was compared between viral RNA and paired proviral DNA. Results Compared with bulk sequencing, deep sequencing could detect more DRMs and samples with DRMs in both viral RNA and proviral DNA. The mutations M1841 and M2301 were more prevalent in proviral DNA than in viral RNA (Fisher's exact test, P〈0.05). Considering 'majority resistant variants', 15 samples (19.48%) showed differences in drug resistance interpretation between viral RNA and proviral DNA, and 5 of these samples with different DRMs between proviral DNA and paired viral RNA showed a higher level of drug resistance to the first-line drugs. Considering 'minority resistant variants', 22 samples (28.57%) were associated with a higher level of drug resistance to the tested RTIs for proviral DNA when compared with paired viral RNA. Conclusion Compared with viral RNA, the distinctive information of DRMs and drug resistance interpretations for proviral DNA could be obtained by deep sequencing, which could provide more detailed and precise information for drug resistance monitoring and the rational design of optimal antiretroviral therapy regimens.
文摘The Appellate Body report in January 2012 had supported the decision of Panel in the"China-measures related to the exportation of various raw materials"case(WT/DS394,395,398)and affirmed that China's restrictions(such as tariffs and quota measures)on the exportation of raw materials violated rules put forth by the WTO,which were required to be modified.In this case China's right to invoke Article 20 of GATT1994("general exception")to justify its exemption from the guidelines in Article 11.3 of the WTO Accession Protocol was denied by the Panel and the Appellate Body.This was due to the fact that the phrasing in Article 11.3 of Protocol failed to mention"GATT."This was the consequence of the two interpretation approaches the Dispute Settlement Body(DSB)adopted-a narrow textual interpretation and a subjective presumption of"legislative silence."The inappropriate use of the two methods of interpretation lead to an imbalance between the right and obligation of China under the additional obligations that were imposed upon China by the WTO,which create a negative impact on China's rare earth case and the protection of domestic natural resources.
文摘In this paper, the author focuses on the ecourbarchitectonic physical structures created after year 2000, whose artistic-esthetic value has an iconological character. An entirely new approach in formation of the facade and roof planes as well as of the forms of structures whose appearance resemble sculptural creations has been analyzed. The buildings from all over the world, with different functions contents, indicate a tendency of a different understanding of interpretation of physical structures and correlation with natural and artifact environment. Water surfaces and vegetative material contribute to an effective, cultural, majestic impression of engineering-technological philosophy of city building. The examples in the paper suggest the obvious need of radical changing of the way of thinking in the application of the design strategy in conceptualization of urban agglomerations, and essentially important, conceptually inspired metabolic of relationships among the spatial structures. The world entered new non-globalization trends of creation of the city memory, of the new iconically, symbolically strong, non-cliché, non-standard forms which define the contemporary cultural-artistic and historical identity of macro-ambient entities. This is a good and encouraging sign.
文摘This paper addresses the problem of the interpretation of the stochastic differential equations (SDE). Even if from a theoretical point of view, there are infinite ways of interpreting them, in practice only Stratonovich’s and Itô’s interpretations and the kinetic form are important. Restricting the attention to the first two, they give rise to two different Fokker-Planck-Kolmogorov equations for the transition probability density function (PDF) of the solution. According to Stratonovich’s interpretation, there is one more term in the drift, which is not present in the physical equation, the so-called spurious drift. This term is not present in Itô’s interpretation so that the transition PDF’s of the two interpretations are different. Several examples are shown in which the two solutions are strongly different. Thus, caution is needed when a physical phenomenon is modelled by a SDE. However, the meaning of the spurious drift remains unclear.
基金Project supported by National Key Technology R &D Program (No.2006BAB01B10)
文摘Linear and circular interpretation structure maps of different relative depths are obtained by processing 1:200000 aeromagnetic data to the pole in Ailaoshan region,interpreting upward extension of 4 heights,extracting a vertical second derivative line of 0 value and a series of calculations. Concealed boundary of deep magnetic rocks can be delineated according to the maps. On the basis of the conclusions above,a set of economical and practical methods to graph the deep structure are summarized. In addition,the relationship between deep structure and mineralization positions is discussed.
文摘The method and theoretical system of well logging geology have been widely used in the fields of basic geology,petroleum geology and engineering geology,but the different response sensitivity of different well logging series to geological information and the mismatching between geophysical properties of multiple well logs and geological genesis of rocks frequently result in misunderstandings in the research process of well logging geology.Therefore,it is in an urgent need to analyze the typical misunderstanding cases in the research of well logging geology and explore the corresponding scientific ideas and countermeasures.After analyzing the typical misunderstandings in the research of well logging geology,this paper investigates vertical resolution scale of various logging series and its contradiction with detection depth and illustrates the importance of the integration of different scales of data.In addition,the factor inducing“fake logging data”and its influence on interpretation evaluation are clarified and a set of ideas for well logging evaluation of geological interpretation is put forward.And the following research results are obtained.First,the typical misunderstandings in the research of well logging geology can be classified into two categories,namely geological body interpretation misunderstanding and reservoir property parameter calculation misunderstanding.Second,special geological phenomena,such as high-density and high-resistivity mudstone can lead to logging data ambiguity,so attention shall be paid to petrophysical response mechanisms during geological logging interpretation.Third,to carry out well logging evaluation of unconventional oil and gas,it is necessary to integrate new technologies of electric imaging logging,dipole acoustic logging and nuclear magnetic resonance logging,and the calibration of core data and the integration of geological ideas can improve the interpretation accuracy.Fourth,In the process of borehole structural logging analysis,sedimentary response,geostress evaluation and fracture identification,geological ideas shall be integrated to avoid the logging interpretation misunderstanding caused by the same response of different geological phenomena in well logs.In conclusion,the dialectical and systematic thinking from geology to logging and then to geology,from practice to recognition and then to practice and from“a narrow view”to“a broad view”can provide a scientific ideas for the comprehensive research of well logging geology.
文摘This paper offers an analysis of the approaches employed in the three interpretations of the Basic Law of the Special Administrative Region of Hong Kong by the Standing Committee of the National People's Congress (NPC) after the return of Hong Kong to China, including textualism, structural reading and originalism. The paper stresses the application of jurisprudential theory in the skilful employment of these methods in the NPC interpretations. In the case of "the right of abode" in Hong Kong the differences between the interpretations by the Court of Final Appeal of Hong Kong and by the NPC rest mainly in whether a formalist procedural review or a substantivist presumption of intent should be adopted in the process of determining an authoritative text that embodies the original intention of the legislation. That is not just a difference of legal interpretation but also one of jurisprudential theory and political stance. Based on the above considerations, this paper criticizes the common misconception that it is not appropriate for legislators to undertake legal interpretation, and calls for an understanding of the Basic Law in the framework of Chinese constitutional government.
基金funded by Ongoing Research Funding Program for Project number(ORF-2025-648),King Saud University,Riyadh,Saudi Arabia.
文摘Heart disease remains a leading cause of mortality worldwide,emphasizing the urgent need for reliable and interpretable predictive models to support early diagnosis and timely intervention.However,existing Deep Learning(DL)approaches often face several limitations,including inefficient feature extraction,class imbalance,suboptimal classification performance,and limited interpretability,which collectively hinder their deployment in clinical settings.To address these challenges,we propose a novel DL framework for heart disease prediction that integrates a comprehensive preprocessing pipeline with an advanced classification architecture.The preprocessing stage involves label encoding and feature scaling.To address the issue of class imbalance inherent in the personal key indicators of the heart disease dataset,the localized random affine shadowsampling technique is employed,which enhances minority class representation while minimizing overfitting.At the core of the framework lies the Deep Residual Network(DeepResNet),which employs hierarchical residual transformations to facilitate efficient feature extraction and capture complex,non-linear relationships in the data.Experimental results demonstrate that the proposed model significantly outperforms existing techniques,achieving improvements of 3.26%in accuracy,3.16%in area under the receiver operating characteristics,1.09%in recall,and 1.07%in F1-score.Furthermore,robustness is validated using 10-fold crossvalidation,confirming the model’s generalizability across diverse data distributions.Moreover,model interpretability is ensured through the integration of Shapley additive explanations and local interpretable model-agnostic explanations,offering valuable insights into the contribution of individual features to model predictions.Overall,the proposed DL framework presents a robust,interpretable,and clinically applicable solution for heart disease prediction.
基金partially supported by the Natural Science Foundation of China(Grant Nos.12075123,12061141002,and 12535004)the Ministry of Science and Technology of China(Grant Nos.2023YFA1605804 and 2024YFA1610501)。
文摘Inspired by the X(4140)structure reported in the J/ψφsystem by the CDF experiment in 2009,a series of searches have been carried out in theJ/ψφand J/ψK channels,leading to the claim of ten structures in the B→J/ψφK system.This article provides a comprehensive review of experimental developments,from the initial evidence of X(4140)at CDF to the amplitude analyses and diffractive process investigations by the LHCb experiment,as well as theoretical interpretations of these states.A triplet of J^(PC)=1++states with relatively large mass splittings[about 200MeV(natural units are adopted)]has been identified in the J/ψφsystem by LHCb.Their mass-squared values align approximately linearly with a possible radial quantum number,suggesting that the triplet may represent a radially excited family.For X(4140),the first state in the triplet,its width reported by LHCb is inconsistent with that measured by other experiments,and possible reasons for this discrepancy are discussed.A potential connection between an excess at 4.35 GeV in the J/ψφmass spectrum reported by the Belle experiment through a two-photon process and a potential spin-2 excess in the LHCb data is also investigated.In addition,potential parallels between the J/ψφand J/ψJ/ψsystems,both composed of two vector mesons,are discussed.The continued interest in,and complexity of,these systems underscore the necessity of further experimental exploration with increased statistical precision across a variety of experiments,particularly those with relatively flat efficiency across the Dalitz plot.The J/ψω,φφ,ρω,andρφsystems are mentioned,and the prospects for the J/ψγandγγsystems,are also highlighted.
基金supported by the National Natural Science Foundation of China(No.51605054).
文摘Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze weather conditions degrade image qualityand reduce the precision of environmental monitoring systems. To address this problem,this research proposes a remote sensing image dehazingmethod based on the atmosphericscattering model and a dark channel prior constrained network. The method consists ofa dehazing network, a dark channel information injection network (DCIIN), and a transmissionmap network. Within the dehazing network, the branch fusion module optimizesfeature weights to enhance the dehazing effect. By leveraging dark channel information,the DCIIN enables high-quality estimation of the atmospheric veil. To ensure the outputof the deep learning model aligns with physical laws, we reconstruct the haze image usingthe prediction results from the three networks. Subsequently, we apply the traditionalloss function and dark channel loss function between the reconstructed haze image and theoriginal haze image. This approach enhances interpretability and reliabilitywhile maintainingadherence to physical principles. Furthermore, the network is trained on a synthesizednon-homogeneous haze remote sensing dataset using dark channel information from cloudmaps. The experimental results show that the proposed network can achieve better imagedehazing on both synthetic and real remote sensing images with non-homogeneous hazedistribution. This research provides a new idea for solving the problem of decreased accuracyof environmental monitoring systems under haze weather conditions and has strongpracticability.
基金Supported by National Key Research and Development Program,No.2022YFC2407304Major Research Project for Middle-Aged and Young Scientists of Fujian Provincial Health Commission,No.2021ZQNZD013+2 种基金The National Natural Science Foundation of China,No.62275050Fujian Province Science and Technology Innovation Joint Fund Project,No.2019Y9108Major Science and Technology Projects of Fujian Province,No.2021YZ036017.
文摘BACKGROUND To investigate the preoperative factors influencing textbook outcomes(TO)in Intrahepatic cholangiocarcinoma(ICC)patients and evaluate the feasibility of an interpretable machine learning model for preoperative prediction of TO,we developed a machine learning model for preoperative prediction of TO and used the SHapley Additive exPlanations(SHAP)technique to illustrate the prediction process.AIM To analyze the factors influencing textbook outcomes before surgery and to establish interpretable machine learning models for preoperative prediction.METHODS A total of 376 patients diagnosed with ICC were retrospectively collected from four major medical institutions in China,covering the period from 2011 to 2017.Logistic regression analysis was conducted to identify preoperative variables associated with achieving TO.Based on these variables,an EXtreme Gradient Boosting(XGBoost)machine learning prediction model was constructed using the XGBoost package.The SHAP(package:Shapviz)algorithm was employed to visualize each variable's contribution to the model's predictions.Kaplan-Meier survival analysis was performed to compare the prognostic differences between the TO-achieving and non-TO-achieving groups.RESULTS Among 376 patients,287 were included in the training group and 89 in the validation group.Logistic regression identified the following preoperative variables influencing TO:Child-Pugh classification,Eastern Cooperative Oncology Group(ECOG)score,hepatitis B,and tumor size.The XGBoost prediction model demonstrated high accuracy in internal validation(AUC=0.8825)and external validation(AUC=0.8346).Survival analysis revealed that the disease-free survival rates for patients achieving TO at 1,2,and 3 years were 64.2%,56.8%,and 43.4%,respectively.CONCLUSION Child-Pugh classification,ECOG score,hepatitis B,and tumor size are preoperative predictors of TO.In both the training group and the validation group,the machine learning model had certain effectiveness in predicting TO before surgery.The SHAP algorithm provided intuitive visualization of the machine learning prediction process,enhancing its interpretability.
基金supports from the National Key Research and Development Program of China(No.2020YFE0202200)the National Natural Science Foundation of China(Nos.81903538,82322073,92253303)+1 种基金the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(No.ZYYCXTD-D-202004)the Science and Technology Commission of Shanghai Municipality(Nos.22ZR1474200,24JS2830200).
文摘Artificial intelligence(AI)has emerged as a transformative technology in accelerating drug discovery and development within natural medicines research.Natural medicines,characterized by their complex chemical compositions and multifaceted pharmacological mechanisms,demonstrate widespread application in treating diverse diseases.However,research and development face significant challenges,including component complexity,extraction difficulties,and efficacy validation.AI technology,particularly through deep learning(DL)and machine learning(ML)approaches,enables efficient analysis of extensive datasets,facilitating drug screening,component analysis,and pharmacological mechanism elucidation.The implementation of AI technology demonstrates considerable potential in virtual screening,compound optimization,and synthetic pathway design,thereby enhancing natural medicines’bioavailability and safety profiles.Nevertheless,current applications encounter limitations regarding data quality,model interpretability,and ethical considerations.As AI technologies continue to evolve,natural medicines research and development will achieve greater efficiency and precision,advancing both personalized medicine and contemporary drug development approaches.
基金funded by the National Natural Science Foundation of China(No.52204407)the Natural Science Foundation of Jiangsu Province(No.BK20220595)+1 种基金the China Postdoctoral Science Foundation(No.2022M723689)the Industrial Collaborative Innovation Project of Shanghai(No.XTCX-KJ-2022-2-11)。
文摘The application of machine learning in alloy design is increasingly widespread,yet traditional models still face challenges when dealing with limited datasets and complex nonlinear relationships.This work proposes an interpretable machine learning method based on data augmentation and reconstruction,excavating high-performance low-alloyed magnesium(Mg)alloys.The data augmentation technique expands the original dataset through Gaussian noise.The data reconstruction method reorganizes and transforms the original data to extract more representative features,significantly improving the model's generalization ability and prediction accuracy,with a coefficient of determination(R^(2))of 95.9%for the ultimate tensile strength(UTS)model and a R^(2)of 95.3%for the elongation-to-failure(EL)model.The correlation coefficient assisted screening(CCAS)method is proposed to filter low-alloyed target alloys.A new Mg-2.2Mn-0.4Zn-0.2Al-0.2Ca(MZAX2000,wt%)alloy is designed and extruded into bar at given processing parameters,achieving room-temperature strength-ductility synergy showing an excellent UTS of 395 MPa and a high EL of 17.9%.This is closely related to its hetero-structured characteristic in the as-extruded MZAX2000 alloy consisting of coarse grains(16%),fine grains(75%),and fiber regions(9%).Therefore,this work offers new insights into optimizing alloy compositions and processing parameters for attaining new high strong and ductile low-alloyed Mg alloys.
基金supported by the National Natural Science Foundation of China(22379021 and 22479021)。
文摘As batteries become increasingly essential for energy storage technologies,battery prognosis,and diagnosis remain central to ensure reliable operation and effective management,as well as to aid the in-depth investigation of degradation mechanisms.However,dynamic operating conditions,cell-to-cell inconsistencies,and limited availability of labeled data have posed significant challenges to accurate and robust prognosis and diagnosis.Herein,we introduce a time-series-decomposition-based ensembled lightweight learning model(TELL-Me),which employs a synergistic dual-module framework to facilitate accurate and reliable forecasting.The feature module formulates features with physical implications and sheds light on battery aging mechanisms,while the gradient module monitors capacity degradation rates and captures aging trend.TELL-Me achieves high accuracy in end-of-life prediction using minimal historical data from a single battery without requiring offline training dataset,and demonstrates impressive generality and robustness across various operating conditions and battery types.Additionally,by correlating feature contributions with degradation mechanisms across different datasets,TELL-Me is endowed with the diagnostic ability that not only enhances prediction reliability but also provides critical insights into the design and optimization of next-generation batteries.
基金Deep-time Digital Earth(DDE)Big Science Program(No.GJ-C03-SGF-2025-004)National Natural Science Foundation of China(No.42394063)Sichuan Science and Technology Program(No.2025ZNSFSC0325).
文摘Topographic maps,as essential tools and sources of information for geographic research,contain precise spatial locations and rich map features,and they illustrate spatio-temporal information on the distribution and differences of various surface features.Currently,topographic maps are mainly stored in raster and vector formats.Extraction of the spatio-temporal knowledge in the maps—such as spatial distribution patterns,feature relationships,and dynamic evolution—still primarily relies on manual interpretation.However,manual interpretation is time-consuming and laborious,especially for large-scale,long-term map knowledge extraction and application.With the development of artificial intelligence technology,it is possible to improve the automation level of map knowledge interpretation.Therefore,the present study proposes an automatic interpretation method for raster topographic map knowledge based on deep learning.To address the limitations of current data-driven intelligent technology in learning map spatial relations and cognitive logic,we establish a formal description of map knowledge by mapping the relationship between map knowledge and features,thereby ensuring interpretation accuracy.Subsequently,deep learning techniques are employed to extract map features automatically,and the spatio-temporal knowledge is constructed by combining formal descriptions of geographic feature knowledge.Validation experiments demonstrate that the proposed method effectively achieves automatic interpretation of spatio-temporal knowledge of geographic features in maps,with an accuracy exceeding 80%.The findings of the present study contribute to machine understanding of spatio-temporal differences in map knowledge and advances the intelligent interpretation and utilization of cartographic information.