Data hiding methods involve embedding secret messages into cover objects to enable covert communication in a way that is difficult to detect.In data hiding methods based on image interpolation,the image size is reduce...Data hiding methods involve embedding secret messages into cover objects to enable covert communication in a way that is difficult to detect.In data hiding methods based on image interpolation,the image size is reduced and then enlarged through interpolation,followed by the embedding of secret data into the newly generated pixels.A general improving approach for embedding secret messages is proposed.The approach may be regarded a general model for enhancing the data embedding capacity of various existing image interpolation-based data hiding methods.This enhancement is achieved by expanding the range of pixel values available for embedding secret messages,removing the limitations of many existing methods,where the range is restricted to powers of two to facilitate the direct embedding of bit-based messages.This improvement is accomplished through the application of multiple-based number conversion to the secret message data.The method converts the message bits into a multiple-based number and uses an algorithm to embed each digit of this number into an individual pixel,thereby enhancing the message embedding efficiency,as proved by a theorem derived in this study.The proposed improvement method has been tested through experiments on three well-known image interpolation-based data hiding methods.The results show that the proposed method can enhance the three data embedding rates by approximately 14%,13%,and 10%,respectively,create stego-images with good quality,and resist RS steganalysis attacks.These experimental results indicate that the use of the multiple-based number conversion technique to improve the three interpolation-based methods for embedding secret messages increases the number of message bits embedded in the images.For many image interpolation-based data hiding methods,which use power-of-two pixel-value ranges for message embedding,other than the three tested ones,the proposed improvement method is also expected to be effective for enhancing their data embedding capabilities.展开更多
With the rapid expansion of multimedia data,protecting digital information has become increasingly critical.Reversible data hiding offers an effective solution by allowing sensitive information to be embedded in multi...With the rapid expansion of multimedia data,protecting digital information has become increasingly critical.Reversible data hiding offers an effective solution by allowing sensitive information to be embedded in multimedia files while enabling full recovery of the original data after extraction.Audio,as a vital medium in communication,entertainment,and information sharing,demands the same level of security as images.However,embedding data in encrypted audio poses unique challenges due to the trade-offs between security,data integrity,and embedding capacity.This paper presents a novel interpolation-based reversible data hiding algorithm for encrypted audio that achieves scalable embedding capacity.By increasing sample density through interpolation,embedding opportunities are significantly enhanced while maintaining encryption throughout the process.The method further integrates multiple most significant bit(multi-MSB)prediction and Huffman coding to optimize compression and embedding efficiency.Experimental results on standard audio datasets demonstrate the proposed algorithm’s ability to embed up to 12.47 bits per sample with over 9.26 bits per sample available for pure embedding capacity,while preserving full reversibility.These results confirm the method’s suitability for secure applications that demand high embedding capacity and perfect reconstruction of original audio.This work advances reversible data hiding in encrypted audio by offering a secure,efficient,and fully reversible data hiding framework.展开更多
Purpose–This research aims to monitor seismic intensity along railway lines,study methods for calculating the extent of earthquake impact on railways and address practical challenges in estimating intensity distribut...Purpose–This research aims to monitor seismic intensity along railway lines,study methods for calculating the extent of earthquake impact on railways and address practical challenges in estimating intensity distribution along railway routes,thereby achieving graded post-earthquake response measures.Design/methodology/approach–The seismic intensity monitoring system for railways adopts a two-level architecture,namely the seismic intensity monitoring equipment and the seismic intensity rapid reporting information center processing platform.The platform obtains measured instrumental intensity through the seismic intensity monitoring equipment deployed along railways and combines it with the National Seismic Network Earthquake Catalog to generate real-time railway seismic intensity distribution maps using the Kriging interpolation algorithm.A calculation method for railway seismic impact intervals is designed to calculate the mileage intervals where the intensity area corresponding to each contour line in the seismic intensity distribution map intersects with the railway line.Findings–The system was deployed for practical earthquake monitoring demonstration applications on the Nanjiang Railway Line in Xinjiang.During the operational period,the seismic intensity monitoring equipment calculated and uploaded instrumental intensity values to the seismic intensity rapid reporting information center processing platform a total of nine times.Among these,earthquakes triggering the Kriging interpolation algorithm occurred twice.The system operated stably throughout the application period and successfully visualized relevant seismic impact data,such as earthquake intensity distribution maps and affected railway mileage sections.These results validate the system’s practicality and effectiveness.Originality/value–The seismic intensity monitoring for the railway system designed in this study can integrate the measured instrumental intensity data along railways and the earthquake catalog of the National Seismic Network.It uses the Kriging interpolation method to calculate the intensity distribution and determine the seismic impact scope,thereby addressing the issue that the seismic intensity distribution calculated by traditional attenuation formulas deviates from reality.The system can provide clear graded interval recommendations for post-earthquake disposal,effectively improve the efficiency of post-earthquake recovery and inspection and offer a decision-making basis for restoring railway operations quickly.展开更多
Blended acquisition offers efficiency improvements over conventional seismic data acquisition, at the cost of introducing blending noise effects. Besides, seismic data often suffers from irregularly missing shots caus...Blended acquisition offers efficiency improvements over conventional seismic data acquisition, at the cost of introducing blending noise effects. Besides, seismic data often suffers from irregularly missing shots caused by artificial or natural effects during blended acquisition. Therefore, blending noise attenuation and missing shots reconstruction are essential for providing high-quality seismic data for further seismic processing and interpretation. The iterative shrinkage thresholding algorithm can help obtain deblended data based on sparsity assumptions of complete unblended data, and it characterizes seismic data linearly. Supervised learning algorithms can effectively capture the nonlinear relationship between incomplete pseudo-deblended data and complete unblended data. However, the dependence on complete unblended labels limits their practicality in field applications. Consequently, a self-supervised algorithm is presented for simultaneous deblending and interpolation of incomplete blended data, which minimizes the difference between simulated and observed incomplete pseudo-deblended data. The used blind-trace U-Net (BTU-Net) prevents identity mapping during complete unblended data estimation. Furthermore, a multistep process with blending noise simulation-subtraction and missing traces reconstruction-insertion is used in each step to improve the deblending and interpolation performance. Experiments with synthetic and field incomplete blended data demonstrate the effectiveness of the multistep self-supervised BTU-Net algorithm.展开更多
Emergency medical services (EMS) are a vital element of the public healthcare system in China,^([1])providing an opportunity to respond to critical medical conditions and save people’s lives.^([2])The accessibility o...Emergency medical services (EMS) are a vital element of the public healthcare system in China,^([1])providing an opportunity to respond to critical medical conditions and save people’s lives.^([2])The accessibility of EMS has received considerable attention in health and transport geography studies.^([3])One of the optimal gauges for evaluating the accessibility of EMS is the response time,which is defined as the time from receiving an emergency call to the arrival of an ambulance.^([4])Beijing has already reduced the response time to approximately12 min,and the next goal is to ensure that the response time across Beijing does not exceed 12 min (the information comes from the Beijing Emergency Medical Center).展开更多
A novel suppression method of the phase noise is proposed to reduce the negative impacts of phase noise in coherent optical orthogonal frequency division multiplexing(CO-OFDM)systems.The method integrates the sub-symb...A novel suppression method of the phase noise is proposed to reduce the negative impacts of phase noise in coherent optical orthogonal frequency division multiplexing(CO-OFDM)systems.The method integrates the sub-symbol second-order polynomial interpolation(SSPI)with cubature Kalman filter(CKF)to improve the precision and effectiveness of the data processing through using a three-stage processing approach of phase noise.First of all,the phase noise values in OFDM symbols are calculated by using pilot symbols.Then,second-order Newton interpolation(SNI)is used in second-order interpolation to acquire precise noise estimation.Afterwards,every OFDM symbol is partitioned into several sub-symbols,and second-order polynomial interpolation(SPI)is utilized in the time domain to enhance suppression accuracy and time resolution.Ultimately,CKF is employed to suppress the residual phase noise.The simulation results show that this method significantly suppresses the impact of the phase noise on the system,and the error floors can be decreased at the condition of 16 quadrature amplitude modulation(16QAM)and 32QAM.The proposed method can greatly improve the CO-OFDM system's ability to tolerate the wider laser linewidth.This method,compared to the linear interpolation sub-symbol common phase error compensation(LI-SCPEC)and Lagrange interpolation and extended Kalman filter(LRI-EKF)algorithms,has superior suppression effect.展开更多
The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compa...The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compared with the linear optimal interpolation(LOI)method,the DOI method can improve the accuracy of gridded ADT locally but with low computational efficiency.Consequently,considering both computational efficiency and accuracy,the DOI method is more suitable to be used only for regional applications.In this study,we propose to evaluate the suitable region for applying the DOI method based on the correlation between the absolute value of the Jacobian operator of the geostrophic stream function and the improvement achieved by the DOI method.After verifying the LOI and DOI methods,the suitable region was investigated in three typical areas:the Gulf Stream(25°N-50°N,55°W-80°W),the Japanese Kuroshio(25°N-45°N,135°E-155°E),and the South China Sea(5°N-25°N,100°E-125°E).We propose to use the DOI method only in regions outside the equatorial region and where the absolute value of the Jacobian operator of the geostrophic stream function is higher than1×10^(-11).展开更多
As a branch of quantum image processing,quantum image scaling has been widely studied.However,most of the existing quantum image scaling algorithms are based on nearest-neighbor interpolation and bilinear interpolatio...As a branch of quantum image processing,quantum image scaling has been widely studied.However,most of the existing quantum image scaling algorithms are based on nearest-neighbor interpolation and bilinear interpolation,the quantum version of bicubic interpolation has not yet been studied.In this work,we present the first quantum image scaling scheme for bicubic interpolation based on the novel enhanced quantum representation(NEQR).Our scheme can realize synchronous enlargement and reduction of the image with the size of 2^(n)×2^(n) by integral multiple.Firstly,the image is represented by NEQR and the original image coordinates are obtained through multiple CNOT modules.Then,16 neighborhood pixels are obtained by quantum operation circuits,and the corresponding weights of these pixels are calculated by quantum arithmetic modules.Finally,a quantum matrix operation,instead of a classical convolution operation,is used to realize the sum of convolution of these pixels.Through simulation experiments and complexity analysis,we demonstrate that our scheme achieves exponential speedup over the classical bicubic interpolation algorithm,and has better effect than the quantum version of bilinear interpolation.展开更多
Missing value is one of the main factors that cause dirty data.Without high-quality data,there will be no reliable analysis results and precise decision-making.Therefore,the data warehouse needs to integrate high-qual...Missing value is one of the main factors that cause dirty data.Without high-quality data,there will be no reliable analysis results and precise decision-making.Therefore,the data warehouse needs to integrate high-quality data consistently.In the power system,the electricity consumption data of some large users cannot be normally collected resulting in missing data,which affects the calculation of power supply and eventually leads to a large error in the daily power line loss rate.For the problem of missing electricity consumption data,this study proposes a group method of data handling(GMDH)based data interpolation method in distribution power networks and applies it in the analysis of actually collected electricity data.First,the dependent and independent variables are defined from the original data,and the upper and lower limits of missing values are determined according to prior knowledge or existing data information.All missing data are randomly interpolated within the upper and lower limits.Then,the GMDH network is established to obtain the optimal complexity model,which is used to predict the missing data to replace the last imputed electricity consumption data.At last,this process is implemented iteratively until the missing values do not change.Under a relatively small noise level(α=0.25),the proposed approach achieves a maximum error of no more than 0.605%.Experimental findings demonstrate the efficacy and feasibility of the proposed approach,which realizes the transformation from incomplete data to complete data.Also,this proposed data interpolation approach provides a strong basis for the electricity theft diagnosis and metering fault analysis of electricity enterprises.展开更多
This paper introduces the definition of the Orthogonal Type Node Configuration and discusses the corresponding multivariate Lagrange, Hermite and Birkhoff interpolation problems in high dimensional space R s(s>2). ...This paper introduces the definition of the Orthogonal Type Node Configuration and discusses the corresponding multivariate Lagrange, Hermite and Birkhoff interpolation problems in high dimensional space R s(s>2). This node configuration can be considered to be a kind of extension of the Cross Type Node Configuration , in R 2 to high dimensional spaces. And the Mixed Type Node Configuration in R s(s>2) is also discussed in this paper in an example.展开更多
We construct general structures of one and two variable interpolation function, without depending on the existence of divided difference or inverse differences, and we also discuss the block based osculatory interpola...We construct general structures of one and two variable interpolation function, without depending on the existence of divided difference or inverse differences, and we also discuss the block based osculatory interpolation in one variable case. Clearly, our method offers marly flexible interpolation schemes for choices. Error terms for the interpolation are determined and numerical examples are given to show the effectlveness of the results.展开更多
To have effective water resource management,the distributed hydrological models are commonly applied for supporting the decision-making processes.Among different inputs,the spatial distributed rainfall plays significa...To have effective water resource management,the distributed hydrological models are commonly applied for supporting the decision-making processes.Among different inputs,the spatial distributed rainfall plays significant role in those model simulations.Many interpolation methods have been developed for generating distributed rainfall based on measurement samples.However,depending on the catchment characteristics and data availability,the suitable interpolation algorithm is case-dependent.This paper presents one operational approach for determining the resonable interpolation algorithm in a complex large catchment(Var catchment,France).Based on the daily rainfall data(2008–2014)collected from 16 stations in the Var catchment,six different interpolation approaches including:inverse distance weight(IDW),spline,kriging with linear and spherical semi-variogram models and geographically weighted regression considering elevation effects and the combined impacts of elevation and distance to the sea were tested.Integrated the results of statistical and modeling assessments,the 400m resolution distributed rainfall generated by IDW algorithm shows high preference in generating distributed rainfall in the Var catchment.Moreover,the strategy described in the article also shows promising acceptability for other catchments.展开更多
Curvature lines are special and important curves on surfaces.It is of great significance to construct developable surface interpolated on curvature lines in engineering applications.In this paper,the shape optimizatio...Curvature lines are special and important curves on surfaces.It is of great significance to construct developable surface interpolated on curvature lines in engineering applications.In this paper,the shape optimization of generalized cubic ball developable surface interpolated on the curvature line is studied by using the improved reptile search algorithm.Firstly,based on the curvature line of generalized cubic ball curve with shape adjustable,this paper gives the construction method of SGC-Ball developable surface interpolated on the curve.Secondly,the feedback mechanism,adaptive parameters and mutation strategy are introduced into the reptile search algorithm,and the Feedback mechanism-driven improved reptile search algorithm effectively improves the solving precision.On IEEE congress on evolutionary computation 2014,2017,2019 and four engineering design problems,the feedback mechanism-driven improved reptile search algorithm is compared with other representative methods,and the result indicates that the solution performance of the feedback mechanism-driven improved reptile search algorithm is competitive.At last,taking the minimum energy as the evaluation index,the shape optimization model of SGC-Ball interpolation developable surface is established.The developable surface with the minimum energy is achieved with the help of the feedback mechanism-driven improved reptile search algorithm,and the comparison experiment verifies the superiority of the feedback mechanism-driven improved reptile search algorithm for the shape optimization problem.展开更多
In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be r...In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.展开更多
The refinement of the 1cm geoid holds significant importance in engineering applications,where the accuracy of the geoid is frequently constrained by its resolution.However,there has been limited exploration into the ...The refinement of the 1cm geoid holds significant importance in engineering applications,where the accuracy of the geoid is frequently constrained by its resolution.However,there has been limited exploration into the specific relationship between geoid resolution and accuracy.This article aims to address this gap by thoroughly examining said relationship.This study employs the CapRCR modification to calculate the geoid of Gongzhuling City.The findings indicate that the accuracy can be enhanced by 2%to 9%through encryption of the geoid resolution from 2.5′×2.5′to 1.5′×1.5′.Furthermore,this improvement can be augmented by 15%to 21%through encryption of the gravity anomaly to the same resolution.The accuracy of the geoid exhibits a linear relationship with the resolution of gravity anomalies.The theoretical accuracy of the geoid,excluding integration errors,is determined to be 1.21 cm.In engineering applications,opting for a resolution of 30''×30''can result in the geoid containing only an integration error of 2 mm.However,to attain an accuracy of 1 cm,it becomes imperative to further mitigate data errors.Consequently,the final refined quasi-geoid accuracy is established at 0.56 mm.展开更多
The bivariate interpolation in two dimensional space R2 is more complicated than that in one dimensional space R, because there is no Haar space of continuous functions in R2. Therefore, the bivariate interpolation ha...The bivariate interpolation in two dimensional space R2 is more complicated than that in one dimensional space R, because there is no Haar space of continuous functions in R2. Therefore, the bivariate interpolation has not a unique solution for a set of arbitrary distinct pairwise points. In this work, we suggest a type of basis which depends on the points such that the bivariate interpolation has the unique solution for any set of distinct pairwise points. In this case, the matrix of bivariate interpolation has the semi inherited factorization.展开更多
The accuracy of interpolation models applied to groundwater depends, among other factors, on the interpolation method chosen. Therefore, it is necessary to compare different approaches. For this, different methods of ...The accuracy of interpolation models applied to groundwater depends, among other factors, on the interpolation method chosen. Therefore, it is necessary to compare different approaches. For this, different methods of interpolation of nitrate concentrations were contrasted in sixty-seven wells in an aquifer in Aguascalientes, Mexico. Four general interpolation methods were used in ArcGIS 10.5 to make the maps: IDW, Kriging, Natural Neighbor and Spline. In the modeling, only method type was varied. The input parameters (location, temporality, and nitrate concentration) were the same in the four interpolations;despite this, different maximum and minimum values were obtained for each interpolation method: for IDW, 0.2 to 22.0 mg/l, for Kriging, 3.5 to 16.5 mg/l, for Natural Neighbor, 0.3 to 21.7 mg/l and for Spline −30.8 to 37.2 mg/l. Finally, an assessment of the maps obtained was conducted by comparing them with the Official Mexican Standard (OMS), where 24 of the 67 wells were found outside the 10 mg/l that the OMS establishes as maximum permissible limit for human consumption. Taking as a starting point the measured values of nitrates (0.25 to 22.12 mg/l), as well as the spatial distribution of the interpolated values, it was determined that the Krigging method best fitted the data measured in the wells within the studied aquifer.展开更多
The purpose of this paper is to investigate the spatial interpolation of rainfall variability with deterministic and geostatic inspections in the Prefecture of Kilkis (Greece). The precipitation data where recorded fr...The purpose of this paper is to investigate the spatial interpolation of rainfall variability with deterministic and geostatic inspections in the Prefecture of Kilkis (Greece). The precipitation data where recorded from 12 meteorological stations in the Prefecture of Kilkis for 36 hydrological years (1973-2008). The cumulative monthly values of rainfall were studied on an annual and seasonal basis as well as during the arid-dry season. In the deterministic tests, the I.D.W. and R.B.F. checks were inspected, while in the geostatic tests, Ordinary Kriging and Universal Kriging respectively. The selection of the optimum method was made based on the least Root Mean Square Error (R.M.S.E.), as well as on the Mean Error (M.E.), as assessed by the cross validation analysis. The geostatical Kriging also considered the impact of isotropy and anisotropy across all time periods of data collection. Moreover, for Universal Kriging, the study explored spherical, exponential and Gaussian models in various combinations. Geostatistical techniques consistently demonstrated greater reliability than deterministic techniques across all time periods of data collection. Specifically, during the annual period, anisotropy was the prevailing characteristic in geostatistical techniques. Moreover, the results for the irrigation and seasonal periods were generally comparable, with few exceptions where isotropic methods yielded lower (R.M.S.E.) in some seasonal observations.展开更多
The paper gives a new way of constructing Hermite Fejer and Hermite interpolatory polynomials with the nodes of the roots of first kind of Chebyshev polynomials and gives the approximation order of these two kinds of...The paper gives a new way of constructing Hermite Fejer and Hermite interpolatory polynomials with the nodes of the roots of first kind of Chebyshev polynomials and gives the approximation order of these two kinds of operators. The approximation orders are described with the best rate of approximation of f by polynomials of degree N=(q+1)n 1 in L p w spaces.展开更多
General interpolation formulae for barycentric interpolation and barycen- tric rational Hermite interpolation are established by introducing multiple parameters, which include many kinds of barycentric interpolation a...General interpolation formulae for barycentric interpolation and barycen- tric rational Hermite interpolation are established by introducing multiple parameters, which include many kinds of barycentric interpolation and barycentric rational Her- mite interpolation. We discussed the interpolation theorem, dual interpolation and special cases. Numerical example is given to show the effectiveness of the method.展开更多
文摘Data hiding methods involve embedding secret messages into cover objects to enable covert communication in a way that is difficult to detect.In data hiding methods based on image interpolation,the image size is reduced and then enlarged through interpolation,followed by the embedding of secret data into the newly generated pixels.A general improving approach for embedding secret messages is proposed.The approach may be regarded a general model for enhancing the data embedding capacity of various existing image interpolation-based data hiding methods.This enhancement is achieved by expanding the range of pixel values available for embedding secret messages,removing the limitations of many existing methods,where the range is restricted to powers of two to facilitate the direct embedding of bit-based messages.This improvement is accomplished through the application of multiple-based number conversion to the secret message data.The method converts the message bits into a multiple-based number and uses an algorithm to embed each digit of this number into an individual pixel,thereby enhancing the message embedding efficiency,as proved by a theorem derived in this study.The proposed improvement method has been tested through experiments on three well-known image interpolation-based data hiding methods.The results show that the proposed method can enhance the three data embedding rates by approximately 14%,13%,and 10%,respectively,create stego-images with good quality,and resist RS steganalysis attacks.These experimental results indicate that the use of the multiple-based number conversion technique to improve the three interpolation-based methods for embedding secret messages increases the number of message bits embedded in the images.For many image interpolation-based data hiding methods,which use power-of-two pixel-value ranges for message embedding,other than the three tested ones,the proposed improvement method is also expected to be effective for enhancing their data embedding capabilities.
基金funded by theNational Science and Technology Council of Taiwan under the grant number NSTC 113-2221-E-035-058.
文摘With the rapid expansion of multimedia data,protecting digital information has become increasingly critical.Reversible data hiding offers an effective solution by allowing sensitive information to be embedded in multimedia files while enabling full recovery of the original data after extraction.Audio,as a vital medium in communication,entertainment,and information sharing,demands the same level of security as images.However,embedding data in encrypted audio poses unique challenges due to the trade-offs between security,data integrity,and embedding capacity.This paper presents a novel interpolation-based reversible data hiding algorithm for encrypted audio that achieves scalable embedding capacity.By increasing sample density through interpolation,embedding opportunities are significantly enhanced while maintaining encryption throughout the process.The method further integrates multiple most significant bit(multi-MSB)prediction and Huffman coding to optimize compression and embedding efficiency.Experimental results on standard audio datasets demonstrate the proposed algorithm’s ability to embed up to 12.47 bits per sample with over 9.26 bits per sample available for pure embedding capacity,while preserving full reversibility.These results confirm the method’s suitability for secure applications that demand high embedding capacity and perfect reconstruction of original audio.This work advances reversible data hiding in encrypted audio by offering a secure,efficient,and fully reversible data hiding framework.
基金funded by the Research and Development Fund Project of China Academy of Railway Science Group Co.,Ltd.,(No:2023YJ259)the Science and Technology Research and Development Program Project of China State Railway Group Co.,Ltd.(No:J2024G008).
文摘Purpose–This research aims to monitor seismic intensity along railway lines,study methods for calculating the extent of earthquake impact on railways and address practical challenges in estimating intensity distribution along railway routes,thereby achieving graded post-earthquake response measures.Design/methodology/approach–The seismic intensity monitoring system for railways adopts a two-level architecture,namely the seismic intensity monitoring equipment and the seismic intensity rapid reporting information center processing platform.The platform obtains measured instrumental intensity through the seismic intensity monitoring equipment deployed along railways and combines it with the National Seismic Network Earthquake Catalog to generate real-time railway seismic intensity distribution maps using the Kriging interpolation algorithm.A calculation method for railway seismic impact intervals is designed to calculate the mileage intervals where the intensity area corresponding to each contour line in the seismic intensity distribution map intersects with the railway line.Findings–The system was deployed for practical earthquake monitoring demonstration applications on the Nanjiang Railway Line in Xinjiang.During the operational period,the seismic intensity monitoring equipment calculated and uploaded instrumental intensity values to the seismic intensity rapid reporting information center processing platform a total of nine times.Among these,earthquakes triggering the Kriging interpolation algorithm occurred twice.The system operated stably throughout the application period and successfully visualized relevant seismic impact data,such as earthquake intensity distribution maps and affected railway mileage sections.These results validate the system’s practicality and effectiveness.Originality/value–The seismic intensity monitoring for the railway system designed in this study can integrate the measured instrumental intensity data along railways and the earthquake catalog of the National Seismic Network.It uses the Kriging interpolation method to calculate the intensity distribution and determine the seismic impact scope,thereby addressing the issue that the seismic intensity distribution calculated by traditional attenuation formulas deviates from reality.The system can provide clear graded interval recommendations for post-earthquake disposal,effectively improve the efficiency of post-earthquake recovery and inspection and offer a decision-making basis for restoring railway operations quickly.
基金supported by the National Natural Science Foundation of China(42374134,42304125,U20B6005)the Science and Technology Commission of Shanghai Municipality(23JC1400502)the Fundamental Research Funds for the Central Universities.
文摘Blended acquisition offers efficiency improvements over conventional seismic data acquisition, at the cost of introducing blending noise effects. Besides, seismic data often suffers from irregularly missing shots caused by artificial or natural effects during blended acquisition. Therefore, blending noise attenuation and missing shots reconstruction are essential for providing high-quality seismic data for further seismic processing and interpretation. The iterative shrinkage thresholding algorithm can help obtain deblended data based on sparsity assumptions of complete unblended data, and it characterizes seismic data linearly. Supervised learning algorithms can effectively capture the nonlinear relationship between incomplete pseudo-deblended data and complete unblended data. However, the dependence on complete unblended labels limits their practicality in field applications. Consequently, a self-supervised algorithm is presented for simultaneous deblending and interpolation of incomplete blended data, which minimizes the difference between simulated and observed incomplete pseudo-deblended data. The used blind-trace U-Net (BTU-Net) prevents identity mapping during complete unblended data estimation. Furthermore, a multistep process with blending noise simulation-subtraction and missing traces reconstruction-insertion is used in each step to improve the deblending and interpolation performance. Experiments with synthetic and field incomplete blended data demonstrate the effectiveness of the multistep self-supervised BTU-Net algorithm.
基金supported by National Key Research & Development Program of China (2022YFC3006201)。
文摘Emergency medical services (EMS) are a vital element of the public healthcare system in China,^([1])providing an opportunity to respond to critical medical conditions and save people’s lives.^([2])The accessibility of EMS has received considerable attention in health and transport geography studies.^([3])One of the optimal gauges for evaluating the accessibility of EMS is the response time,which is defined as the time from receiving an emergency call to the arrival of an ambulance.^([4])Beijing has already reduced the response time to approximately12 min,and the next goal is to ensure that the response time across Beijing does not exceed 12 min (the information comes from the Beijing Emergency Medical Center).
基金supported by the National Natural Science Foundation of China(Nos.U21A20447 and 61971079)。
文摘A novel suppression method of the phase noise is proposed to reduce the negative impacts of phase noise in coherent optical orthogonal frequency division multiplexing(CO-OFDM)systems.The method integrates the sub-symbol second-order polynomial interpolation(SSPI)with cubature Kalman filter(CKF)to improve the precision and effectiveness of the data processing through using a three-stage processing approach of phase noise.First of all,the phase noise values in OFDM symbols are calculated by using pilot symbols.Then,second-order Newton interpolation(SNI)is used in second-order interpolation to acquire precise noise estimation.Afterwards,every OFDM symbol is partitioned into several sub-symbols,and second-order polynomial interpolation(SPI)is utilized in the time domain to enhance suppression accuracy and time resolution.Ultimately,CKF is employed to suppress the residual phase noise.The simulation results show that this method significantly suppresses the impact of the phase noise on the system,and the error floors can be decreased at the condition of 16 quadrature amplitude modulation(16QAM)and 32QAM.The proposed method can greatly improve the CO-OFDM system's ability to tolerate the wider laser linewidth.This method,compared to the linear interpolation sub-symbol common phase error compensation(LI-SCPEC)and Lagrange interpolation and extended Kalman filter(LRI-EKF)algorithms,has superior suppression effect.
基金supported by National Natural Science Foundation of China under Grants 42192531 and 42192534the Special Fund of Hubei Luojia Laboratory(China)under Grant 220100001the Natural Science Foundation of Hubei Province for Distinguished Young Scholars(China)under Grant 2022CFA090。
文摘The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compared with the linear optimal interpolation(LOI)method,the DOI method can improve the accuracy of gridded ADT locally but with low computational efficiency.Consequently,considering both computational efficiency and accuracy,the DOI method is more suitable to be used only for regional applications.In this study,we propose to evaluate the suitable region for applying the DOI method based on the correlation between the absolute value of the Jacobian operator of the geostrophic stream function and the improvement achieved by the DOI method.After verifying the LOI and DOI methods,the suitable region was investigated in three typical areas:the Gulf Stream(25°N-50°N,55°W-80°W),the Japanese Kuroshio(25°N-45°N,135°E-155°E),and the South China Sea(5°N-25°N,100°E-125°E).We propose to use the DOI method only in regions outside the equatorial region and where the absolute value of the Jacobian operator of the geostrophic stream function is higher than1×10^(-11).
基金Project supported by the Scientific Research Fund of Hunan Provincial Education Department,China (Grant No.21A0470)the Natural Science Foundation of Hunan Province,China (Grant No.2023JJ50268)+1 种基金the National Natural Science Foundation of China (Grant Nos.62172268 and 62302289)the Shanghai Science and Technology Project,China (Grant Nos.21JC1402800 and 23YF1416200)。
文摘As a branch of quantum image processing,quantum image scaling has been widely studied.However,most of the existing quantum image scaling algorithms are based on nearest-neighbor interpolation and bilinear interpolation,the quantum version of bicubic interpolation has not yet been studied.In this work,we present the first quantum image scaling scheme for bicubic interpolation based on the novel enhanced quantum representation(NEQR).Our scheme can realize synchronous enlargement and reduction of the image with the size of 2^(n)×2^(n) by integral multiple.Firstly,the image is represented by NEQR and the original image coordinates are obtained through multiple CNOT modules.Then,16 neighborhood pixels are obtained by quantum operation circuits,and the corresponding weights of these pixels are calculated by quantum arithmetic modules.Finally,a quantum matrix operation,instead of a classical convolution operation,is used to realize the sum of convolution of these pixels.Through simulation experiments and complexity analysis,we demonstrate that our scheme achieves exponential speedup over the classical bicubic interpolation algorithm,and has better effect than the quantum version of bilinear interpolation.
基金This research was funded by the National Nature Sciences Foundation of China(Grant No.42250410321).
文摘Missing value is one of the main factors that cause dirty data.Without high-quality data,there will be no reliable analysis results and precise decision-making.Therefore,the data warehouse needs to integrate high-quality data consistently.In the power system,the electricity consumption data of some large users cannot be normally collected resulting in missing data,which affects the calculation of power supply and eventually leads to a large error in the daily power line loss rate.For the problem of missing electricity consumption data,this study proposes a group method of data handling(GMDH)based data interpolation method in distribution power networks and applies it in the analysis of actually collected electricity data.First,the dependent and independent variables are defined from the original data,and the upper and lower limits of missing values are determined according to prior knowledge or existing data information.All missing data are randomly interpolated within the upper and lower limits.Then,the GMDH network is established to obtain the optimal complexity model,which is used to predict the missing data to replace the last imputed electricity consumption data.At last,this process is implemented iteratively until the missing values do not change.Under a relatively small noise level(α=0.25),the proposed approach achieves a maximum error of no more than 0.605%.Experimental findings demonstrate the efficacy and feasibility of the proposed approach,which realizes the transformation from incomplete data to complete data.Also,this proposed data interpolation approach provides a strong basis for the electricity theft diagnosis and metering fault analysis of electricity enterprises.
文摘This paper introduces the definition of the Orthogonal Type Node Configuration and discusses the corresponding multivariate Lagrange, Hermite and Birkhoff interpolation problems in high dimensional space R s(s>2). This node configuration can be considered to be a kind of extension of the Cross Type Node Configuration , in R 2 to high dimensional spaces. And the Mixed Type Node Configuration in R s(s>2) is also discussed in this paper in an example.
基金The Grant (11RC05) of Scienti/fic Research Foundation for Talents of Hefei Universitythe Grant (11KY06ZR) of Scientific Research Foundation Hefei University+1 种基金the Key Project Foundation (KJ2008A027) of the Department of Education of Anhui Provincethe Project Foundation (KJ2010B182,KJ2011B152, KJ2011B137) of the Department of Education of Anhui Province
文摘We construct general structures of one and two variable interpolation function, without depending on the existence of divided difference or inverse differences, and we also discuss the block based osculatory interpolation in one variable case. Clearly, our method offers marly flexible interpolation schemes for choices. Error terms for the interpolation are determined and numerical examples are given to show the effectlveness of the results.
基金National Key Research and Development Program of China,Grant/Award Number:2023YFC3006702。
文摘To have effective water resource management,the distributed hydrological models are commonly applied for supporting the decision-making processes.Among different inputs,the spatial distributed rainfall plays significant role in those model simulations.Many interpolation methods have been developed for generating distributed rainfall based on measurement samples.However,depending on the catchment characteristics and data availability,the suitable interpolation algorithm is case-dependent.This paper presents one operational approach for determining the resonable interpolation algorithm in a complex large catchment(Var catchment,France).Based on the daily rainfall data(2008–2014)collected from 16 stations in the Var catchment,six different interpolation approaches including:inverse distance weight(IDW),spline,kriging with linear and spherical semi-variogram models and geographically weighted regression considering elevation effects and the combined impacts of elevation and distance to the sea were tested.Integrated the results of statistical and modeling assessments,the 400m resolution distributed rainfall generated by IDW algorithm shows high preference in generating distributed rainfall in the Var catchment.Moreover,the strategy described in the article also shows promising acceptability for other catchments.
基金supported by the National Natural Science Foundation of China(Grant No.52375264).
文摘Curvature lines are special and important curves on surfaces.It is of great significance to construct developable surface interpolated on curvature lines in engineering applications.In this paper,the shape optimization of generalized cubic ball developable surface interpolated on the curvature line is studied by using the improved reptile search algorithm.Firstly,based on the curvature line of generalized cubic ball curve with shape adjustable,this paper gives the construction method of SGC-Ball developable surface interpolated on the curve.Secondly,the feedback mechanism,adaptive parameters and mutation strategy are introduced into the reptile search algorithm,and the Feedback mechanism-driven improved reptile search algorithm effectively improves the solving precision.On IEEE congress on evolutionary computation 2014,2017,2019 and four engineering design problems,the feedback mechanism-driven improved reptile search algorithm is compared with other representative methods,and the result indicates that the solution performance of the feedback mechanism-driven improved reptile search algorithm is competitive.At last,taking the minimum energy as the evaluation index,the shape optimization model of SGC-Ball interpolation developable surface is established.The developable surface with the minimum energy is achieved with the help of the feedback mechanism-driven improved reptile search algorithm,and the comparison experiment verifies the superiority of the feedback mechanism-driven improved reptile search algorithm for the shape optimization problem.
基金supported by the National Natural Science Foundation of China (No.12172154)the 111 Project (No.B14044)+1 种基金the Natural Science Foundation of Gansu Province (No.23JRRA1035)the Natural Science Foundation of Anhui University of Finance and Economics (No.ACKYC20043).
文摘In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.
文摘The refinement of the 1cm geoid holds significant importance in engineering applications,where the accuracy of the geoid is frequently constrained by its resolution.However,there has been limited exploration into the specific relationship between geoid resolution and accuracy.This article aims to address this gap by thoroughly examining said relationship.This study employs the CapRCR modification to calculate the geoid of Gongzhuling City.The findings indicate that the accuracy can be enhanced by 2%to 9%through encryption of the geoid resolution from 2.5′×2.5′to 1.5′×1.5′.Furthermore,this improvement can be augmented by 15%to 21%through encryption of the gravity anomaly to the same resolution.The accuracy of the geoid exhibits a linear relationship with the resolution of gravity anomalies.The theoretical accuracy of the geoid,excluding integration errors,is determined to be 1.21 cm.In engineering applications,opting for a resolution of 30''×30''can result in the geoid containing only an integration error of 2 mm.However,to attain an accuracy of 1 cm,it becomes imperative to further mitigate data errors.Consequently,the final refined quasi-geoid accuracy is established at 0.56 mm.
文摘The bivariate interpolation in two dimensional space R2 is more complicated than that in one dimensional space R, because there is no Haar space of continuous functions in R2. Therefore, the bivariate interpolation has not a unique solution for a set of arbitrary distinct pairwise points. In this work, we suggest a type of basis which depends on the points such that the bivariate interpolation has the unique solution for any set of distinct pairwise points. In this case, the matrix of bivariate interpolation has the semi inherited factorization.
文摘The accuracy of interpolation models applied to groundwater depends, among other factors, on the interpolation method chosen. Therefore, it is necessary to compare different approaches. For this, different methods of interpolation of nitrate concentrations were contrasted in sixty-seven wells in an aquifer in Aguascalientes, Mexico. Four general interpolation methods were used in ArcGIS 10.5 to make the maps: IDW, Kriging, Natural Neighbor and Spline. In the modeling, only method type was varied. The input parameters (location, temporality, and nitrate concentration) were the same in the four interpolations;despite this, different maximum and minimum values were obtained for each interpolation method: for IDW, 0.2 to 22.0 mg/l, for Kriging, 3.5 to 16.5 mg/l, for Natural Neighbor, 0.3 to 21.7 mg/l and for Spline −30.8 to 37.2 mg/l. Finally, an assessment of the maps obtained was conducted by comparing them with the Official Mexican Standard (OMS), where 24 of the 67 wells were found outside the 10 mg/l that the OMS establishes as maximum permissible limit for human consumption. Taking as a starting point the measured values of nitrates (0.25 to 22.12 mg/l), as well as the spatial distribution of the interpolated values, it was determined that the Krigging method best fitted the data measured in the wells within the studied aquifer.
文摘The purpose of this paper is to investigate the spatial interpolation of rainfall variability with deterministic and geostatic inspections in the Prefecture of Kilkis (Greece). The precipitation data where recorded from 12 meteorological stations in the Prefecture of Kilkis for 36 hydrological years (1973-2008). The cumulative monthly values of rainfall were studied on an annual and seasonal basis as well as during the arid-dry season. In the deterministic tests, the I.D.W. and R.B.F. checks were inspected, while in the geostatic tests, Ordinary Kriging and Universal Kriging respectively. The selection of the optimum method was made based on the least Root Mean Square Error (R.M.S.E.), as well as on the Mean Error (M.E.), as assessed by the cross validation analysis. The geostatical Kriging also considered the impact of isotropy and anisotropy across all time periods of data collection. Moreover, for Universal Kriging, the study explored spherical, exponential and Gaussian models in various combinations. Geostatistical techniques consistently demonstrated greater reliability than deterministic techniques across all time periods of data collection. Specifically, during the annual period, anisotropy was the prevailing characteristic in geostatistical techniques. Moreover, the results for the irrigation and seasonal periods were generally comparable, with few exceptions where isotropic methods yielded lower (R.M.S.E.) in some seasonal observations.
文摘The paper gives a new way of constructing Hermite Fejer and Hermite interpolatory polynomials with the nodes of the roots of first kind of Chebyshev polynomials and gives the approximation order of these two kinds of operators. The approximation orders are described with the best rate of approximation of f by polynomials of degree N=(q+1)n 1 in L p w spaces.
基金supported by the grant of Key Scientific Research Foundation of Education Department of Anhui Province, No. KJ2014A210
文摘General interpolation formulae for barycentric interpolation and barycen- tric rational Hermite interpolation are established by introducing multiple parameters, which include many kinds of barycentric interpolation and barycentric rational Her- mite interpolation. We discussed the interpolation theorem, dual interpolation and special cases. Numerical example is given to show the effectiveness of the method.