Ultrahigh nickel oxides(Ni content>90%)hold great promise for high-performance cathodes for the future generation of lithium-ion batteries(LIBs).However,these cathode materials cause problems such as harmful parasi...Ultrahigh nickel oxides(Ni content>90%)hold great promise for high-performance cathodes for the future generation of lithium-ion batteries(LIBs).However,these cathode materials cause problems such as harmful parasitic reactions at the cathode/electrolyte interface,degradation of the layered structure,and the creation of microcracks.Herein,a microstructural refinement and intergranular coating strategy is proposed to engineer ultrahigh nickel cathode LiNi_(0.96)Co_(0.03)Mn_(0.01)O_(2)(NCM).The W-doping-induced fine-grained microstructure not only endows NCM with excellent mechanical properties but also promotes infiltration of the fluoride-containing coating along the grain boundaries inside the secondary particles,thereby forming intergranular coatings.This combined fine-grained microstructure and intergranular coating strategy reduces the formation of microcracks and suppresses the additional parasitic electrolyte reactions caused by them,thereby inhibiting the degradation of the layered phase.Consequently,the modified NCM cathode achieved exceptional electrochemical properties,especially delivering a high initial capacity of 230.8 mA h g^(-1)(0.1 C)and a capacity retention exceeding 96% after100 cycles at 0.5 C in half cells.After 500 cycles in full cells,the capacity retention increases by 21.2% compared with NCM.This strategy mitigates multiple degradation mechanisms in Ni-rich cathodes and provides a generalized strategy for developing advanced ultrahigh-nickel cathodes for industrial application.展开更多
Precipitation at grain boundaries is typically not regarded as an efficient method for strengthening materials since it can induce grain boundary embrittlement, which detrimentally affects ductility. In this research,...Precipitation at grain boundaries is typically not regarded as an efficient method for strengthening materials since it can induce grain boundary embrittlement, which detrimentally affects ductility. In this research, we developed a multi-principal element alloy (MPEA) with the composition Cr_(30)Co_(30)Ni_(30)Al_(5)Ti_(5) (at.%), incorporating both intragranular and intergranular nanoprecipitates. Utilizing multiscale, three-dimensional, and in-situ electron microscopy techniques, coupled with computational simulations, we established that intergranular nanoprecipitation in this material plays a crucial role in enhancing strength and promoting dislocation plasticity. The structure of intergranular nanoprecipitation comprises multiple phases with varying composition and structure. Despite the diversity, the crystal planes conducive to the easy glide of dislocations are well-matched, allowing for the sustained continuity of dislocation slipping across different phase structures. Simultaneously, this structure generates an undulated stress field near grain boundaries, amplifying the strengthening effect and facilitating multiple slip and cross-slip during deformation. Consequently, it promotes the proliferation and storage of dislocations. As a result, our material exhibits a yield strength of approximately 1010 MPa and an ultimate tensile strength of around 1500 MPa, accompanied by a significant fracture elongation of 41 %. Our findings illuminate the potential for harnessing intergranular nanoprecipitation to optimize the strength-ductility trade-off in MPEAs, emphasizing the strategy of leveraging complex compositions for the design of sophisticated functional microstructures.展开更多
M23C6 chromium-rich carbides are common grain-boundary precipitations in Cr-containing steel.The presence of grain-boundary carbides often leads to intergranular brittleness and decreases mechanical properties.This st...M23C6 chromium-rich carbides are common grain-boundary precipitations in Cr-containing steel.The presence of grain-boundary carbides often leads to intergranular brittleness and decreases mechanical properties.This study proposes a deformation and aging technique to obtain a high-volume-fraction dispersion distribution of the hard nano-M23C6 phase by changing the nucleation sites from grain boundaries to deformation coherent twin boundaries produced during cold deformation.The M23C6 precipitation-strengthened austenitic stainless steel has a strength of up to 1.4 GPa but maintains favorable plasticity(>11%).This study provides a novel approach for the control of intergranular brittleness in metallic materials.展开更多
Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this s...Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this study,to improve the resistance to intergranular damage of F/M steel,a thermomechanical process(TMP)was employed to achieve a grain boundary engineering(GBE)microstructure in F/M steel P92.The TMP,including cold-rolling thickness reduction of 6%,9%,and 12%,followed by austenitization at 1323 K for 40 min and tempering at 1053 K for 45 min,was applied to the as-received(AR)P92 steel.The prior austenite grain(PAG)size,prior austenite grain boundary character distribution(GBCD),and connectivity of prior austenite grain boundaries(PAGBs)were investigated.Compared to the AR specimen,the PAG size did not change significantly.The fraction of coincident site lattice boundaries(CSLBs,3≤Σ≤29)and Σ3^(n) boundaries along PAGBs decreased with increasing reduction ratio because the recrystallization fraction increased with increasing reduction ratio.The PAGB connectivity of the 6%deformed specimen slightly deteriorated compared with that of the AR specimen.Moreover,potentiodynamic polarization studies revealed that the intergranular damage resistance of the studied steel could be improved by increasing the fraction of CSLBs along the PAGBs,indicating that the TMP,which involves low deformation,could enhance the intergranular damage resistance.展开更多
The Lower Triassic Feixianguan (飞仙关) Formation oolitic shoal reservoir in the Sichuan (四川) basin (Southwest China) is currently an exploration and research highlight in China. The reservoir is widely believ...The Lower Triassic Feixianguan (飞仙关) Formation oolitic shoal reservoir in the Sichuan (四川) basin (Southwest China) is currently an exploration and research highlight in China. The reservoir is widely believed to be formed mainly by burial dissolution and/or dolomitization on the basis of primary intergranular pores. In this study, through a comprehensive geological study on the whole basin, the dissolution and dolomitization are suggested not to be the fundamental factor of reservoir formation and there thus may be a possible new fundamental mechanism-the preservation of primary intergranular pores, i.e., the retention diagenesis. Based on this, a complex and multi-stage reservoir evolution and formation model is proposed. In the model, the depositional environment is the basis of reservoir initial formation. Subsequently, early compaction and shallow burial cementation result in the primary reservoir differentiation. Then, multi-stage burial dissolution alters and adjusts the reservoir. Because the last stage gaseous hydrocarbons have little diagenetic impact, the reservoir is formed finally. Therefore, this study presents a possible new fundamental mechanism and evolution model for the reservoir formation. The results can be applied in the regional reservoir predication and shaping exploration strategies, and provide reference for the study of shoal reservoirs in other areas.展开更多
Microstructure and corrosion resistance of sintered Nd15Dy1.2Fe77Al0.8B6 and Nd22Fe71B7 magnets modified by intergranular addition of MgO and ZnO were investigated. Both the remanence and sintering density of the magn...Microstructure and corrosion resistance of sintered Nd15Dy1.2Fe77Al0.8B6 and Nd22Fe71B7 magnets modified by intergranular addition of MgO and ZnO were investigated. Both the remanence and sintering density of the magnets increased slightly with intergranular additions of MgO and ZnO. There was a remarkable increase in coercivity of Nd22Fe71B7 after addition. Besides, the effects on magnetic properties and an improved corrosion resistance were observed. Compared with the native magnets without addition, corrosion potential of the magnets with MgO and ZnO additives was more positive and the current density in the anodic branch of the polarization curve was reduced. Corrosion resistance resulting from autoclave testing (2×10^5 Pa of steam pressure, 120 ℃) showed that the corrosion rate of NdFeB magnets reduced with the increase of additive amount. Microstructure observation revealed that MgO and ZnO additives were incorporated into the intergranular phases in the magnets. With the introduction of MgO and ZnO, more intergranular phase with high oxygen content was formed while keeping the volume fraction of all the intergranular phases almost unchanged, which may contribute to improved corrosion resistance. Furthermore, addition of MgO and ZnO refined the grain size of Nd22Fe71B7.展开更多
Intergranular corrosion(IGC) behavior of the stabilized ultra-pure 430 LX ferritic stainless steel(FSS) was investigated by using double loop electrochemical potentiokinetic reactivation(DL-EPR) and oxalic acid etch t...Intergranular corrosion(IGC) behavior of the stabilized ultra-pure 430 LX ferritic stainless steel(FSS) was investigated by using double loop electrochemical potentiokinetic reactivation(DL-EPR) and oxalic acid etch tests to measure the susceptibility of specimens given a two-step heat treatment. The results reveal that IGC occurs in the specimens aged at the temperature range of 600–750℃ for a short time. The aging time that is required to cause IGC decreases with the increase of aging temperature. A longer aging treatment can reduce the susceptibility to IGC. The microstructural observation shows that M(23)C6 precipitates form along the grain boundaries, leading to the formation of Cr-depleted zones. The presence of Cr-depleted zones results in the susceptibility to IGC. However, the atoms of stabilizing elements replace chromium atoms to form MC precipitates after long-time aging treatment, resulting in the chromium replenishment of Cr-depleted zones and the reduction of the susceptibility to IGC.展开更多
The microstructure evolution and intergranular corrosion(IGC) behavior of high nitrogen martensitic stainless steels(MSSs) by partial replacing C by N were investigated by using microscopy, X-ray diffraction, nitric a...The microstructure evolution and intergranular corrosion(IGC) behavior of high nitrogen martensitic stainless steels(MSSs) by partial replacing C by N were investigated by using microscopy, X-ray diffraction, nitric acid tests and double-loop electrochemical potentiokinetic reactivation(DL-EPR) tests. The results show that the partial replacement of C by N first reduces and then increases the size and content of precipitates in high nitrogen MSSs, and converts the dominant precipitates from M23C6 to M2N,furthermore first improves and then deteriorates the IGC resistance. The high nitrogen MSS containing medium C and N contents provides good combination of mechanical properties and IGC resistance.展开更多
5083 Al alloy sheets with different grain sizes(8.7-79.2 μm) were obtained by cold rolling and annealing. Their microstructures, intergranular corrosion(IGC), stress corrosion cracking(SCC), and crack propagation beh...5083 Al alloy sheets with different grain sizes(8.7-79.2 μm) were obtained by cold rolling and annealing. Their microstructures, intergranular corrosion(IGC), stress corrosion cracking(SCC), and crack propagation behaviors were investigated. The results showed that samples with coarse grains exhibit better IGC resistance with a corrosion depth of 15 μm. The slow strain rate test results revealed that fine-grained samples exhibit better SCC resistance with a susceptibility index(ISSRT) of 11.2%. Furthermore, based on the crack propagation mechanism, grain refinement can improve the SCC resistance by increasing the number of grain boundaries to induce the corrosion crack propagation along a tortuous path. The grains with {011} orientation could hinder crack propagation by orientating it toward the low-angle grain boundary region. The crack in the fine-grained material slowly propagates due to the tortuous path, and low H;and Cl;concentrations.展开更多
Variation and degradation of P-110 casing steel mechanical properties, due to sulfide stress cracking (SSC) in sour environments, was investigated using tensile and impact tests. These tests were carried out on specim...Variation and degradation of P-110 casing steel mechanical properties, due to sulfide stress cracking (SSC) in sour environments, was investigated using tensile and impact tests. These tests were carried out on specimens, which were pretreated under the following conditions for 168 hours: temperature, 60 ℃; pressure, 10 MPa; H2S partial pressure, 1 MPa and CO_(2) partial pressure, 1 MPa; preload stress, 80% of the yield strength (os); medium, simulated formation water. The reduction in tensile and impact strengths for P-110 casing specimens in corrosive environments were 28% and 54%, respectively. The surface morphology analysis indicated that surface damage and uniform plastic deformation occurred as a result of strain aging. Impact toughness of the casing decreased significantly and intergranular cracking occurred when specimens were maintained at a high stress level of 85% %.展开更多
The intergranular corrosion (IGC) behavior of high nitrogen austenitic stainless steel (HNSS) sensitization treated at 650-950℃ was investigated by the double loop electrochemical potentiodynamic reactivation (D...The intergranular corrosion (IGC) behavior of high nitrogen austenitic stainless steel (HNSS) sensitization treated at 650-950℃ was investigated by the double loop electrochemical potentiodynamic reactivation (DL-EPR) method. The effects of the electrolytes, scan rate, sensitizing temperature on the susceptibility to IGC of HNSS were examined. The results show that the addi-tion of NaCl is an effective way to improve the formation of the cracking of a passive film in chromium-depleted zones during the reactivation scan. Decreasing the scan rate exhibits an obvious effect on the breakdown of the passive film. A solution with 2 mol/L H2SO4+1 mol/L NaCl+0.01 mol/L KSCN is suitable to check the susceptibility to IGC of HNSS at a sensitizing temperature of 650-950℃ at a suitable scan rate of 1.667 mV/s. Chromium depletion of HNSS is attributed to the precipitation of Cr2N which results in the susceptibility to IGC. The synergistic effect of Mo and N is suggested to play an important role in stabilizing the passive film to prevent the attack of IGC.展开更多
The data obtained by bending tests for intergranular embrittlement after 45 h and 450 h exposure to Strauss solution have been reported for 304 stainless steel. The results show that an embrittlement peak appears at ...The data obtained by bending tests for intergranular embrittlement after 45 h and 450 h exposure to Strauss solution have been reported for 304 stainless steel. The results show that an embrittlement peak appears at 650℃ for all samples quenched from 1260℃ and then sensitized for 150 h at 480, 565, 650, 730, 815 and 900℃ respectively. The temperature corresponding to the embrittlement peak is decreased to 565℃ when the sensitizing time is prolonged to 1 500 h. In this paper, these data are analyzed with an isothermal kinetic model of nonequilibrium grain boundary segregation, indicating that the embrittlement peak is related to the critical time for nonequilibrium grain boundary segregation of sulfur.展开更多
In order to study the effects of aging treatment on the intergranular corrosion(IGC) and stress corrosion cracking(SCC) of 7003 aluminum alloy(AA7003), the intergranular corrosion test, electrochemical test and ...In order to study the effects of aging treatment on the intergranular corrosion(IGC) and stress corrosion cracking(SCC) of 7003 aluminum alloy(AA7003), the intergranular corrosion test, electrochemical test and slow strain rate test(SSRT), combined with optical microscopy(OM) and scanning electron microscopy(SEM) as well as transmission electron microscopy(TEM) observations have been carried out. The IGC and electrochemical test results showed that the IGC resistance of AA7003 for peak aged(PA) temper is the lowest, with double peak aged(DPA) the moderate, and retrogression and re-aging(RRA) the highest among three tempers, which is attributed to the continuous feature of precipitation on grain boundary of PA temper and the interrupted feature of precipitation on grain boundary of DPA and RRA tempers, as well as the wide precipitation free zones(PFZ) of RRA temper. In addition, the SSRT results indicated that all three tempers AA7003 are susceptible to SCC in IGC solution, and the change tendency of SCC susceptibility(ISCC) of AA7003 for three tempers follows the order: ISCC(RRA)展开更多
A unit cell including the matrix, precipitation free zone(PFZ) and grain boundary was prepared, and the crystal plasticity finite element method(CPFEM) and extended finite element method(XFEM) were used to simulate th...A unit cell including the matrix, precipitation free zone(PFZ) and grain boundary was prepared, and the crystal plasticity finite element method(CPFEM) and extended finite element method(XFEM) were used to simulate the propagation of cracks at grain boundary. Simulation results show that the crystallographic orientation of PFZ has significant influence on crack propagation, which includes the crack growth direction and crack growth velocity. The fracture strain of soft orientation is larger than that of hard orientation due to the role of reducing the stress intensity at grain boundary in intergranular brittle fracture. But in intergranular ductile fracture, the fracture strain of soft orientation may be smaller than that of hard orientation due to the roles of deformation localization.展开更多
Based on the weak formulation for combined surface diffusion and evaporation-condensation,a governing equation of the finite element is derived for simulating the evolution of intergranular microcracks in copper inter...Based on the weak formulation for combined surface diffusion and evaporation-condensation,a governing equation of the finite element is derived for simulating the evolution of intergranular microcracks in copper interconnects induced simultaneously by stressmigration,electromigration and thermomigration.Unlike previously published works,the effect of thermomigration is considered.The results show that thermomigration can contribute to the microcrack splitting and accelerate the drifting process along the direction of the electric field.The evolution of the intergranular microcracks depends on the mechanical stress field,the temperature gradient field,the electric field,the initial aspect ratio and the linewidth.And there exists a critical electric fieldχ_c,a critical stress field■,a critical aspect ratioβ_c and a critical linewidth■.When■or■,the intergranular microcrack will split into two or three small intergranular microcracks.Otherwise,the microcrack will evolve into a stable shape as it migrates along the interconnect line.The critical stress field,the critical electric field and the critical aspect ratio decrease with a decrease in the linewidth,and the critical linewidth increases with an increase in the electric field and the aspect ratio.The increase of the stress field,the electric field or the aspect ratio and the decrease of the linewidth are not only beneficial for the intergranular microcrack to split but also accelerate the microcrack splitting process.展开更多
To clarify the transformation mechanism of secondary phase and the mechanism of intergranular corrosion in laser welding Ni-based alloy (Hastelloy C-276)/304 stainless steel with filler wire,the secondary phase was an...To clarify the transformation mechanism of secondary phase and the mechanism of intergranular corrosion in laser welding Ni-based alloy (Hastelloy C-276)/304 stainless steel with filler wire,the secondary phase was analyzed by electron probe micro-analysis (EPMA) and transmission electron microscopy (TEM).The evaluation of intergranular corrosion resistance of the welded joints was conducted by double-loop electrochemical potentiokinetic reactivation(DL-EPR) method,and at the same time the chemical compositions of the corrosion surface were analyzed by energy-dispersive spectrometry (EDS).The results show that p phase has complete coherence relationship withμphase,and the coherent relationship is described as[001]p//■and[430]p//[0001]μ.Theμphase is rapidly transformed from p phase,which is the inhomogeneous phase transformation.The transformation of secondary phase will increase the susceptibility to intergranular corrosion.Therefore,the transformation of secondary phase should be avoided in the welding process.展开更多
Heat treatment is an effective method to improve the intergranular corrosion resistance of the sensitized Al–Mg alloy due to dissolution of the grain boundary precipitates above the solvus temperature ofβ-phase.The ...Heat treatment is an effective method to improve the intergranular corrosion resistance of the sensitized Al–Mg alloy due to dissolution of the grain boundary precipitates above the solvus temperature ofβ-phase.The grain boundary precipitates will grow and coarsening below the solvus temperature.In this study,the in-situ intergranular corrosion performance regeneration of the sensitized Al–Mg alloy can be realized by low-density electro-pulsing treatment below the solvus temperature ofβ-phase.Our findings show that the dissolution of grain boundary precipitates by electro-pulsing treatment is accelerated at relatively low temperature in comparison to traditional heat treatment.The athermal effect produced by the interaction between atoms and electrons on the dissolution of grain boundary precipitates is the main reason for the improved corrosion resistance below the solvus temperature ofβ-phase.展开更多
Optimization of grain boundary engineering(GBE) process is explored in a Fe–20Cr–19Mn–2Mo–0.82N high-nitrogen and nickel-free austenitic stainless steel, and its intergranular corrosion(IGC) property after GBE tre...Optimization of grain boundary engineering(GBE) process is explored in a Fe–20Cr–19Mn–2Mo–0.82N high-nitrogen and nickel-free austenitic stainless steel, and its intergranular corrosion(IGC) property after GBE treatment is experimentally evaluated. The proportion of low Σ coincidence site lattice(CSL) boundaries reaches 79.4% in the sample processed with 5% cold rolling and annealing at 1423 K for 72 h;there is an increase of 32.1% compared with the solution-treated sample. After grain boundary character distribution optimization, IGC performance is noticeably improved. Only Σ3 boundaries in the special boundaries are resistant to IGC under the experimental condition. The size of grain cluster enlarges with increasing fraction of low ΣCSL boundaries, and the amount of Σ3 boundaries interrupting the random boundary network increases during growth of the clusters, which is the essential reason for the improvement of IGC resistance.展开更多
Effects of interrupted ageing(T6I6) and asymmetric rolling on microstructures, mechanical properties, and intergranular corrosion(IGC) behaviors of Al-Mg-Si-Zn alloy were investigated. Results showed that the T6 alloy...Effects of interrupted ageing(T6I6) and asymmetric rolling on microstructures, mechanical properties, and intergranular corrosion(IGC) behaviors of Al-Mg-Si-Zn alloy were investigated. Results showed that the T6 alloy has the lowest strength and the worst IGC resistance, while the T6I6 alloy has higher strength and better IGC resistance.What’ s more, the alloy treated by pre-rolling deformation has higher strength and better IGC resistance;and the alloy treated by the pre-asymmetry rolling achieves the highest strength, the best IGC resistance and lower elongation. The mechanical properties depend on microstructures such as the grain size, texture, dislocation density and precipitation, the grain boundary misorientation and grain boundary microstructure are responsible for the IGC resistance.展开更多
基金financially supported by the National Natural Science Foundation of China(52071073)the Fundamental Research Funds for the Central Universities(2024GFZD002)+3 种基金the Natural Science Foundation of Hebei Province(E2024501015)the Liaoning Applied Basic Research Program(2023JH2/101300011)the Basic Scientific Research Project of Liaoning Province Department of Education(LJKZZ20220024)the Shenyang Science and Technology Project(23-407-3-13)。
文摘Ultrahigh nickel oxides(Ni content>90%)hold great promise for high-performance cathodes for the future generation of lithium-ion batteries(LIBs).However,these cathode materials cause problems such as harmful parasitic reactions at the cathode/electrolyte interface,degradation of the layered structure,and the creation of microcracks.Herein,a microstructural refinement and intergranular coating strategy is proposed to engineer ultrahigh nickel cathode LiNi_(0.96)Co_(0.03)Mn_(0.01)O_(2)(NCM).The W-doping-induced fine-grained microstructure not only endows NCM with excellent mechanical properties but also promotes infiltration of the fluoride-containing coating along the grain boundaries inside the secondary particles,thereby forming intergranular coatings.This combined fine-grained microstructure and intergranular coating strategy reduces the formation of microcracks and suppresses the additional parasitic electrolyte reactions caused by them,thereby inhibiting the degradation of the layered phase.Consequently,the modified NCM cathode achieved exceptional electrochemical properties,especially delivering a high initial capacity of 230.8 mA h g^(-1)(0.1 C)and a capacity retention exceeding 96% after100 cycles at 0.5 C in half cells.After 500 cycles in full cells,the capacity retention increases by 21.2% compared with NCM.This strategy mitigates multiple degradation mechanisms in Ni-rich cathodes and provides a generalized strategy for developing advanced ultrahigh-nickel cathodes for industrial application.
基金supported by the National Science Fund for Distinguished Young Scholars of China(No.52325102)the Natural Science Foundation of Zhejiang Province,China(No.LZ22E010001)the National Key R&D Program of China(No.2023YFB2405802).
文摘Precipitation at grain boundaries is typically not regarded as an efficient method for strengthening materials since it can induce grain boundary embrittlement, which detrimentally affects ductility. In this research, we developed a multi-principal element alloy (MPEA) with the composition Cr_(30)Co_(30)Ni_(30)Al_(5)Ti_(5) (at.%), incorporating both intragranular and intergranular nanoprecipitates. Utilizing multiscale, three-dimensional, and in-situ electron microscopy techniques, coupled with computational simulations, we established that intergranular nanoprecipitation in this material plays a crucial role in enhancing strength and promoting dislocation plasticity. The structure of intergranular nanoprecipitation comprises multiple phases with varying composition and structure. Despite the diversity, the crystal planes conducive to the easy glide of dislocations are well-matched, allowing for the sustained continuity of dislocation slipping across different phase structures. Simultaneously, this structure generates an undulated stress field near grain boundaries, amplifying the strengthening effect and facilitating multiple slip and cross-slip during deformation. Consequently, it promotes the proliferation and storage of dislocations. As a result, our material exhibits a yield strength of approximately 1010 MPa and an ultimate tensile strength of around 1500 MPa, accompanied by a significant fracture elongation of 41 %. Our findings illuminate the potential for harnessing intergranular nanoprecipitation to optimize the strength-ductility trade-off in MPEAs, emphasizing the strategy of leveraging complex compositions for the design of sophisticated functional microstructures.
基金supported by the National Natural Science Foundation of China(No.52250130).
文摘M23C6 chromium-rich carbides are common grain-boundary precipitations in Cr-containing steel.The presence of grain-boundary carbides often leads to intergranular brittleness and decreases mechanical properties.This study proposes a deformation and aging technique to obtain a high-volume-fraction dispersion distribution of the hard nano-M23C6 phase by changing the nucleation sites from grain boundaries to deformation coherent twin boundaries produced during cold deformation.The M23C6 precipitation-strengthened austenitic stainless steel has a strength of up to 1.4 GPa but maintains favorable plasticity(>11%).This study provides a novel approach for the control of intergranular brittleness in metallic materials.
基金supported by the National Natural Science Foundation of China(Nos.12175231 and 11805131),Anhui Natural Science Foundation of China(No.2108085J05)Projects of International Cooperation and Exchanges NSFC(No.51111140389)the Collaborative Innovation Program of the Hefei Science Center,CAS(Nos.2021HSC-CIP020 and 2022HSCCIP009).
文摘Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this study,to improve the resistance to intergranular damage of F/M steel,a thermomechanical process(TMP)was employed to achieve a grain boundary engineering(GBE)microstructure in F/M steel P92.The TMP,including cold-rolling thickness reduction of 6%,9%,and 12%,followed by austenitization at 1323 K for 40 min and tempering at 1053 K for 45 min,was applied to the as-received(AR)P92 steel.The prior austenite grain(PAG)size,prior austenite grain boundary character distribution(GBCD),and connectivity of prior austenite grain boundaries(PAGBs)were investigated.Compared to the AR specimen,the PAG size did not change significantly.The fraction of coincident site lattice boundaries(CSLBs,3≤Σ≤29)and Σ3^(n) boundaries along PAGBs decreased with increasing reduction ratio because the recrystallization fraction increased with increasing reduction ratio.The PAGB connectivity of the 6%deformed specimen slightly deteriorated compared with that of the AR specimen.Moreover,potentiodynamic polarization studies revealed that the intergranular damage resistance of the studied steel could be improved by increasing the fraction of CSLBs along the PAGBs,indicating that the TMP,which involves low deformation,could enhance the intergranular damage resistance.
基金supported by the PetroChina Youth Innovation Foundation (No. 06E1018)Key Subject Construction Project of Sichuan Province (No. SZD0414)
文摘The Lower Triassic Feixianguan (飞仙关) Formation oolitic shoal reservoir in the Sichuan (四川) basin (Southwest China) is currently an exploration and research highlight in China. The reservoir is widely believed to be formed mainly by burial dissolution and/or dolomitization on the basis of primary intergranular pores. In this study, through a comprehensive geological study on the whole basin, the dissolution and dolomitization are suggested not to be the fundamental factor of reservoir formation and there thus may be a possible new fundamental mechanism-the preservation of primary intergranular pores, i.e., the retention diagenesis. Based on this, a complex and multi-stage reservoir evolution and formation model is proposed. In the model, the depositional environment is the basis of reservoir initial formation. Subsequently, early compaction and shallow burial cementation result in the primary reservoir differentiation. Then, multi-stage burial dissolution alters and adjusts the reservoir. Because the last stage gaseous hydrocarbons have little diagenetic impact, the reservoir is formed finally. Therefore, this study presents a possible new fundamental mechanism and evolution model for the reservoir formation. The results can be applied in the regional reservoir predication and shaping exploration strategies, and provide reference for the study of shoal reservoirs in other areas.
文摘Microstructure and corrosion resistance of sintered Nd15Dy1.2Fe77Al0.8B6 and Nd22Fe71B7 magnets modified by intergranular addition of MgO and ZnO were investigated. Both the remanence and sintering density of the magnets increased slightly with intergranular additions of MgO and ZnO. There was a remarkable increase in coercivity of Nd22Fe71B7 after addition. Besides, the effects on magnetic properties and an improved corrosion resistance were observed. Compared with the native magnets without addition, corrosion potential of the magnets with MgO and ZnO additives was more positive and the current density in the anodic branch of the polarization curve was reduced. Corrosion resistance resulting from autoclave testing (2×10^5 Pa of steam pressure, 120 ℃) showed that the corrosion rate of NdFeB magnets reduced with the increase of additive amount. Microstructure observation revealed that MgO and ZnO additives were incorporated into the intergranular phases in the magnets. With the introduction of MgO and ZnO, more intergranular phase with high oxygen content was formed while keeping the volume fraction of all the intergranular phases almost unchanged, which may contribute to improved corrosion resistance. Furthermore, addition of MgO and ZnO refined the grain size of Nd22Fe71B7.
基金financial support from the National Key Research and Development Program of China (No. 2018YFB0704400)the National Natural Science Foundation of China (Nos. 51501041, 51871061 and 51671059)
文摘Intergranular corrosion(IGC) behavior of the stabilized ultra-pure 430 LX ferritic stainless steel(FSS) was investigated by using double loop electrochemical potentiokinetic reactivation(DL-EPR) and oxalic acid etch tests to measure the susceptibility of specimens given a two-step heat treatment. The results reveal that IGC occurs in the specimens aged at the temperature range of 600–750℃ for a short time. The aging time that is required to cause IGC decreases with the increase of aging temperature. A longer aging treatment can reduce the susceptibility to IGC. The microstructural observation shows that M(23)C6 precipitates form along the grain boundaries, leading to the formation of Cr-depleted zones. The presence of Cr-depleted zones results in the susceptibility to IGC. However, the atoms of stabilizing elements replace chromium atoms to form MC precipitates after long-time aging treatment, resulting in the chromium replenishment of Cr-depleted zones and the reduction of the susceptibility to IGC.
基金supported by the National Natural Science Foundation of China [grant numbers 51434004, U1435205, 51774074]Fundamental Research Funds for the Central Universities [N172512033, N172507002]Transformation Project of Major Scientific and Technological Achievements in Shenyang [grant number Z17-5-003]
文摘The microstructure evolution and intergranular corrosion(IGC) behavior of high nitrogen martensitic stainless steels(MSSs) by partial replacing C by N were investigated by using microscopy, X-ray diffraction, nitric acid tests and double-loop electrochemical potentiokinetic reactivation(DL-EPR) tests. The results show that the partial replacement of C by N first reduces and then increases the size and content of precipitates in high nitrogen MSSs, and converts the dominant precipitates from M23C6 to M2N,furthermore first improves and then deteriorates the IGC resistance. The high nitrogen MSS containing medium C and N contents provides good combination of mechanical properties and IGC resistance.
基金financial support and Program of the Ministry of Education in China (2011)。
文摘5083 Al alloy sheets with different grain sizes(8.7-79.2 μm) were obtained by cold rolling and annealing. Their microstructures, intergranular corrosion(IGC), stress corrosion cracking(SCC), and crack propagation behaviors were investigated. The results showed that samples with coarse grains exhibit better IGC resistance with a corrosion depth of 15 μm. The slow strain rate test results revealed that fine-grained samples exhibit better SCC resistance with a susceptibility index(ISSRT) of 11.2%. Furthermore, based on the crack propagation mechanism, grain refinement can improve the SCC resistance by increasing the number of grain boundaries to induce the corrosion crack propagation along a tortuous path. The grains with {011} orientation could hinder crack propagation by orientating it toward the low-angle grain boundary region. The crack in the fine-grained material slowly propagates due to the tortuous path, and low H;and Cl;concentrations.
基金support of the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University in Chinathe National Natural Science Foundation of China (Grant No.51004084)
文摘Variation and degradation of P-110 casing steel mechanical properties, due to sulfide stress cracking (SSC) in sour environments, was investigated using tensile and impact tests. These tests were carried out on specimens, which were pretreated under the following conditions for 168 hours: temperature, 60 ℃; pressure, 10 MPa; H2S partial pressure, 1 MPa and CO_(2) partial pressure, 1 MPa; preload stress, 80% of the yield strength (os); medium, simulated formation water. The reduction in tensile and impact strengths for P-110 casing specimens in corrosive environments were 28% and 54%, respectively. The surface morphology analysis indicated that surface damage and uniform plastic deformation occurred as a result of strain aging. Impact toughness of the casing decreased significantly and intergranular cracking occurred when specimens were maintained at a high stress level of 85% %.
基金supported by the National Natural Science Foundation of China (No.50534010) and Baosteel Group Corporation
文摘The intergranular corrosion (IGC) behavior of high nitrogen austenitic stainless steel (HNSS) sensitization treated at 650-950℃ was investigated by the double loop electrochemical potentiodynamic reactivation (DL-EPR) method. The effects of the electrolytes, scan rate, sensitizing temperature on the susceptibility to IGC of HNSS were examined. The results show that the addi-tion of NaCl is an effective way to improve the formation of the cracking of a passive film in chromium-depleted zones during the reactivation scan. Decreasing the scan rate exhibits an obvious effect on the breakdown of the passive film. A solution with 2 mol/L H2SO4+1 mol/L NaCl+0.01 mol/L KSCN is suitable to check the susceptibility to IGC of HNSS at a sensitizing temperature of 650-950℃ at a suitable scan rate of 1.667 mV/s. Chromium depletion of HNSS is attributed to the precipitation of Cr2N which results in the susceptibility to IGC. The synergistic effect of Mo and N is suggested to play an important role in stabilizing the passive film to prevent the attack of IGC.
基金Item Sponsored by National Natural Science Foundation of China(50771036,51001030)
文摘The data obtained by bending tests for intergranular embrittlement after 45 h and 450 h exposure to Strauss solution have been reported for 304 stainless steel. The results show that an embrittlement peak appears at 650℃ for all samples quenched from 1260℃ and then sensitized for 150 h at 480, 565, 650, 730, 815 and 900℃ respectively. The temperature corresponding to the embrittlement peak is decreased to 565℃ when the sensitizing time is prolonged to 1 500 h. In this paper, these data are analyzed with an isothermal kinetic model of nonequilibrium grain boundary segregation, indicating that the embrittlement peak is related to the critical time for nonequilibrium grain boundary segregation of sulfur.
基金Funded by the National Natural Science Foundation of China(No.51371039)
文摘In order to study the effects of aging treatment on the intergranular corrosion(IGC) and stress corrosion cracking(SCC) of 7003 aluminum alloy(AA7003), the intergranular corrosion test, electrochemical test and slow strain rate test(SSRT), combined with optical microscopy(OM) and scanning electron microscopy(SEM) as well as transmission electron microscopy(TEM) observations have been carried out. The IGC and electrochemical test results showed that the IGC resistance of AA7003 for peak aged(PA) temper is the lowest, with double peak aged(DPA) the moderate, and retrogression and re-aging(RRA) the highest among three tempers, which is attributed to the continuous feature of precipitation on grain boundary of PA temper and the interrupted feature of precipitation on grain boundary of DPA and RRA tempers, as well as the wide precipitation free zones(PFZ) of RRA temper. In addition, the SSRT results indicated that all three tempers AA7003 are susceptible to SCC in IGC solution, and the change tendency of SCC susceptibility(ISCC) of AA7003 for three tempers follows the order: ISCC(RRA)
基金Projects(51475162,51405153)supported by the National Natural Science Foundation of ChinaProject(14JJ5015)supported by the Hunan Provincial Natural Science Foundation,China
文摘A unit cell including the matrix, precipitation free zone(PFZ) and grain boundary was prepared, and the crystal plasticity finite element method(CPFEM) and extended finite element method(XFEM) were used to simulate the propagation of cracks at grain boundary. Simulation results show that the crystallographic orientation of PFZ has significant influence on crack propagation, which includes the crack growth direction and crack growth velocity. The fracture strain of soft orientation is larger than that of hard orientation due to the role of reducing the stress intensity at grain boundary in intergranular brittle fracture. But in intergranular ductile fracture, the fracture strain of soft orientation may be smaller than that of hard orientation due to the roles of deformation localization.
基金supported by the Natural Science Foundation of Jiangsu Province of China (No.BK20141407)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Based on the weak formulation for combined surface diffusion and evaporation-condensation,a governing equation of the finite element is derived for simulating the evolution of intergranular microcracks in copper interconnects induced simultaneously by stressmigration,electromigration and thermomigration.Unlike previously published works,the effect of thermomigration is considered.The results show that thermomigration can contribute to the microcrack splitting and accelerate the drifting process along the direction of the electric field.The evolution of the intergranular microcracks depends on the mechanical stress field,the temperature gradient field,the electric field,the initial aspect ratio and the linewidth.And there exists a critical electric fieldχ_c,a critical stress field■,a critical aspect ratioβ_c and a critical linewidth■.When■or■,the intergranular microcrack will split into two or three small intergranular microcracks.Otherwise,the microcrack will evolve into a stable shape as it migrates along the interconnect line.The critical stress field,the critical electric field and the critical aspect ratio decrease with a decrease in the linewidth,and the critical linewidth increases with an increase in the electric field and the aspect ratio.The increase of the stress field,the electric field or the aspect ratio and the decrease of the linewidth are not only beneficial for the intergranular microcrack to split but also accelerate the microcrack splitting process.
基金The authors would like to acknowledge the financial support from National Key Research and Development Program of China(2018YFB1107801 and 2018YFB1107802)Science Fund for Creative Research Groups of NSFC(51621064)+1 种基金National Natural Science Foundation of China(51790172)Fundamental Research Funds for the Central University(DUT19LAB06).
文摘To clarify the transformation mechanism of secondary phase and the mechanism of intergranular corrosion in laser welding Ni-based alloy (Hastelloy C-276)/304 stainless steel with filler wire,the secondary phase was analyzed by electron probe micro-analysis (EPMA) and transmission electron microscopy (TEM).The evaluation of intergranular corrosion resistance of the welded joints was conducted by double-loop electrochemical potentiokinetic reactivation(DL-EPR) method,and at the same time the chemical compositions of the corrosion surface were analyzed by energy-dispersive spectrometry (EDS).The results show that p phase has complete coherence relationship withμphase,and the coherent relationship is described as[001]p//■and[430]p//[0001]μ.Theμphase is rapidly transformed from p phase,which is the inhomogeneous phase transformation.The transformation of secondary phase will increase the susceptibility to intergranular corrosion.Therefore,the transformation of secondary phase should be avoided in the welding process.
基金financially supported by the National Natural Science Foundation of China(Nos.51601011,51571013 and 51971019)the Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,China。
文摘Heat treatment is an effective method to improve the intergranular corrosion resistance of the sensitized Al–Mg alloy due to dissolution of the grain boundary precipitates above the solvus temperature ofβ-phase.The grain boundary precipitates will grow and coarsening below the solvus temperature.In this study,the in-situ intergranular corrosion performance regeneration of the sensitized Al–Mg alloy can be realized by low-density electro-pulsing treatment below the solvus temperature ofβ-phase.Our findings show that the dissolution of grain boundary precipitates by electro-pulsing treatment is accelerated at relatively low temperature in comparison to traditional heat treatment.The athermal effect produced by the interaction between atoms and electrons on the dissolution of grain boundary precipitates is the main reason for the improved corrosion resistance below the solvus temperature ofβ-phase.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51871048 and 51571058)。
文摘Optimization of grain boundary engineering(GBE) process is explored in a Fe–20Cr–19Mn–2Mo–0.82N high-nitrogen and nickel-free austenitic stainless steel, and its intergranular corrosion(IGC) property after GBE treatment is experimentally evaluated. The proportion of low Σ coincidence site lattice(CSL) boundaries reaches 79.4% in the sample processed with 5% cold rolling and annealing at 1423 K for 72 h;there is an increase of 32.1% compared with the solution-treated sample. After grain boundary character distribution optimization, IGC performance is noticeably improved. Only Σ3 boundaries in the special boundaries are resistant to IGC under the experimental condition. The size of grain cluster enlarges with increasing fraction of low ΣCSL boundaries, and the amount of Σ3 boundaries interrupting the random boundary network increases during growth of the clusters, which is the essential reason for the improvement of IGC resistance.
基金Project(TC190H3ZV/2) supported by the National Building Project of Application Demonstration Platform on New Materials Products,China。
文摘Effects of interrupted ageing(T6I6) and asymmetric rolling on microstructures, mechanical properties, and intergranular corrosion(IGC) behaviors of Al-Mg-Si-Zn alloy were investigated. Results showed that the T6 alloy has the lowest strength and the worst IGC resistance, while the T6I6 alloy has higher strength and better IGC resistance.What’ s more, the alloy treated by pre-rolling deformation has higher strength and better IGC resistance;and the alloy treated by the pre-asymmetry rolling achieves the highest strength, the best IGC resistance and lower elongation. The mechanical properties depend on microstructures such as the grain size, texture, dislocation density and precipitation, the grain boundary misorientation and grain boundary microstructure are responsible for the IGC resistance.