Intercalation catalysis research involves inserting metal ions,molecules,or ionic liquids into the layered structure of catalysts to adjust their electronic structure and surface properties,thereby optimizing catalyti...Intercalation catalysis research involves inserting metal ions,molecules,or ionic liquids into the layered structure of catalysts to adjust their electronic structure and surface properties,thereby optimizing catalytic reaction efficiency and selectivity[1–3].This technique has achieved significant progress in areas such as electrocatalysis,catalytic cracking,and energy conversion,especially in reactions like hydrogen generation,oxygen reduction,nitrogen reduction,and carbon dioxide reduction[4–6].Intercalation catalysis can enhance catalyst activity and selectivity,but challenges remain regarding stability,reusability,and industrial application.Future research will focus on developing new intercalation materials,optimizing catalyst design,and exploring their potential applications in complex environments[7].展开更多
V_(2)O_(5)·nH_(2)O has been widely studied for aqueous zinc-ion batteries.The intercalation of inorganic ions has been used as a feasible method to improve the capacity of vanadium pentoxide.To further improve th...V_(2)O_(5)·nH_(2)O has been widely studied for aqueous zinc-ion batteries.The intercalation of inorganic ions has been used as a feasible method to improve the capacity of vanadium pentoxide.To further improve the stability,organic small molecule choline chloride intercalation is used to expand the spacing of the vanadium pentoxide layers and increase the cycling stability.Therefore,we consider the introduction of Sr^(2+)to cointercalate with choline chloride.Here,we synthes-ized vanadium pentoxide cointercalated with Sr^(2+)and choline ions(Ch^(+))via a simple hydrothermal method.The electro-chemical performance shows an enhanced cathode capacitance contribution of Sr&Ch-V_(2)O_(5),with a discharge capacity of 526 mAh·g^(-1)at 0.1 A·g^(-1)and a retention rate of 78.9%after 2000 cycles at 5 A·g^(-1).This work offers a novel strategy for the design of organic‒inorganic hybrid materials for use as cathodes in aqueous zinc-ion batteries.展开更多
Direct electrolysis of seawater offers a transformative technology for sustainable hydrogen production,circumventing the constraint of freshwater scarcity.However,the serious electrode corrosion and competitive chlori...Direct electrolysis of seawater offers a transformative technology for sustainable hydrogen production,circumventing the constraint of freshwater scarcity.However,the serious electrode corrosion and competitive chloride oxidation reactions make oxygen evolution reaction(OER)in seawater extremely challenging.Herein,the low-cost and scalable CoFe layered double hydroxides with Cl^(-)intercalation and decorated with Ce(OH)_(3)(named as CoFe-Cl^(-)/Ce(OH)_(3))catalyst is synthesized via rapid electrodeposition under ambient conditions,which is quickly reconstructed into a CeO_(2)decorated and Cl^(-)intercalated CoFeOOH(CoFeOOH-Cl^(-)/CeO_(2))during OER.Theoretical investigation reveals that Cl^(-)intercalation weakens the adsorption ability of Cl^(-)on Co/Fe atoms and hinders unfavorable coupling with chloride,thereby preventing the chlorine corrosion process and enhancing catalytic stability and activity.The CeO_(2)with hard Lewis acidity preferentially binds to OH-with harder Lewis base to ensure the OH-rich microenvironment around catalyst even under high current operating conditions,thus further enhancing stability and improving OER activity.The functionalized CoFe-Cl^(-)/Ce(OH)_(3)delivers 1000 mA cm^(-2)current density at only 329 mV overpotential with excellent stability for 1000 h under alkaline seawater.Electrochemical experiments elucidate the OER catalytic mechanism in which CeO_(2)serves as a co-catalyst for enriching OH-and CoFeOOH-Cl^(-)is the active species.Our work is a substantial step towards achieving massive and sustainable production of hydrogen fuel from immense seawater.展开更多
Two-dimensional(2D)organic-inorganic hybrid perovskites(OIHPs)have been developed as promising candidates for photodetection,owing to their excellent semiconducting features and structural tunability.However,as an imp...Two-dimensional(2D)organic-inorganic hybrid perovskites(OIHPs)have been developed as promising candidates for photodetection,owing to their excellent semiconducting features and structural tunability.However,as an important parameter for photodetection,the photoresponsive range of 2D OIHPs is usually modulated by finite metal-halide combinations,constraining their further development.The emerging aromatic amine-based alternating-cations-interlayered(A-ACI)hybrid perovskites that exhibit excellent charge transport and additional interlayered structural designability,provide an extra solution for achieving ideal photoresponsive range.Herein,for the first time,the photoresponsive range is successfully broadened in A-ACI hybrid perovskites(NMA)_(4)(FA)_(2)Pb_(3)Br_(12)(2)remolding from(NMA)_(4)(MA)_(2)Pb_(3)Br_(12)(1)(NMA=N-methylbenzylaminium,FA=formamidinium and MA=methylammonium).Particularly,1 and 2adopt an unprecedented configuration that NMA and MA/FA are alternately arranged in the interlayer in a 4:2 manner.Importantly,2 exhibits a narrower bandgap than 1,which can be ascribed to the lowlying conduct band composed of intercalation FAπ*orbitals.Meanwhile,2 possesses a shorter interlayer distance and flatter inorganic skeleton,synergistically facilitating the wider photo-absorption range and further endowing a broadening photoresponsive range(70 nm).This research not only enriches the perovskite family but also provides insights into structure-property relationships.展开更多
Magnesium-ion batteries hold promise as future energy storage solutions,yet current Mg cathodes are challenged by low voltage and specific capacity.Herein,we present an AI-driven workflow for discovering high-performa...Magnesium-ion batteries hold promise as future energy storage solutions,yet current Mg cathodes are challenged by low voltage and specific capacity.Herein,we present an AI-driven workflow for discovering high-performance Mg cathode materials.Utilizing the common characteristics of various ionic intercalation-type electrodes,we design and train a Crystal Graph Convolutional Neural Network model that can accurately predict electrode voltages for various ions with mean absolute errors(MAE)between0.25 and 0.33 V.By deploying the trained model to stable Mg compounds from Materials Project and GNoME AI dataset,we identify 160 high voltage structures out of 15,308 candidates with voltages above3.0 V and volumetric capacity over 800 mA h/cm^(3).We further train a precise NequIP model to facilitate accurate and rapid simulations of Mg ionic conductivity.From the 160 high voltage structures,the machine learning molecular dynamics simulations have selected 23 cathode materials with both high energy density and high ionic conductivity.This Al-driven workflow dramatically boosts the efficiency and precision of material discovery for multivalent ion batteries,paving the way for advanced Mg battery development.展开更多
MnBi_(2)Te_(4),which is emerging as an intrinsic antiferromagnetic(AFM)topological insulator,provides a unique platform to investigate the interplay between magnetism and topology.Modulating its magnetic properties en...MnBi_(2)Te_(4),which is emerging as an intrinsic antiferromagnetic(AFM)topological insulator,provides a unique platform to investigate the interplay between magnetism and topology.Modulating its magnetic properties enables the observation of exotic quantum phenomena such as the quantum anomalous Hall effect,axion insulator states,and Majorana fermions.While the intercalation of Bi_(2)Te_(3)can tune its magnetism,synthesizing pure-phase MnBi_(2)Te_(4)with uniform Bi_(2)Te_(3)intercalation remains challenging,and the fixed interlayer spacing of Bi_(2)Te_(3)limits magnetic coupling tunability.Here,we utilize electrochemical organic molecule intercalation to expand the van der Waals gap of MnBi_(2)Te_(4)and modulate its magnetic properties.Through x-ray diffraction(XRD)characterizations,we confirm that the interlayer spacing of MnBi_(2)Te_(4)is expanded from 13.6°A to 30.5°A and 61.0°A by intercalating quaternary ammonium cations(THA^(+)and CTA^(+)),respectively.The THA-MnBi_(2)Te_(4)exhibits dual complex magnetic behavior,combining AFM ordering with a Neel temperature(T_(N))of 12 K and a small ferromagnetic hysteresis loop at 2 K.The CTA-MnBi_(2)Te_(4)shows robust ferromagnetism,with a Curie point(T_(C))of 15 K,similar to that of the MnBi_(2)Te_(4)monolayer.These results demonstrate that remarkable changes in the magnetic properties of MnBi_(2)Te_(4)can be achieved via electrochemical intercalation,providing new insights into manipulating magnetism in layered magnetic materials.展开更多
Orthorhombic Nb_(2)O_(5)(T-Nb_(2)O_(5))is attractive for fast-charging Li-ion batteries,but it is still hard to realize rapid charge transfer kinetics for Li-ion storage.Herein,F-doped T-Nb_(2)O_(5) microflowers(F-Nb_(...Orthorhombic Nb_(2)O_(5)(T-Nb_(2)O_(5))is attractive for fast-charging Li-ion batteries,but it is still hard to realize rapid charge transfer kinetics for Li-ion storage.Herein,F-doped T-Nb_(2)O_(5) microflowers(F-Nb_(2)O_(5))are rationally synthesized through topotactic conversion.Specifically,F-Nb_(2)O_(5) are assembled by single-crystal nanoflakes with nearly 97%exposed(100)facet,which maximizes the exposure of the feasible Li^(+)transport pathways along loosely packed 4g atomic layers to the electrolytes,thus effectively enhancing the Li^(+)-intercalation performance.Besides,the band gap of F-Nb_(2)O_(5) is reduced to 2.87 eV due to the doping of F atoms,leading to enhanced electrical conductivity.The synergetic effects between tailored exposed crystal facets,F-doping,and ultrathin building blocks,speed up the Li^(+)/electron transfer kinetics and improve the pseudocapacitive properties of F-Nb_(2)O_(5).Therefore,F-Nb_(2)O_(5) exhibit superior rate capability(210.8 and 164.9 mAh g^(-1) at 1 and 10 C,respectively)and good long-term 10 C cycling performance(132.7 mAh g^(-1) after 1500 cycles).展开更多
Metallic zinc is an ideal anode material owing to its high theoretical capacity(819 mAh·g^(-1)),ecofriendliness,low cost and high safety,which have driven fast development of Zn-ion batteries(ZIBs).However,the pr...Metallic zinc is an ideal anode material owing to its high theoretical capacity(819 mAh·g^(-1)),ecofriendliness,low cost and high safety,which have driven fast development of Zn-ion batteries(ZIBs).However,the practical application of current ZIBs is significantly restricted by irregular dendrite growth of zinc anode and the low working voltage(usually<2 V)of cathode materials.Herein,we report a high-voltage Zn-based dualion battery(DIB),which is constructed by a graphite cathode,a Zn anode,and 3 M LiPF_(6)in the ethyl methyl carbonate(EMC)electrolyte.Under the corrosion interaction of Li^(+)ions,Zn^(2+)can be easily dissolved from Zn anode into the electrolyte to enable dendrite-free Zn^(2+)plating/stripping at the anode.Moreover,an aqueous carboxymethyl cellulose(CMC)binder is employed to generate a robust cathode electrolyte interface(CEI)layer on the graphite cathode,which renders ultrafast PF_(6)^(-)-de-/intercalation into graphite.The resultant Zn-graphite DIB operates stably at a high cut off voltage of 3.2 V,corresponding to an average output voltage of 2.2 V.After 9000cycles at 5C,the high capacity retention of 95.9% can be achieved with~100% Coulomb efficiency.Based on the mass of cathode material,our Zn-graphite battery exhibits ultrafast rate capability(60 C,a discharge time of 44 s)and high energy/power densities(208 Wh·kg^(-1)at 214 W·kg^(-1);142 Wh·kg^(-1)at 8692 W·kg^(-1)),which holds great promise for large-scale energy storage.展开更多
Developing anode materials with high specific/volumetric capacities,high-rate capability,long-term cycles and low cost is significant for advanced sodium-ion storage.Herein,we report the hybrid TiO_(2)/graphite(TiO_(2...Developing anode materials with high specific/volumetric capacities,high-rate capability,long-term cycles and low cost is significant for advanced sodium-ion storage.Herein,we report the hybrid TiO_(2)/graphite(TiO_(2)/G)anodes for fast(dis)charging sodium-ion storage.Taking advantage of the rapid pseudocapacitive surface-redox on anatase TiO_(2)nanoparticles(NPs)and fast[Na(diglyme)_(x)]^(+)co-intercalation into graphite,the hybrid anodes display excellent rate capabilities.Additionally,the TiO_(2)NPs are able to fill into the interspaces among graphite flakes and the graphite provides continuous electron pathways,which largely boosts the volumetric capacities and rate performance.展开更多
The typical metal chloride-graphite intercalation compounds(MC-GICs)inherit intercalation capacity,high charge conductivity,and high tap density from graphite,and these are considered as one of the promising alternati...The typical metal chloride-graphite intercalation compounds(MC-GICs)inherit intercalation capacity,high charge conductivity,and high tap density from graphite,and these are considered as one of the promising alternatives of graphite anode in rechargeable metal-ion batteries(MIBs).Notably,the special interlayer decoupling effects and the introduction of extra conversion capacity by metal chloride could greatly break the capacity limitation of graphite anodes and achieve higher energy density in MIBs.The optimization of both graphite host and metal chloride species with specific structures endows MC-GICs with design feasibility for different application requirements of different MIBs,such as several times the actual capacity compared to graphite anodes,rapid migration of large carriers,and other properties.Herein,a brief review has been provided with the latest understanding of conductivity characteristics and energy storage mechanisms of MC-GICs and their interesting performance features of full potential application in rechargeable MIBs.Based on the existing research of MC-GICs,necessary improvements and prospects in the near future have been put forward.展开更多
Highly dispersed tungsten carbide(WC) nanoparticles(NPs) sandwiched between few-layer reduced graphene oxide(RGO) have been successfully synthesized by using thiourea as an anchoring and inducing reagent.The met...Highly dispersed tungsten carbide(WC) nanoparticles(NPs) sandwiched between few-layer reduced graphene oxide(RGO) have been successfully synthesized by using thiourea as an anchoring and inducing reagent.The metatungstate ion,[H2W(12)O(40)]^6-,is assembled on thiourea-modified graphene oxide(GO) by an impregnation method.The WC NPs,with a mean diameter of 1.5 nm,are obtained through a process whereby ammonium metatungstate first turns to WS2,which then forms an intercalation compound with RGO before growing,in situ,to WC NPs.The Pt/WC-RGO electrocatalysts are fabricated by a microwave-assisted method.The intimate contacts between Pt,WC,and RGO are confirmed by X-ray diffraction,scanning electron microscope,transmission electron microscope,and Raman spectroscopy.For methanol oxidation,the Pt/WC-RGO electrocatalyst exhibited an electrochemical surface area value of 246.1 m^2/g Pt and a peak current density of1364.7 mA/mg Pt,which are,respectively,3.66 and 4.77 times greater than those of commercial Pt/C electrocatalyst(67.2 m^2/g Pt,286.0 mA/mg Pt).The excellent CO-poisoning resistance and long-term stability of the electrocatalyst are also evidenced by CO stripping,chronoamperometry,and accelerated durability testing.Because Pt/WC-RGO has higher catalytic activity compared with that of commercial Pt/C,as a result of its intercalated structure and synergistic effect,less Pt will be required for the same performance,which in turn will reduce the cost of the fuel cell.The present method is facile,efficient,and scalable for mass production of the nanomaterials.展开更多
Phenolic resin/montmorillonite intercalation composites were prepared by using the methods of pressing intercalation and melt intercalation.Properties and structure of the composites were investigated by using XRD,TG ...Phenolic resin/montmorillonite intercalation composites were prepared by using the methods of pressing intercalation and melt intercalation.Properties and structure of the composites were investigated by using XRD,TG and test of softening point.It is indicated that both the pressing intercalation and melt intercalation can be used to prepare the phenolic resin/organo-montmorillonite intercalation nanocomposites.Compared with phenolic resin,the intercalation nanocomposites have better heat-resistance,higher decomposition temperatures and less thermal weight-loss.However,these two intercalation methods have different effects on the softening point of the intercalation nanocomposites.Pressing intercalation almost does not affect the softening point of the intercalation nanocomposites,while melt intercalation significantly increases the softening point of the intercalation nanocomposites, probably due to the chemical actions happening in the process of melt intercalation.展开更多
Layered intercalated functional materials of layered double hydroxide type are an important class of functional materials developed in recent years. Based on long term studies on these materials in the State Key Labor...Layered intercalated functional materials of layered double hydroxide type are an important class of functional materials developed in recent years. Based on long term studies on these materials in the State Key Laboratory of Chemical Resource Engineering in Beiiing University of Chemical Technology, the orinciole for the design of controlled intercalation processes in the light of tuture production processing requirements has been developed. Intercalation assembly methods and technologies have been invented to control the intercalation process for preparing layered intercalated materials with various structures and functions.展开更多
Intercalations of metals and silicon between epitaxial graphene and its substrates are reviewed. For metal intercala- tion, seven different metals have been successfully intercalated at the interface of graphene/Ru(O...Intercalations of metals and silicon between epitaxial graphene and its substrates are reviewed. For metal intercala- tion, seven different metals have been successfully intercalated at the interface of graphene/Ru(O001) and form different intercalated structures. Meanwhile, graphene maintains its original high quality after the intercalation and shows features of weakened interaction with the substrate. For silicon intercalation, two systems, graphene on Ru(O001) and on Ir(l I 1), have been investigated. In both cases, graphene preserves its high quality and regains its original superlative properties after the silicon intercalation. More importantly, we demonstrate that thicker silicon layers can be intercalated at the interface, which allows the atomic control of the distance between graphene and the metal substrates. These results show the great potential of the intercalation method as a non-damaging approach to decouple epitaxial graphene from its substrates and even form a dielectric layer for future electronic applications.展开更多
Neural tube defects (NTDs) are severe congenital malformation diseases, which occur in 1 out of 1000 births in human. In Xenopus, several tissue movements are involved in the neural tube closure process. Immediately...Neural tube defects (NTDs) are severe congenital malformation diseases, which occur in 1 out of 1000 births in human. In Xenopus, several tissue movements are involved in the neural tube closure process. Immediately after the neural tube fusion, the neural crest cells get monopolar protrusion toward dorsal midline and migrate to form the roof of the neural tube. At the same time, radial intercalation takes place from the ventral neural tube and forces it to be single-layered. Here, we physically block the neural tube closure to test the cell movements and the following patterning in Xenopus laevis explants. The results show that the single-layered neural tube fails to form and the neural crest cells remain at the lateral regions in the explants with NTDs. However, the patterning of the neural tube is not affected as indicated by the normal expression of the preneural genes. These results indicate a requirement of the neural tube fusion for the radial intercalation and the dorsal midline directed neural crest migration, but not for the dorsal-ventral patterning of the neural tube.展开更多
A tin film of 320 nm in thickness on Cu foil and its composite film with graphite of-50 nm in thickness on it were fabricated by magnetron sputtering. The surface morphology, composition, surface distributions of allo...A tin film of 320 nm in thickness on Cu foil and its composite film with graphite of-50 nm in thickness on it were fabricated by magnetron sputtering. The surface morphology, composition, surface distributions of alloy elements, and lithium intercalation/de-intercalation behaviors of the fabricated films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), electron probe microanalyzer (EPMA), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma atomic emission spectrometry (ICP), cyclic voltammetry (CV), and galvanostatic charge/discharge (GC) measurements. It is found that the lithium intercalation/de-intercalation behavior of the Sn film can be significantly improved by its composite with graphite. With cycling, the discharge capacity of the Sn film without composite changes from 570 mAh/g of the 2nd cycle to 270 mAh/g of the 20th cycle, and its efficiency for the discharge and charge is between 90% and 95%. Nevertheless, the discharge capacity of the composite Sn/C film changes from 575 mAh/g of the 2nd cycle to 515 mAh/g of the 20th cycle, and its efficiency for the discharge and charge is between 95% and 100%. The performance improvement of tin by its composite with graphite is ascribed to the retardation of the bulk tin cracking from volume change during lithium intercalation and de-intercalation, which leads to the pulverization of tin.展开更多
Although MXenes is highly attractive as anode materials of lithium ion batteries,it sets a bottleneck for higher capacity of the V2CTxMXene due to the limited interlayer space and the derived surface terminations.Here...Although MXenes is highly attractive as anode materials of lithium ion batteries,it sets a bottleneck for higher capacity of the V2CTxMXene due to the limited interlayer space and the derived surface terminations.Herein,the cation intercalation and ion-exchange were well employed to achieve a K+and Ca2+intercalated V2CTxMXene.A larger interlayer distance and low F surface terminations were thereof obtained,which accelerates the ion transport and promotes the delicate surface of V2CTx MXene.As a result,a package of enhanced capacity,rate performance and cyclability can be achieved.Furthermore,the ion exchange approach can be extended to other 2 D layered materials,and both the interlayer control and the surface modification will be achieved.展开更多
A gelatin/MMT nanocomposite was prepared in an aqueous solution and investigated by XRD,FTIR and 13 C NMR,and then the intercalation mechanism was discussed.The result of XRD indicated that the gelatin molecule...A gelatin/MMT nanocomposite was prepared in an aqueous solution and investigated by XRD,FTIR and 13 C NMR,and then the intercalation mechanism was discussed.The result of XRD indicated that the gelatin molecule had already inserted into the interlayer of MMT,and the intercalation or exfoliation structure had been achieved.The result of 13 C NMR demonstrated that the ions interaction between gelatin and MMT was attributed to the driving force for intercalation.In order to confirm the role of -COO - of gelatin in the combination with MMT,lauric sodium was brought in as a model to react with MMT,and was characterized by XRD and FTIR,the result proved that there existed a kind of strong interaction between -COO - and ions of MMT.展开更多
A precondition for correctly analyzing the stability of a slope and designing its bracing structure is to study and determine the influence of excavation blasting on the properties of weak intercalation in the layered...A precondition for correctly analyzing the stability of a slope and designing its bracing structure is to study and determine the influence of excavation blasting on the properties of weak intercalation in the layered rock slope. On the basis of in-situ stratification-cracking blasting tests, the properties of weak intercalation were investigated using the LS-DYNA3D program. The displacement distribution and compactness of weak intercalation at different positions away from the charge center and their various laws are discussed. The critical displacement of stratification-cracking (0.1 mm) was obtained, and an approximate expression of compactness were deduced. Furthermore, through the simulation of a layered rock blasting under the same geological conditions, the stratification-cracking effect of deep-hole blasting on the properties of weak intercalation was compared with that of short-hole blasting, and the influencing differences, in addition to their causes, were analyzed. The results indicated that the blasting cavity of weak intercalation in short-hole blasting with a radius of 40 mm was nearly a circle, whose radius was about 28.7 cm; whereas in deep-hole blasting with a radius of 150 mm, the shape of the blasting cavity was different from that in short-hole blasting, the radius of the cavity behind the charge (89.1 cm) was further smaller than those of the other three (138.7 cm), and there were sharp crinkles on the surface of weak intercalation. When the distance from the charge center (DCC) was less than 40 and 150 cm in short-hole and deep-hole blasting, respectively, the displacement of weak intercalation was reduced remarkably with the increase in DCC.展开更多
Sophisticated efficient electrocatalysts are essential to rectifying the shuttle effect and realizing the high performance of flexible lithium-sulfur batteries(LSBs).Phase transformation of MoSe_(2) from the 2H phase ...Sophisticated efficient electrocatalysts are essential to rectifying the shuttle effect and realizing the high performance of flexible lithium-sulfur batteries(LSBs).Phase transformation of MoSe_(2) from the 2H phase to the 1T phase has been proven to be a significant method to improve the catalytic activity.However,precisely controllable phase engineering of MoSe_(2) has rarely been reported.Herein,by in situ Li ions intercalation in MoSe_(2),a precisely controllable phase evolution from 2H-MoSe_(2) to 1T-MoSe_(2) was realized.More importantly,the definite functional relationship between cut-off voltage and phase structure was first identified for phase engineering through in situ observation and modulation methods.The sulfur host(CNFs/1T-MoSe_(2))presents high charge density,strong polysulfides adsorption,and catalytic kinetics.Moreover,Li-S cells based on it display capacity retention of 875.3mAh g^(-1) after 500 cycles at 1 C and an areal capacity of 8.71mAh cm^(-2) even at a high sulfur loading of 8.47mg cm^(-2).Furthermore,the flexible pouch cell exhibiting decent performance will endow a promising potential in the wearable energy storage field.This study proposes an effective strategy to precisely control the phase structure of MoSe_(2),which may provide the reference to fabricate the highly efficient electrocatalysts for LSBs and other energy systems.展开更多
文摘Intercalation catalysis research involves inserting metal ions,molecules,or ionic liquids into the layered structure of catalysts to adjust their electronic structure and surface properties,thereby optimizing catalytic reaction efficiency and selectivity[1–3].This technique has achieved significant progress in areas such as electrocatalysis,catalytic cracking,and energy conversion,especially in reactions like hydrogen generation,oxygen reduction,nitrogen reduction,and carbon dioxide reduction[4–6].Intercalation catalysis can enhance catalyst activity and selectivity,but challenges remain regarding stability,reusability,and industrial application.Future research will focus on developing new intercalation materials,optimizing catalyst design,and exploring their potential applications in complex environments[7].
文摘V_(2)O_(5)·nH_(2)O has been widely studied for aqueous zinc-ion batteries.The intercalation of inorganic ions has been used as a feasible method to improve the capacity of vanadium pentoxide.To further improve the stability,organic small molecule choline chloride intercalation is used to expand the spacing of the vanadium pentoxide layers and increase the cycling stability.Therefore,we consider the introduction of Sr^(2+)to cointercalate with choline chloride.Here,we synthes-ized vanadium pentoxide cointercalated with Sr^(2+)and choline ions(Ch^(+))via a simple hydrothermal method.The electro-chemical performance shows an enhanced cathode capacitance contribution of Sr&Ch-V_(2)O_(5),with a discharge capacity of 526 mAh·g^(-1)at 0.1 A·g^(-1)and a retention rate of 78.9%after 2000 cycles at 5 A·g^(-1).This work offers a novel strategy for the design of organic‒inorganic hybrid materials for use as cathodes in aqueous zinc-ion batteries.
基金financial support from the National Natural Science Foundation of China(52372173,52072034)。
文摘Direct electrolysis of seawater offers a transformative technology for sustainable hydrogen production,circumventing the constraint of freshwater scarcity.However,the serious electrode corrosion and competitive chloride oxidation reactions make oxygen evolution reaction(OER)in seawater extremely challenging.Herein,the low-cost and scalable CoFe layered double hydroxides with Cl^(-)intercalation and decorated with Ce(OH)_(3)(named as CoFe-Cl^(-)/Ce(OH)_(3))catalyst is synthesized via rapid electrodeposition under ambient conditions,which is quickly reconstructed into a CeO_(2)decorated and Cl^(-)intercalated CoFeOOH(CoFeOOH-Cl^(-)/CeO_(2))during OER.Theoretical investigation reveals that Cl^(-)intercalation weakens the adsorption ability of Cl^(-)on Co/Fe atoms and hinders unfavorable coupling with chloride,thereby preventing the chlorine corrosion process and enhancing catalytic stability and activity.The CeO_(2)with hard Lewis acidity preferentially binds to OH-with harder Lewis base to ensure the OH-rich microenvironment around catalyst even under high current operating conditions,thus further enhancing stability and improving OER activity.The functionalized CoFe-Cl^(-)/Ce(OH)_(3)delivers 1000 mA cm^(-2)current density at only 329 mV overpotential with excellent stability for 1000 h under alkaline seawater.Electrochemical experiments elucidate the OER catalytic mechanism in which CeO_(2)serves as a co-catalyst for enriching OH-and CoFeOOH-Cl^(-)is the active species.Our work is a substantial step towards achieving massive and sustainable production of hydrogen fuel from immense seawater.
基金financially supported by the National Natural Science Foundation of China(Nos.22435005,22193042,21921001,52202194,22305105,22201284)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(No.ZDBSLY-SLH024)。
文摘Two-dimensional(2D)organic-inorganic hybrid perovskites(OIHPs)have been developed as promising candidates for photodetection,owing to their excellent semiconducting features and structural tunability.However,as an important parameter for photodetection,the photoresponsive range of 2D OIHPs is usually modulated by finite metal-halide combinations,constraining their further development.The emerging aromatic amine-based alternating-cations-interlayered(A-ACI)hybrid perovskites that exhibit excellent charge transport and additional interlayered structural designability,provide an extra solution for achieving ideal photoresponsive range.Herein,for the first time,the photoresponsive range is successfully broadened in A-ACI hybrid perovskites(NMA)_(4)(FA)_(2)Pb_(3)Br_(12)(2)remolding from(NMA)_(4)(MA)_(2)Pb_(3)Br_(12)(1)(NMA=N-methylbenzylaminium,FA=formamidinium and MA=methylammonium).Particularly,1 and 2adopt an unprecedented configuration that NMA and MA/FA are alternately arranged in the interlayer in a 4:2 manner.Importantly,2 exhibits a narrower bandgap than 1,which can be ascribed to the lowlying conduct band composed of intercalation FAπ*orbitals.Meanwhile,2 possesses a shorter interlayer distance and flatter inorganic skeleton,synergistically facilitating the wider photo-absorption range and further endowing a broadening photoresponsive range(70 nm).This research not only enriches the perovskite family but also provides insights into structure-property relationships.
基金supported by the National Key R&D Program of China(2022YFA1203400)the National Natural Science Foundation of China(W2441009)。
文摘Magnesium-ion batteries hold promise as future energy storage solutions,yet current Mg cathodes are challenged by low voltage and specific capacity.Herein,we present an AI-driven workflow for discovering high-performance Mg cathode materials.Utilizing the common characteristics of various ionic intercalation-type electrodes,we design and train a Crystal Graph Convolutional Neural Network model that can accurately predict electrode voltages for various ions with mean absolute errors(MAE)between0.25 and 0.33 V.By deploying the trained model to stable Mg compounds from Materials Project and GNoME AI dataset,we identify 160 high voltage structures out of 15,308 candidates with voltages above3.0 V and volumetric capacity over 800 mA h/cm^(3).We further train a precise NequIP model to facilitate accurate and rapid simulations of Mg ionic conductivity.From the 160 high voltage structures,the machine learning molecular dynamics simulations have selected 23 cathode materials with both high energy density and high ionic conductivity.This Al-driven workflow dramatically boosts the efficiency and precision of material discovery for multivalent ion batteries,paving the way for advanced Mg battery development.
基金supported by the National Key Research and Development Program of China(Grant Nos.2022YFA1402404 and 2023YFA1406304)the National Natural Science Foundation of China(Grant Nos.92161201,T2221003,12104221,12104220,12274208,12025404,12004174,91961101,T2394473,62274085,12374043,and U2032208)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20230079,BK20243013,and BK20233001)the Fundamental Research Funds for the Central Universities(Grant Nos.020414380192 and 2024300432).
文摘MnBi_(2)Te_(4),which is emerging as an intrinsic antiferromagnetic(AFM)topological insulator,provides a unique platform to investigate the interplay between magnetism and topology.Modulating its magnetic properties enables the observation of exotic quantum phenomena such as the quantum anomalous Hall effect,axion insulator states,and Majorana fermions.While the intercalation of Bi_(2)Te_(3)can tune its magnetism,synthesizing pure-phase MnBi_(2)Te_(4)with uniform Bi_(2)Te_(3)intercalation remains challenging,and the fixed interlayer spacing of Bi_(2)Te_(3)limits magnetic coupling tunability.Here,we utilize electrochemical organic molecule intercalation to expand the van der Waals gap of MnBi_(2)Te_(4)and modulate its magnetic properties.Through x-ray diffraction(XRD)characterizations,we confirm that the interlayer spacing of MnBi_(2)Te_(4)is expanded from 13.6°A to 30.5°A and 61.0°A by intercalating quaternary ammonium cations(THA^(+)and CTA^(+)),respectively.The THA-MnBi_(2)Te_(4)exhibits dual complex magnetic behavior,combining AFM ordering with a Neel temperature(T_(N))of 12 K and a small ferromagnetic hysteresis loop at 2 K.The CTA-MnBi_(2)Te_(4)shows robust ferromagnetism,with a Curie point(T_(C))of 15 K,similar to that of the MnBi_(2)Te_(4)monolayer.These results demonstrate that remarkable changes in the magnetic properties of MnBi_(2)Te_(4)can be achieved via electrochemical intercalation,providing new insights into manipulating magnetism in layered magnetic materials.
基金supported by the National Natural Science Foundation of China(No.51802163)the Natural Science Foundation of Henan Province of China(No.222300420252)the Natural Science Foundation of Henan Department of Education(No.20A480004).
文摘Orthorhombic Nb_(2)O_(5)(T-Nb_(2)O_(5))is attractive for fast-charging Li-ion batteries,but it is still hard to realize rapid charge transfer kinetics for Li-ion storage.Herein,F-doped T-Nb_(2)O_(5) microflowers(F-Nb_(2)O_(5))are rationally synthesized through topotactic conversion.Specifically,F-Nb_(2)O_(5) are assembled by single-crystal nanoflakes with nearly 97%exposed(100)facet,which maximizes the exposure of the feasible Li^(+)transport pathways along loosely packed 4g atomic layers to the electrolytes,thus effectively enhancing the Li^(+)-intercalation performance.Besides,the band gap of F-Nb_(2)O_(5) is reduced to 2.87 eV due to the doping of F atoms,leading to enhanced electrical conductivity.The synergetic effects between tailored exposed crystal facets,F-doping,and ultrathin building blocks,speed up the Li^(+)/electron transfer kinetics and improve the pseudocapacitive properties of F-Nb_(2)O_(5).Therefore,F-Nb_(2)O_(5) exhibit superior rate capability(210.8 and 164.9 mAh g^(-1) at 1 and 10 C,respectively)and good long-term 10 C cycling performance(132.7 mAh g^(-1) after 1500 cycles).
基金financially supported by the National Natural Science Foundation of China(No.22279122)Shenzhen Science and Technology Program(No.JCYJ20220530162402005)+2 种基金the Research on High Power Flexible Battery in All Sea Depth(2020-XXXX-XX-246-00)the Research Fund Program of Hubei Key Laboratory of Resources and EcoEnvironment Geology(No.HBREGKFJJ-202314)and the Fundamental Research Funds for the Central Universities,South-Central Minzu University(No.CZQ21013)。
文摘Metallic zinc is an ideal anode material owing to its high theoretical capacity(819 mAh·g^(-1)),ecofriendliness,low cost and high safety,which have driven fast development of Zn-ion batteries(ZIBs).However,the practical application of current ZIBs is significantly restricted by irregular dendrite growth of zinc anode and the low working voltage(usually<2 V)of cathode materials.Herein,we report a high-voltage Zn-based dualion battery(DIB),which is constructed by a graphite cathode,a Zn anode,and 3 M LiPF_(6)in the ethyl methyl carbonate(EMC)electrolyte.Under the corrosion interaction of Li^(+)ions,Zn^(2+)can be easily dissolved from Zn anode into the electrolyte to enable dendrite-free Zn^(2+)plating/stripping at the anode.Moreover,an aqueous carboxymethyl cellulose(CMC)binder is employed to generate a robust cathode electrolyte interface(CEI)layer on the graphite cathode,which renders ultrafast PF_(6)^(-)-de-/intercalation into graphite.The resultant Zn-graphite DIB operates stably at a high cut off voltage of 3.2 V,corresponding to an average output voltage of 2.2 V.After 9000cycles at 5C,the high capacity retention of 95.9% can be achieved with~100% Coulomb efficiency.Based on the mass of cathode material,our Zn-graphite battery exhibits ultrafast rate capability(60 C,a discharge time of 44 s)and high energy/power densities(208 Wh·kg^(-1)at 214 W·kg^(-1);142 Wh·kg^(-1)at 8692 W·kg^(-1)),which holds great promise for large-scale energy storage.
基金financially supported by the National Natural Science Foundation of China(No.22179113)the Fundamental Research Funds for the Central Universities(Nos.20720230028 and 20720210045)+1 种基金the Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(IKKEM)(No.HRTP-2022-19)the XMU Training Program of Innovation and Entrepreneurship for Undergraduates(No.2021Y1089)。
文摘Developing anode materials with high specific/volumetric capacities,high-rate capability,long-term cycles and low cost is significant for advanced sodium-ion storage.Herein,we report the hybrid TiO_(2)/graphite(TiO_(2)/G)anodes for fast(dis)charging sodium-ion storage.Taking advantage of the rapid pseudocapacitive surface-redox on anatase TiO_(2)nanoparticles(NPs)and fast[Na(diglyme)_(x)]^(+)co-intercalation into graphite,the hybrid anodes display excellent rate capabilities.Additionally,the TiO_(2)NPs are able to fill into the interspaces among graphite flakes and the graphite provides continuous electron pathways,which largely boosts the volumetric capacities and rate performance.
基金National Natural Science Foundation of China,Grant/Award Number:22309062Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2022A1515110052Jihua Laboratory,Grant/Award Numbers:X200191TL200,X220301XS220。
文摘The typical metal chloride-graphite intercalation compounds(MC-GICs)inherit intercalation capacity,high charge conductivity,and high tap density from graphite,and these are considered as one of the promising alternatives of graphite anode in rechargeable metal-ion batteries(MIBs).Notably,the special interlayer decoupling effects and the introduction of extra conversion capacity by metal chloride could greatly break the capacity limitation of graphite anodes and achieve higher energy density in MIBs.The optimization of both graphite host and metal chloride species with specific structures endows MC-GICs with design feasibility for different application requirements of different MIBs,such as several times the actual capacity compared to graphite anodes,rapid migration of large carriers,and other properties.Herein,a brief review has been provided with the latest understanding of conductivity characteristics and energy storage mechanisms of MC-GICs and their interesting performance features of full potential application in rechargeable MIBs.Based on the existing research of MC-GICs,necessary improvements and prospects in the near future have been put forward.
基金supported by the International Science & Technology Cooperation Program of China(2010DFB63680)the National Natural Science Foundation of China(21376220)Zhejiang Provincial Natural Science Foundation of China(LY16B060009,LY12B03008)~~
文摘Highly dispersed tungsten carbide(WC) nanoparticles(NPs) sandwiched between few-layer reduced graphene oxide(RGO) have been successfully synthesized by using thiourea as an anchoring and inducing reagent.The metatungstate ion,[H2W(12)O(40)]^6-,is assembled on thiourea-modified graphene oxide(GO) by an impregnation method.The WC NPs,with a mean diameter of 1.5 nm,are obtained through a process whereby ammonium metatungstate first turns to WS2,which then forms an intercalation compound with RGO before growing,in situ,to WC NPs.The Pt/WC-RGO electrocatalysts are fabricated by a microwave-assisted method.The intimate contacts between Pt,WC,and RGO are confirmed by X-ray diffraction,scanning electron microscope,transmission electron microscope,and Raman spectroscopy.For methanol oxidation,the Pt/WC-RGO electrocatalyst exhibited an electrochemical surface area value of 246.1 m^2/g Pt and a peak current density of1364.7 mA/mg Pt,which are,respectively,3.66 and 4.77 times greater than those of commercial Pt/C electrocatalyst(67.2 m^2/g Pt,286.0 mA/mg Pt).The excellent CO-poisoning resistance and long-term stability of the electrocatalyst are also evidenced by CO stripping,chronoamperometry,and accelerated durability testing.Because Pt/WC-RGO has higher catalytic activity compared with that of commercial Pt/C,as a result of its intercalated structure and synergistic effect,less Pt will be required for the same performance,which in turn will reduce the cost of the fuel cell.The present method is facile,efficient,and scalable for mass production of the nanomaterials.
文摘Phenolic resin/montmorillonite intercalation composites were prepared by using the methods of pressing intercalation and melt intercalation.Properties and structure of the composites were investigated by using XRD,TG and test of softening point.It is indicated that both the pressing intercalation and melt intercalation can be used to prepare the phenolic resin/organo-montmorillonite intercalation nanocomposites.Compared with phenolic resin,the intercalation nanocomposites have better heat-resistance,higher decomposition temperatures and less thermal weight-loss.However,these two intercalation methods have different effects on the softening point of the intercalation nanocomposites.Pressing intercalation almost does not affect the softening point of the intercalation nanocomposites,while melt intercalation significantly increases the softening point of the intercalation nanocomposites, probably due to the chemical actions happening in the process of melt intercalation.
基金Supported by the National Key Technologies R&D Program (2011BAE28B01) and the National Natural Science Foundation of China (21276016).
文摘Layered intercalated functional materials of layered double hydroxide type are an important class of functional materials developed in recent years. Based on long term studies on these materials in the State Key Laboratory of Chemical Resource Engineering in Beiiing University of Chemical Technology, the orinciole for the design of controlled intercalation processes in the light of tuture production processing requirements has been developed. Intercalation assembly methods and technologies have been invented to control the intercalation process for preparing layered intercalated materials with various structures and functions.
基金supported by the National Basic Research Program of China (Grant Nos. 2013CBA01600, 2011CB932700, 2009CB929103, and 2010CB923004)the National Natural Science Foundation of China, and the Chinese Acedemy of Sciences
文摘Intercalations of metals and silicon between epitaxial graphene and its substrates are reviewed. For metal intercala- tion, seven different metals have been successfully intercalated at the interface of graphene/Ru(O001) and form different intercalated structures. Meanwhile, graphene maintains its original high quality after the intercalation and shows features of weakened interaction with the substrate. For silicon intercalation, two systems, graphene on Ru(O001) and on Ir(l I 1), have been investigated. In both cases, graphene preserves its high quality and regains its original superlative properties after the silicon intercalation. More importantly, we demonstrate that thicker silicon layers can be intercalated at the interface, which allows the atomic control of the distance between graphene and the metal substrates. These results show the great potential of the intercalation method as a non-damaging approach to decouple epitaxial graphene from its substrates and even form a dielectric layer for future electronic applications.
基金supported by grants from the National Natural Science Foundation of China (30425011 30530380)the Innovation Project of the Chinese Academy of Sciences (KSCX2-YW-R-090)~~
文摘Neural tube defects (NTDs) are severe congenital malformation diseases, which occur in 1 out of 1000 births in human. In Xenopus, several tissue movements are involved in the neural tube closure process. Immediately after the neural tube fusion, the neural crest cells get monopolar protrusion toward dorsal midline and migrate to form the roof of the neural tube. At the same time, radial intercalation takes place from the ventral neural tube and forces it to be single-layered. Here, we physically block the neural tube closure to test the cell movements and the following patterning in Xenopus laevis explants. The results show that the single-layered neural tube fails to form and the neural crest cells remain at the lateral regions in the explants with NTDs. However, the patterning of the neural tube is not affected as indicated by the normal expression of the preneural genes. These results indicate a requirement of the neural tube fusion for the radial intercalation and the dorsal midline directed neural crest migration, but not for the dorsal-ventral patterning of the neural tube.
基金the National Nature Science Foundation of China (Nos. 50771046 and 20373016) the Natural Science Foundation of Guangdong Province (No. 05200534)the Key Projects of Guangdong Province and Guangzhou City, China (Nos. 2006A10704003 and 2006Z3-D2031)
文摘A tin film of 320 nm in thickness on Cu foil and its composite film with graphite of-50 nm in thickness on it were fabricated by magnetron sputtering. The surface morphology, composition, surface distributions of alloy elements, and lithium intercalation/de-intercalation behaviors of the fabricated films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), electron probe microanalyzer (EPMA), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma atomic emission spectrometry (ICP), cyclic voltammetry (CV), and galvanostatic charge/discharge (GC) measurements. It is found that the lithium intercalation/de-intercalation behavior of the Sn film can be significantly improved by its composite with graphite. With cycling, the discharge capacity of the Sn film without composite changes from 570 mAh/g of the 2nd cycle to 270 mAh/g of the 20th cycle, and its efficiency for the discharge and charge is between 90% and 95%. Nevertheless, the discharge capacity of the composite Sn/C film changes from 575 mAh/g of the 2nd cycle to 515 mAh/g of the 20th cycle, and its efficiency for the discharge and charge is between 95% and 100%. The performance improvement of tin by its composite with graphite is ascribed to the retardation of the bulk tin cracking from volume change during lithium intercalation and de-intercalation, which leads to the pulverization of tin.
基金financial support provided by the National Natural Science Foundation of China(No.51932005)Liao Ning Revitalization Talents Program(XLYC1807175)+4 种基金the Joint Research Fund Liaoning Shenyang National Laboratory for Materials Science(SYNL)(20180510047)the Research Fund of SYNL(L2019F38)the Youth Innovation Promotion Association CAS(2015152)the Program for the Development of Science and Technology of Jilin Province(No.20190201309JC)the Project of Development and Reform Commission of Jilin Province(No.2019C042-1)。
文摘Although MXenes is highly attractive as anode materials of lithium ion batteries,it sets a bottleneck for higher capacity of the V2CTxMXene due to the limited interlayer space and the derived surface terminations.Herein,the cation intercalation and ion-exchange were well employed to achieve a K+and Ca2+intercalated V2CTxMXene.A larger interlayer distance and low F surface terminations were thereof obtained,which accelerates the ion transport and promotes the delicate surface of V2CTx MXene.As a result,a package of enhanced capacity,rate performance and cyclability can be achieved.Furthermore,the ion exchange approach can be extended to other 2 D layered materials,and both the interlayer control and the surface modification will be achieved.
文摘A gelatin/MMT nanocomposite was prepared in an aqueous solution and investigated by XRD,FTIR and 13 C NMR,and then the intercalation mechanism was discussed.The result of XRD indicated that the gelatin molecule had already inserted into the interlayer of MMT,and the intercalation or exfoliation structure had been achieved.The result of 13 C NMR demonstrated that the ions interaction between gelatin and MMT was attributed to the driving force for intercalation.In order to confirm the role of -COO - of gelatin in the combination with MMT,lauric sodium was brought in as a model to react with MMT,and was characterized by XRD and FTIR,the result proved that there existed a kind of strong interaction between -COO - and ions of MMT.
基金supported by the National Natural Science Foundation of China (No.50574076 and No.50838006)
文摘A precondition for correctly analyzing the stability of a slope and designing its bracing structure is to study and determine the influence of excavation blasting on the properties of weak intercalation in the layered rock slope. On the basis of in-situ stratification-cracking blasting tests, the properties of weak intercalation were investigated using the LS-DYNA3D program. The displacement distribution and compactness of weak intercalation at different positions away from the charge center and their various laws are discussed. The critical displacement of stratification-cracking (0.1 mm) was obtained, and an approximate expression of compactness were deduced. Furthermore, through the simulation of a layered rock blasting under the same geological conditions, the stratification-cracking effect of deep-hole blasting on the properties of weak intercalation was compared with that of short-hole blasting, and the influencing differences, in addition to their causes, were analyzed. The results indicated that the blasting cavity of weak intercalation in short-hole blasting with a radius of 40 mm was nearly a circle, whose radius was about 28.7 cm; whereas in deep-hole blasting with a radius of 150 mm, the shape of the blasting cavity was different from that in short-hole blasting, the radius of the cavity behind the charge (89.1 cm) was further smaller than those of the other three (138.7 cm), and there were sharp crinkles on the surface of weak intercalation. When the distance from the charge center (DCC) was less than 40 and 150 cm in short-hole and deep-hole blasting, respectively, the displacement of weak intercalation was reduced remarkably with the increase in DCC.
基金National Natural Science Foundation of China,Grant/Award Numbers:U2004172,51972287 and 51502269the Foundation for University Key Teachers of Henan Province,Grant/Award Number:2020GGJS009Natural Science Foundation of Henan Province,Grant/Award Number:202300410368。
文摘Sophisticated efficient electrocatalysts are essential to rectifying the shuttle effect and realizing the high performance of flexible lithium-sulfur batteries(LSBs).Phase transformation of MoSe_(2) from the 2H phase to the 1T phase has been proven to be a significant method to improve the catalytic activity.However,precisely controllable phase engineering of MoSe_(2) has rarely been reported.Herein,by in situ Li ions intercalation in MoSe_(2),a precisely controllable phase evolution from 2H-MoSe_(2) to 1T-MoSe_(2) was realized.More importantly,the definite functional relationship between cut-off voltage and phase structure was first identified for phase engineering through in situ observation and modulation methods.The sulfur host(CNFs/1T-MoSe_(2))presents high charge density,strong polysulfides adsorption,and catalytic kinetics.Moreover,Li-S cells based on it display capacity retention of 875.3mAh g^(-1) after 500 cycles at 1 C and an areal capacity of 8.71mAh cm^(-2) even at a high sulfur loading of 8.47mg cm^(-2).Furthermore,the flexible pouch cell exhibiting decent performance will endow a promising potential in the wearable energy storage field.This study proposes an effective strategy to precisely control the phase structure of MoSe_(2),which may provide the reference to fabricate the highly efficient electrocatalysts for LSBs and other energy systems.