Structural regulation of Pd-based electrocatalytic hydrodechlorination(EHDC)catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challe...Structural regulation of Pd-based electrocatalytic hydrodechlorination(EHDC)catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challenging.Herein,a support electron inductive effect of Pd-Mn/Ni foam catalyst was proposed via in-situ Mn doping to optimize the electronic structure of the Ni foam(NF),which can inductive regulation of Pd for improving the EHDC performance.The mass activity and current efficiency of Pd-Mn/NF catalyst are 2.91 and 1.34 times superior to that of Pd/NF with 2,4-dichlorophenol as model compound,respectively.The Mn-doped interlayer optimized the electronic structure of Pd by bringing the d-state closer to the Fermi level than Pd on the NF surface,which optimizied the binding of EHDC intermediates.Additionally,the Mn-doped interlayer acted as a promoter for generating H∗and accelerating the EHDC reaction.This work presents a simple and effective regulation strategy for constructing high-efficient cathode catalyst for the EHDC of chlorinated organic compounds.展开更多
The investigation of reaction kinetics is the key to understanding the nature of reaction processes.However,monitoring fast photochemical reactions by mass spectrometry remains challenging.Herein,we developed an optic...The investigation of reaction kinetics is the key to understanding the nature of reaction processes.However,monitoring fast photochemical reactions by mass spectrometry remains challenging.Herein,we developed an optical focusing inductive electrospray(OF-iESI)mass spectrometry platform for real-time and in-situ photoreaction monitoring.Coaxial irradiation from back of nanoelectrospray emitter with a taper section was utilized,so the emitter could act as optical lens to help achieving much larger optical power density at emitter tip compared to other sections,which allowed for in-situ reaction monitoring of photoreactions.Through theoretical calculations,the highest optical power density region volume was ca.45 nL.We also integrated a controller for the laser source(450 nm),enabling the modulation of pulse duration(>1 ms).This facilitates the study of photochemical reaction kinetics.The in-situ capability of this device was proved by capturing the short-lived photogenerated intermediates during the dehydrogenation of tetrahydroquinoline.This device was further used to investigate the kinetics of triplet energy transfer based Paternò-Büchi reaction.The reaction order has hitherto remained undetermined while the result of OF-iESI suggested it followed pseudo-second-order reaction kinetics.The short-lived donor-acceptor collision complex intermediate was also successfully identified by tandem mass spectrometry.展开更多
Computational analysis can accurately detect drug-gene interactions(DGIs)cost-effectively.However,transductive learning models are the hotspot to reveal the promising performance for unknown DGIs(both drugs and genes ...Computational analysis can accurately detect drug-gene interactions(DGIs)cost-effectively.However,transductive learning models are the hotspot to reveal the promising performance for unknown DGIs(both drugs and genes are present in the training model),without special attention to the unseen DGIs(both drugs and genes are absent in the training model).In view of this,this study,for the first time,proposed an inductive learning-based model for the precise identification of unseen DGIs.In our study,by integrating disease nodes to avoid data sparsity,a multi-relational drug-disease-gene(DDG)graph was constructed to achieve effective fusion of data on DDG intro-relationships and inter-actions.Following the extraction of graph features by utilizing graph embedding algorithms,our next step was the retrieval of the attributes of individual gene and drug nodes.In this way,a hybrid feature characterization was represented by integrating graph features and node attributes.Machine learning(ML)models were built,enabling the fulfillment of transductive predictions of unknown DGIs.To realize inductive learning,this study generated an innovative idea of transforming known node vectors derived from the DDG graph into representations of unseen nodes using node similarities as weights,enabling inductive predictions for the unseen DGIs.Consequently,the final model was superior to existing models,with significant improvement in predicting both external unknown and unseen DGIs.The practical feasibility of our model was further confirmed through case study and molecular docking.In summary,this study establishes an efficient data-driven approach through the proposed modeling,suggesting its value as a promising tool for accelerating drug discovery and repurposing.展开更多
Directional design of efficient catalysts for volatile organic compounds degradation remains a complex,yet effective and challenging process.Herein,oxygen-rich vacancy Co_(3)O_(4)-anchored Pt catalysts were prepared t...Directional design of efficient catalysts for volatile organic compounds degradation remains a complex,yet effective and challenging process.Herein,oxygen-rich vacancy Co_(3)O_(4)-anchored Pt catalysts were prepared through atom-trapping strategy and relevant vacancy defect inductive effect was proposed.The 0.6Pt/VO-Co_(3)O_(4)catalyst presented a reaction rate value of 32.2×10^(-5)mol·g_(cat)^(-1)·s^(-1)at 160℃for catalytic propane total oxidation,which was nearly 5 times the reaction rate of Co_(3)O_(4)(6.7×10^(-5)mol·g_(cat)^(-1)·s^(-1)).Also,it exhibited excellent water-resistance and catalytic stability.The Pt atoms were stabilized on the Co_(3)O_(4)surface by vacancy defects to improve dispersion.Meanwhile,the vacancy defect inductive effect induced stronger electron interaction between Pt and Co_(3)O_(4)on the surface,thus promote the redox ability at low-temperature.The mobility and oxygen-activating ability of surface lattice oxygen were also strengthened by the vacancy defect inductive effect.This facilitated the generation of more surface-active oxygen species for the cleavage of C-H bond and the deep oxidation of intermediate species.Overall,this study proposed a novel concept the fabrication of highly efficient catalysts for the purpose of catalytic oxidation.展开更多
Arsenic speciation in freshwater fish is crucial for providing meaningful consumption guidelines that allow the public to make informed decisions regarding its consumption.While marine fish have attractedmuch research...Arsenic speciation in freshwater fish is crucial for providing meaningful consumption guidelines that allow the public to make informed decisions regarding its consumption.While marine fish have attractedmuch research interest due to their higher arsenic content,research on freshwater fish is limited due to the challenges in quantifying and identifying arsenic species present at trace levels.We describe here a sensitivemethod and its application to the quantification of arsenic species in freshwater fish.Arsenic species from fish tissues were extracted using a methanol/water mixture(1:1 vol.ratio)and ultrasound sonication.Anion-exchange high-performance liquid chromatography(HPLC)enabled separation of arsenobetaine(AsB),inorganic arsenite(iAs^(Ⅲ)),dimethylarsinic acid(DMA),monomethylarsonic acid(MMA),inorganic arsenate(iAs^(Ⅴ)),and three new arsenic species.Inductively coupled plasma mass spectrometry(ICPMS)provided highly sensitive and specific detection of arsenic.A limit of detection of 0.25μg/kg(wet weight fish tissue)was achieved for the five target arsenic species:AsB,iAs^(Ⅲ),DMA,MMA,and iAs^(Ⅴ).A series of experimentswere conducted to ensure the accuracy and validity of the analytical method.The method was successfully applied to the determination of arsenic species in lakewhitefish,northern pike,and walleye,with AsB,DMA,and iAs^(Ⅴ) being frequently detected.Three new arsenic species were detected,but their chromatographic retention times did not match with those of any available arsenic standards.Future research is necessary to elucidate the identity of these new arsenic species detected in freshwater fish.展开更多
This work continues the studies on searching for plasma media with the inverse electron energy distribution function(EEDF)and providing recommendations for setting up subsequent experiments.The inverse EEDF is a distr...This work continues the studies on searching for plasma media with the inverse electron energy distribution function(EEDF)and providing recommendations for setting up subsequent experiments.The inverse EEDF is a distribution function that increases with an increase in energy at zero electron energy.The inverse EEDF plays a central role in the problem of negative conductivity.Based on the previously obtained criterion for the formation of an inverse EEDF in a spatially inhomogeneous plasma,a heuristic method is proposed that allows one to avoid resource-intensive calculations for spatially two-dimensional(2D)kinetic modeling on a large array of different glow discharges.It is shown that the conditions for EEDF inversion can be realized in two-chamber discharge structures due to violating the known Boltzmann distribution for electron density.The theoretical conclusions are validated by numerical modeling of lowpressure two-chamber inductively-coupled plasma(ICP)discharges in the COMSOL Multiphysics environment.As a result,areas of conditions with inverse EEDF were found for subsequent detailed kinetic analysis and experimental studies.展开更多
[Objective] The inductively coupled plasma mass spectrometry(ICP-MS)was constructed to determine the contents of lead,cadmium,mercury and arsenic in Archyranthes bidentata Blume.[Method]Under the optimum operation con...[Objective] The inductively coupled plasma mass spectrometry(ICP-MS)was constructed to determine the contents of lead,cadmium,mercury and arsenic in Archyranthes bidentata Blume.[Method]Under the optimum operation condition of ICP-MS,the samples were digested by microwave.The element 114In was taken as an internal standard element to compensate body effect and ICP-MS method was used to determine the contents of lead,cadmium,mercury and arsenic.[Result]For the determined elements,the correlation coefficient(r)of standard curve was over 0.9995 and recovery rate was from 96.7% to 106.4% while RSD was less than 11.2%.The result of determination showed that the heavy metal content in Archyranthes bidentata Blume.beyond standard was serious.[Conclusion]The constructed ICP-MS method with simple operation,rapid response,accuracy and high sensitivity in this experiment could be used for quality control of Chinese medicinal materials by detecting heavy metal contents in different Chinese medicinal materials from original places.展开更多
The pulsed power supply(PPS)is one important component in the electromagnetic launch system.The inductive PPSs have attracted researchers’attentions with the major advantages of high energy storage density(over the c...The pulsed power supply(PPS)is one important component in the electromagnetic launch system.The inductive PPSs have attracted researchers’attentions with the major advantages of high energy storage density(over the capacitive PPSs)as well as simple structure and easy control(over the rotating mechanical PPSs).As for the inductive PPSs,the circuit topology of the basic module will directly determine the comprehensive performance of the whole system.From the perspectives of working principles,strengths,weaknesses,and comprehensive performance,this paper presents a historical and technical review of the major circuit topologies for the inductive PPSs.展开更多
In this paper, using the theory of L _fuzzy topological vector spaces [1]-[6] , we study some properties of L _fuzzy inductive topologies determined by a family of L _fuzzy linerar order_homomorphisms...In this paper, using the theory of L _fuzzy topological vector spaces [1]-[6] , we study some properties of L _fuzzy inductive topologies determined by a family of L _fuzzy linerar order_homomorphisms [2] of L _ftvs, and give a characterization of inductive topologies determined by a single FLOH. As an application of this results, we prove that the quotient space of L _ftvs is also L _ftvs.展开更多
To solve the ambiguous understanding of Grammar Teaching position,based on explicit grammatical knowledge,this paper discusses the grammar position in EFL,compares both its pros and cons between deductive and inductiv...To solve the ambiguous understanding of Grammar Teaching position,based on explicit grammatical knowledge,this paper discusses the grammar position in EFL,compares both its pros and cons between deductive and inductive approaches,and indicates that grammar teaching by either approach alone has disadvantages,should adopt a combination technique.展开更多
Objective The macula lagena in birds is located at the apical end of the cochlea and contains many tiny otoliths. The macula lagena is innervated and has neural projections to the brainstem, but its physiological func...Objective The macula lagena in birds is located at the apical end of the cochlea and contains many tiny otoliths. The macula lagena is innervated and has neural projections to the brainstem, but its physiological function is still unclear. It remains disputable that it is because otoliths in the lagena are rich in elements Fe and Zn that birds can obtain geomagnetic information for homing. To clarify this issue, we carried out a study to determine whether or not otoliths in the lagena of homing pigeons are richer in magnetic elements than those in the saccule and the utricle. Methods The contents of ferromagnetic elements (Fe, Co, Ni) and other metal elements in lagenal otoliths of adult homing pigeons were precisely analyzed with inductively coupled plasma mass spectrometry (ICP-MS) of high sensitivity, and then they were compared with those in saccular and utricular otoliths (all the contents were normalized to Ca). Results In adult homing pigeons, the contents of ferromagnetic elements (Fe, Co, Ni) in lagenal otoliths were less than 0.7% (normalized to Ca element) and were the same order in magnitude as those in saccular and utricular otoliths. The content of Fe in lagenal otoliths was not significantly different from that in utricular otoliths and was even lower than that in saccular otoliths. The content of Co in lagenal otoliths was lower than that in saccular otoliths and higher than that in utricular otoliths. The content of Ni in lagenal otoliths was not significantly different from that in saccular otoliths and was higher than that in utricular otoliths. The contents of other metal elements Na, Mg, K, Al, Mn and Pb in lagenal otoliths were not significantly different from those in utricular and saccular otoliths. The contents of metal elements Zn, Ba and Cu in lagenal otoliths were lower than those in saccular otoliths. Conclusion The contents of magnetic elements in lagenal otoliths of homing pigeons are not much higher than those in utricular and saccular otoliths, which does not support the hypothesis that birds depend on high contents of Fe and Zn in lagenal otoliths for sensation of geomagnetic information. Similarities in morphology, element ingredient and element content between lagenal otoliths and utricular otoliths suggest that the two types of otolithic organs may play similar roles in sensing gravitational and acceleration signals.展开更多
Efficient photogenerated carrier migration/separation plays a critical role in increasing the photocatalytic performance of g-C_(3)N_(4).Herein,sulfonic acid group-functionalized g-C_(3)N_(4)(SACN)was synthesized and ...Efficient photogenerated carrier migration/separation plays a critical role in increasing the photocatalytic performance of g-C_(3)N_(4).Herein,sulfonic acid group-functionalized g-C_(3)N_(4)(SACN)was synthesized and then synchronously strengthened by a facile-solid-state thermal reaction of g-C_(3)N_(4)and sulfamic acid.As a solid strong acid,sulfamic acid can be used to achieve acid etching on the surface of g-C_(3)N_(4)with the assistance of thermal treatment,leading to an enlarged specific surface area and increased surface catalytic reaction sites.More importantly,our experiments and density functional theory calculations indicate that the driving force generated by the negative inductive effect of sulfonic acid groups significantly improves the charge transfer dynamics and effectively inhibits their recombination.Moreover,the negative inductive effect can induce charge redistribution,which reduces the conduction band potential of g-C_(3)N_(4)to enhance the reduction ability of photo-induced electrons.As a result,the SACN-400 sample showed excellent photocatalytic performance in H2 generation with an apparent quantum efficiency of 11.03%at 420±15 nm,as well as an efficient photodegradation rate for organic pollutants.展开更多
The pulsed inductive thruster is characterized of no electrode corruption and wide propellant choice.To give insight into the propulsion mechanism of small scale thruster at different propellant mass(m)and energy(E)le...The pulsed inductive thruster is characterized of no electrode corruption and wide propellant choice.To give insight into the propulsion mechanism of small scale thruster at different propellant mass(m)and energy(E)levels,the transient Magneto Hydro Dynamics(MHD)method,completed by high temperature thermodynamic and transport,and plasma electrical models,is developed to study argon plasma response under the excitation of current of high rise rate.By calculating the two-dimensional expansion properties of the thruster with conical pylon,the simulations find that the main energy deposition occurs during the initial pulse rise stage,and the energy density of Joule heat is two magnitudes higher than the deposition in the down side.At propellant mass of 2 mg,average axial velocity of the current sheet increases from about 15 km/s at 750 J to about 21 km/s at 1470 J within the decoupling distance.The velocity variation synchronizes with the pulsed rise in the initial.The monotonically decrease of the temperature along axis results in the growth of low ionization level ions and reducing of high levels.The current sheet maintains the structure formed during the initial pulse rise when moving beyond the decoupling distance.Besides the change in forward velocity,the main difference is the dimension compared with that in the first half period,caused by thermal conduction and particle diffusion.The variations of total impulse It in the range of m from 2 mg to8 mg and E from 750 J to 1470 J show that It is proportional to m1/2 when E is determined.展开更多
The contents ofMg, Al, Si, Ti, Cr, Mn, Fe, Co, Cu, Ga, As, Se, Cd, Sb, Pb and Bi in high purity nickel were determined by high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). The sample was diss...The contents ofMg, Al, Si, Ti, Cr, Mn, Fe, Co, Cu, Ga, As, Se, Cd, Sb, Pb and Bi in high purity nickel were determined by high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). The sample was dissolved in HNO3 and HCI by microwave digestion. Most of the spectral interferences could be avoided by measuring in the high resolution mode. The matrix effects because of the presence of excess HC1 and nickel were evaluated. Correction for matrix effects was made using Sc, Rh and T1 as internal standards. The optimum conditions for the determination were tested and discussed. The detection limits range from 0.012 to 1.76 ~tg/g depending on the type of elements. The applicability of the proposed method is also validated by the analysis of high purity nickel reference material (NIST SRM 671). The relative standard deviation (RSD) is less than 3.3%. Results for determination of trace elements in high purity nickel were presented.展开更多
Most existing network representation learning algorithms focus on network structures for learning.However,network structure is only one kind of view and feature for various networks,and it cannot fully reflect all cha...Most existing network representation learning algorithms focus on network structures for learning.However,network structure is only one kind of view and feature for various networks,and it cannot fully reflect all characteristics of networks.In fact,network vertices usually contain rich text information,which can be well utilized to learn text-enhanced network representations.Meanwhile,Matrix-Forest Index(MFI)has shown its high effectiveness and stability in link prediction tasks compared with other algorithms of link prediction.Both MFI and Inductive Matrix Completion(IMC)are not well applied with algorithmic frameworks of typical representation learning methods.Therefore,we proposed a novel semi-supervised algorithm,tri-party deep network representation learning using inductive matrix completion(TDNR).Based on inductive matrix completion algorithm,TDNR incorporates text features,the link certainty degrees of existing edges and the future link probabilities of non-existing edges into network representations.The experimental results demonstrated that TFNR outperforms other baselines on three real-world datasets.The visualizations of TDNR show that proposed algorithm is more discriminative than other unsupervised approaches.展开更多
A An analytical method using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for rapid simultaneous determination of 24 elements (Be, Mg, A1, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, ...A An analytical method using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for rapid simultaneous determination of 24 elements (Be, Mg, A1, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, Mo, Ag, Cd, Sn Sb, Ba, Pt, Au, and Pb) in high purity cobalt was described. Sample digestions were performed in closed microwave vessels using HNO3 and HCI. The matrix effects because of the presence of excess HCI and Co were evaluated. The usefulness of high mass resolution for overcoming some spectral interference was demonstrated. The optimum conditions for the determination were tested and discussed. The standard addition method was employed for quantitative analysis. The detection limits were 0.016-1.50 ].tg·g^-1, the recovery ratios were 92.2%-111.2%, and the RSD was less than 3.6%. The method was accurate, quick, and convenient. It was applied to the determination of trace impurities in high purity cobalt with satisfactory results.展开更多
A new test method—the load relaxation test after the peak value, was used to investigate rockburst proneness. Two new concepts—fountain and inductive rockbursts, were proposed to distinguish two kinds of rockbursts....A new test method—the load relaxation test after the peak value, was used to investigate rockburst proneness. Two new concepts—fountain and inductive rockbursts, were proposed to distinguish two kinds of rockbursts. The breaking process of rock, mutation condition and occasion of rockburst and source of kinetic energy of rockburst were discussed.展开更多
A study of Cl2/BCl3-based inductively coupled plasma (ICP) was conducted using thick photoresist mask for anisotropic etching of 50μm diameter holes in a GaAs wafer at a relatively high average etching rate for etc...A study of Cl2/BCl3-based inductively coupled plasma (ICP) was conducted using thick photoresist mask for anisotropic etching of 50μm diameter holes in a GaAs wafer at a relatively high average etching rate for etching depths of more than 150μm. Plasma etch characteristics with ICP process pressure and the percentage of BCI3 were studied in greater detail at a constant ICP coil/bias power. The measured peak-to-peak voltage as a function of pressure was used to estimate the minimum energy of the ions bombarding the substrate. The process pressure was found to have a substantial influence on the energy of heavy ions. Various ion species in plasma showed minimum energy variation from 1.85 eV to 7.5 eV in the pressure range of 20 mTorr to 50 mTorr. The effect of pressure and the percentage of BCl3 on the etching rate and surface smoothness of the bottom surface of the etched hole were studied for a fixed total flow rate. The etching rate was found to decrease with the percentage of BCl3, whereas the addition of BCl3 resulted in anisotropic holes with a smooth veil free bottom surface at a pressure of 30 mTorr and 42% BC13. In addition, variation of the etching yield with pressure and etching depth were also investigated.展开更多
Amorphous spherical silica powders were prepared by inductively coupled thermal plasma treatment at a radio frequency of 36.2 MHz. The effects of the added content of hydrogen and nitrogen into argon(serving as the sh...Amorphous spherical silica powders were prepared by inductively coupled thermal plasma treatment at a radio frequency of 36.2 MHz. The effects of the added content of hydrogen and nitrogen into argon(serving as the sheath gas), as well as the carrier gas flow rate, on the spheroidization rate of silica powders, were investigated. The prepared silica powders before and after plasma treatment were examined by scanning electron microscopy, X-ray diffraction, and laser granulometric analysis. Results indicated that the average size of the silica particles increased, and the transformation of crystals into the amorphous state occurred after plasma treatment. Discharge image processing was employed to analyze the effect of the plasma temperature field on the spheroidization rate. The spheroidization rate of the silica powder increased with the increase of the hydrogen content in the sheath gas. On the other hand, the spheroidization rate of the silica power first increased and then decreased with the increase of the nitrogen content in the sheath gas. Moreover, the amorphous content increased with the increase of the spheroidization rate of the silica powder.展开更多
基金supported by the National Natural Science Foundation of China(Nos.22178388 and 22108306)Taishan Scholars Program of Shandong Province(No.tsqn201909065)Chongqing Science and Technology Bureau(No.cstc2019jscx-gksb X0032).
文摘Structural regulation of Pd-based electrocatalytic hydrodechlorination(EHDC)catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challenging.Herein,a support electron inductive effect of Pd-Mn/Ni foam catalyst was proposed via in-situ Mn doping to optimize the electronic structure of the Ni foam(NF),which can inductive regulation of Pd for improving the EHDC performance.The mass activity and current efficiency of Pd-Mn/NF catalyst are 2.91 and 1.34 times superior to that of Pd/NF with 2,4-dichlorophenol as model compound,respectively.The Mn-doped interlayer optimized the electronic structure of Pd by bringing the d-state closer to the Fermi level than Pd on the NF surface,which optimizied the binding of EHDC intermediates.Additionally,the Mn-doped interlayer acted as a promoter for generating H∗and accelerating the EHDC reaction.This work presents a simple and effective regulation strategy for constructing high-efficient cathode catalyst for the EHDC of chlorinated organic compounds.
基金financially supported by the National Natural Science Foundation of China(Nos.22104112 and 22374110)the Fundamental Research Funds for the Central Universities。
文摘The investigation of reaction kinetics is the key to understanding the nature of reaction processes.However,monitoring fast photochemical reactions by mass spectrometry remains challenging.Herein,we developed an optical focusing inductive electrospray(OF-iESI)mass spectrometry platform for real-time and in-situ photoreaction monitoring.Coaxial irradiation from back of nanoelectrospray emitter with a taper section was utilized,so the emitter could act as optical lens to help achieving much larger optical power density at emitter tip compared to other sections,which allowed for in-situ reaction monitoring of photoreactions.Through theoretical calculations,the highest optical power density region volume was ca.45 nL.We also integrated a controller for the laser source(450 nm),enabling the modulation of pulse duration(>1 ms).This facilitates the study of photochemical reaction kinetics.The in-situ capability of this device was proved by capturing the short-lived photogenerated intermediates during the dehydrogenation of tetrahydroquinoline.This device was further used to investigate the kinetics of triplet energy transfer based Paternò-Büchi reaction.The reaction order has hitherto remained undetermined while the result of OF-iESI suggested it followed pseudo-second-order reaction kinetics.The short-lived donor-acceptor collision complex intermediate was also successfully identified by tandem mass spectrometry.
基金funded by the National Natural Science Foundation of China(Grant No.:22173065)the Sichuan International Science and Technology Innovation Cooperation Project,China(Grant No.:24GJHZ0431).
文摘Computational analysis can accurately detect drug-gene interactions(DGIs)cost-effectively.However,transductive learning models are the hotspot to reveal the promising performance for unknown DGIs(both drugs and genes are present in the training model),without special attention to the unseen DGIs(both drugs and genes are absent in the training model).In view of this,this study,for the first time,proposed an inductive learning-based model for the precise identification of unseen DGIs.In our study,by integrating disease nodes to avoid data sparsity,a multi-relational drug-disease-gene(DDG)graph was constructed to achieve effective fusion of data on DDG intro-relationships and inter-actions.Following the extraction of graph features by utilizing graph embedding algorithms,our next step was the retrieval of the attributes of individual gene and drug nodes.In this way,a hybrid feature characterization was represented by integrating graph features and node attributes.Machine learning(ML)models were built,enabling the fulfillment of transductive predictions of unknown DGIs.To realize inductive learning,this study generated an innovative idea of transforming known node vectors derived from the DDG graph into representations of unseen nodes using node similarities as weights,enabling inductive predictions for the unseen DGIs.Consequently,the final model was superior to existing models,with significant improvement in predicting both external unknown and unseen DGIs.The practical feasibility of our model was further confirmed through case study and molecular docking.In summary,this study establishes an efficient data-driven approach through the proposed modeling,suggesting its value as a promising tool for accelerating drug discovery and repurposing.
文摘Directional design of efficient catalysts for volatile organic compounds degradation remains a complex,yet effective and challenging process.Herein,oxygen-rich vacancy Co_(3)O_(4)-anchored Pt catalysts were prepared through atom-trapping strategy and relevant vacancy defect inductive effect was proposed.The 0.6Pt/VO-Co_(3)O_(4)catalyst presented a reaction rate value of 32.2×10^(-5)mol·g_(cat)^(-1)·s^(-1)at 160℃for catalytic propane total oxidation,which was nearly 5 times the reaction rate of Co_(3)O_(4)(6.7×10^(-5)mol·g_(cat)^(-1)·s^(-1)).Also,it exhibited excellent water-resistance and catalytic stability.The Pt atoms were stabilized on the Co_(3)O_(4)surface by vacancy defects to improve dispersion.Meanwhile,the vacancy defect inductive effect induced stronger electron interaction between Pt and Co_(3)O_(4)on the surface,thus promote the redox ability at low-temperature.The mobility and oxygen-activating ability of surface lattice oxygen were also strengthened by the vacancy defect inductive effect.This facilitated the generation of more surface-active oxygen species for the cleavage of C-H bond and the deep oxidation of intermediate species.Overall,this study proposed a novel concept the fabrication of highly efficient catalysts for the purpose of catalytic oxidation.
基金supported by Alberta Health,Alberta Innovates,the Canada Research Chairs Program,the Canadian Institutes of Health Research,and the Natural Sciences and Engineering Research Council of Canada。
文摘Arsenic speciation in freshwater fish is crucial for providing meaningful consumption guidelines that allow the public to make informed decisions regarding its consumption.While marine fish have attractedmuch research interest due to their higher arsenic content,research on freshwater fish is limited due to the challenges in quantifying and identifying arsenic species present at trace levels.We describe here a sensitivemethod and its application to the quantification of arsenic species in freshwater fish.Arsenic species from fish tissues were extracted using a methanol/water mixture(1:1 vol.ratio)and ultrasound sonication.Anion-exchange high-performance liquid chromatography(HPLC)enabled separation of arsenobetaine(AsB),inorganic arsenite(iAs^(Ⅲ)),dimethylarsinic acid(DMA),monomethylarsonic acid(MMA),inorganic arsenate(iAs^(Ⅴ)),and three new arsenic species.Inductively coupled plasma mass spectrometry(ICPMS)provided highly sensitive and specific detection of arsenic.A limit of detection of 0.25μg/kg(wet weight fish tissue)was achieved for the five target arsenic species:AsB,iAs^(Ⅲ),DMA,MMA,and iAs^(Ⅴ).A series of experimentswere conducted to ensure the accuracy and validity of the analytical method.The method was successfully applied to the determination of arsenic species in lakewhitefish,northern pike,and walleye,with AsB,DMA,and iAs^(Ⅴ) being frequently detected.Three new arsenic species were detected,but their chromatographic retention times did not match with those of any available arsenic standards.Future research is necessary to elucidate the identity of these new arsenic species detected in freshwater fish.
基金supported by the National Key R&D Program of China(No.2022YFE0204100)National Natural Science Foundation of China(Nos.12205067 and 12375199)the Fundamental Research Funds for the Central University(No.HIT.D?J.2023178)。
文摘This work continues the studies on searching for plasma media with the inverse electron energy distribution function(EEDF)and providing recommendations for setting up subsequent experiments.The inverse EEDF is a distribution function that increases with an increase in energy at zero electron energy.The inverse EEDF plays a central role in the problem of negative conductivity.Based on the previously obtained criterion for the formation of an inverse EEDF in a spatially inhomogeneous plasma,a heuristic method is proposed that allows one to avoid resource-intensive calculations for spatially two-dimensional(2D)kinetic modeling on a large array of different glow discharges.It is shown that the conditions for EEDF inversion can be realized in two-chamber discharge structures due to violating the known Boltzmann distribution for electron density.The theoretical conclusions are validated by numerical modeling of lowpressure two-chamber inductively-coupled plasma(ICP)discharges in the COMSOL Multiphysics environment.As a result,areas of conditions with inverse EEDF were found for subsequent detailed kinetic analysis and experimental studies.
基金Supported by the National Science Foundation for Post-doctoral Scientists of China(20070410616)Excellent Youth Foundation of He'nan Scientific Committee(074100510018)~~
文摘[Objective] The inductively coupled plasma mass spectrometry(ICP-MS)was constructed to determine the contents of lead,cadmium,mercury and arsenic in Archyranthes bidentata Blume.[Method]Under the optimum operation condition of ICP-MS,the samples were digested by microwave.The element 114In was taken as an internal standard element to compensate body effect and ICP-MS method was used to determine the contents of lead,cadmium,mercury and arsenic.[Result]For the determined elements,the correlation coefficient(r)of standard curve was over 0.9995 and recovery rate was from 96.7% to 106.4% while RSD was less than 11.2%.The result of determination showed that the heavy metal content in Archyranthes bidentata Blume.beyond standard was serious.[Conclusion]The constructed ICP-MS method with simple operation,rapid response,accuracy and high sensitivity in this experiment could be used for quality control of Chinese medicinal materials by detecting heavy metal contents in different Chinese medicinal materials from original places.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 50877039in part by the Tsinghua University Initiative Scientific Research Program under Grant No.20121087927(Corresponding author:Xinjie Yu).
文摘The pulsed power supply(PPS)is one important component in the electromagnetic launch system.The inductive PPSs have attracted researchers’attentions with the major advantages of high energy storage density(over the capacitive PPSs)as well as simple structure and easy control(over the rotating mechanical PPSs).As for the inductive PPSs,the circuit topology of the basic module will directly determine the comprehensive performance of the whole system.From the perspectives of working principles,strengths,weaknesses,and comprehensive performance,this paper presents a historical and technical review of the major circuit topologies for the inductive PPSs.
文摘In this paper, using the theory of L _fuzzy topological vector spaces [1]-[6] , we study some properties of L _fuzzy inductive topologies determined by a family of L _fuzzy linerar order_homomorphisms [2] of L _ftvs, and give a characterization of inductive topologies determined by a single FLOH. As an application of this results, we prove that the quotient space of L _ftvs is also L _ftvs.
文摘To solve the ambiguous understanding of Grammar Teaching position,based on explicit grammatical knowledge,this paper discusses the grammar position in EFL,compares both its pros and cons between deductive and inductive approaches,and indicates that grammar teaching by either approach alone has disadvantages,should adopt a combination technique.
基金supported by the National Natural Science Foundation of China(No.30470560 and 30730041)the National Basic Research Program of China (No.2007CB512306)the Knowledge Innovation Project of Chinese Academy of Sciences (No.KSCX1-YW-R-36)
文摘Objective The macula lagena in birds is located at the apical end of the cochlea and contains many tiny otoliths. The macula lagena is innervated and has neural projections to the brainstem, but its physiological function is still unclear. It remains disputable that it is because otoliths in the lagena are rich in elements Fe and Zn that birds can obtain geomagnetic information for homing. To clarify this issue, we carried out a study to determine whether or not otoliths in the lagena of homing pigeons are richer in magnetic elements than those in the saccule and the utricle. Methods The contents of ferromagnetic elements (Fe, Co, Ni) and other metal elements in lagenal otoliths of adult homing pigeons were precisely analyzed with inductively coupled plasma mass spectrometry (ICP-MS) of high sensitivity, and then they were compared with those in saccular and utricular otoliths (all the contents were normalized to Ca). Results In adult homing pigeons, the contents of ferromagnetic elements (Fe, Co, Ni) in lagenal otoliths were less than 0.7% (normalized to Ca element) and were the same order in magnitude as those in saccular and utricular otoliths. The content of Fe in lagenal otoliths was not significantly different from that in utricular otoliths and was even lower than that in saccular otoliths. The content of Co in lagenal otoliths was lower than that in saccular otoliths and higher than that in utricular otoliths. The content of Ni in lagenal otoliths was not significantly different from that in saccular otoliths and was higher than that in utricular otoliths. The contents of other metal elements Na, Mg, K, Al, Mn and Pb in lagenal otoliths were not significantly different from those in utricular and saccular otoliths. The contents of metal elements Zn, Ba and Cu in lagenal otoliths were lower than those in saccular otoliths. Conclusion The contents of magnetic elements in lagenal otoliths of homing pigeons are not much higher than those in utricular and saccular otoliths, which does not support the hypothesis that birds depend on high contents of Fe and Zn in lagenal otoliths for sensation of geomagnetic information. Similarities in morphology, element ingredient and element content between lagenal otoliths and utricular otoliths suggest that the two types of otolithic organs may play similar roles in sensing gravitational and acceleration signals.
文摘Efficient photogenerated carrier migration/separation plays a critical role in increasing the photocatalytic performance of g-C_(3)N_(4).Herein,sulfonic acid group-functionalized g-C_(3)N_(4)(SACN)was synthesized and then synchronously strengthened by a facile-solid-state thermal reaction of g-C_(3)N_(4)and sulfamic acid.As a solid strong acid,sulfamic acid can be used to achieve acid etching on the surface of g-C_(3)N_(4)with the assistance of thermal treatment,leading to an enlarged specific surface area and increased surface catalytic reaction sites.More importantly,our experiments and density functional theory calculations indicate that the driving force generated by the negative inductive effect of sulfonic acid groups significantly improves the charge transfer dynamics and effectively inhibits their recombination.Moreover,the negative inductive effect can induce charge redistribution,which reduces the conduction band potential of g-C_(3)N_(4)to enhance the reduction ability of photo-induced electrons.As a result,the SACN-400 sample showed excellent photocatalytic performance in H2 generation with an apparent quantum efficiency of 11.03%at 420±15 nm,as well as an efficient photodegradation rate for organic pollutants.
基金supported by the National Natural Science Foundation of China(Nos.11675040 and 11702319).
文摘The pulsed inductive thruster is characterized of no electrode corruption and wide propellant choice.To give insight into the propulsion mechanism of small scale thruster at different propellant mass(m)and energy(E)levels,the transient Magneto Hydro Dynamics(MHD)method,completed by high temperature thermodynamic and transport,and plasma electrical models,is developed to study argon plasma response under the excitation of current of high rise rate.By calculating the two-dimensional expansion properties of the thruster with conical pylon,the simulations find that the main energy deposition occurs during the initial pulse rise stage,and the energy density of Joule heat is two magnitudes higher than the deposition in the down side.At propellant mass of 2 mg,average axial velocity of the current sheet increases from about 15 km/s at 750 J to about 21 km/s at 1470 J within the decoupling distance.The velocity variation synchronizes with the pulsed rise in the initial.The monotonically decrease of the temperature along axis results in the growth of low ionization level ions and reducing of high levels.The current sheet maintains the structure formed during the initial pulse rise when moving beyond the decoupling distance.Besides the change in forward velocity,the main difference is the dimension compared with that in the first half period,caused by thermal conduction and particle diffusion.The variations of total impulse It in the range of m from 2 mg to8 mg and E from 750 J to 1470 J show that It is proportional to m1/2 when E is determined.
基金Project(21075138) supported by the National Natural Science Foundation of ChinaProject(cstc2011jjA0780) supported by Natural Science Foundation of Chongqing City,ChinaProject(KJ121311) supported by Educational Commission of Chongqing City of China
文摘The contents ofMg, Al, Si, Ti, Cr, Mn, Fe, Co, Cu, Ga, As, Se, Cd, Sb, Pb and Bi in high purity nickel were determined by high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). The sample was dissolved in HNO3 and HCI by microwave digestion. Most of the spectral interferences could be avoided by measuring in the high resolution mode. The matrix effects because of the presence of excess HC1 and nickel were evaluated. Correction for matrix effects was made using Sc, Rh and T1 as internal standards. The optimum conditions for the determination were tested and discussed. The detection limits range from 0.012 to 1.76 ~tg/g depending on the type of elements. The applicability of the proposed method is also validated by the analysis of high purity nickel reference material (NIST SRM 671). The relative standard deviation (RSD) is less than 3.3%. Results for determination of trace elements in high purity nickel were presented.
基金Projects(11661069,61763041) supported by the National Natural Science Foundation of ChinaProject(IRT_15R40) supported by Changjiang Scholars and Innovative Research Team in University,ChinaProject(2017TS045) supported by the Fundamental Research Funds for the Central Universities,China
文摘Most existing network representation learning algorithms focus on network structures for learning.However,network structure is only one kind of view and feature for various networks,and it cannot fully reflect all characteristics of networks.In fact,network vertices usually contain rich text information,which can be well utilized to learn text-enhanced network representations.Meanwhile,Matrix-Forest Index(MFI)has shown its high effectiveness and stability in link prediction tasks compared with other algorithms of link prediction.Both MFI and Inductive Matrix Completion(IMC)are not well applied with algorithmic frameworks of typical representation learning methods.Therefore,we proposed a novel semi-supervised algorithm,tri-party deep network representation learning using inductive matrix completion(TDNR).Based on inductive matrix completion algorithm,TDNR incorporates text features,the link certainty degrees of existing edges and the future link probabilities of non-existing edges into network representations.The experimental results demonstrated that TFNR outperforms other baselines on three real-world datasets.The visualizations of TDNR show that proposed algorithm is more discriminative than other unsupervised approaches.
基金the Natural Science Foundation of Hunan Province, China (No. 05JJ40017).
文摘A An analytical method using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for rapid simultaneous determination of 24 elements (Be, Mg, A1, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, Mo, Ag, Cd, Sn Sb, Ba, Pt, Au, and Pb) in high purity cobalt was described. Sample digestions were performed in closed microwave vessels using HNO3 and HCI. The matrix effects because of the presence of excess HCI and Co were evaluated. The usefulness of high mass resolution for overcoming some spectral interference was demonstrated. The optimum conditions for the determination were tested and discussed. The standard addition method was employed for quantitative analysis. The detection limits were 0.016-1.50 ].tg·g^-1, the recovery ratios were 92.2%-111.2%, and the RSD was less than 3.6%. The method was accurate, quick, and convenient. It was applied to the determination of trace impurities in high purity cobalt with satisfactory results.
文摘A new test method—the load relaxation test after the peak value, was used to investigate rockburst proneness. Two new concepts—fountain and inductive rockbursts, were proposed to distinguish two kinds of rockbursts. The breaking process of rock, mutation condition and occasion of rockburst and source of kinetic energy of rockburst were discussed.
文摘A study of Cl2/BCl3-based inductively coupled plasma (ICP) was conducted using thick photoresist mask for anisotropic etching of 50μm diameter holes in a GaAs wafer at a relatively high average etching rate for etching depths of more than 150μm. Plasma etch characteristics with ICP process pressure and the percentage of BCI3 were studied in greater detail at a constant ICP coil/bias power. The measured peak-to-peak voltage as a function of pressure was used to estimate the minimum energy of the ions bombarding the substrate. The process pressure was found to have a substantial influence on the energy of heavy ions. Various ion species in plasma showed minimum energy variation from 1.85 eV to 7.5 eV in the pressure range of 20 mTorr to 50 mTorr. The effect of pressure and the percentage of BCl3 on the etching rate and surface smoothness of the bottom surface of the etched hole were studied for a fixed total flow rate. The etching rate was found to decrease with the percentage of BCl3, whereas the addition of BCl3 resulted in anisotropic holes with a smooth veil free bottom surface at a pressure of 30 mTorr and 42% BC13. In addition, variation of the etching yield with pressure and etching depth were also investigated.
基金financially supported by the National Natural Science Foundation of China (Nos. 21377133, 11535003, and 11405221)
文摘Amorphous spherical silica powders were prepared by inductively coupled thermal plasma treatment at a radio frequency of 36.2 MHz. The effects of the added content of hydrogen and nitrogen into argon(serving as the sheath gas), as well as the carrier gas flow rate, on the spheroidization rate of silica powders, were investigated. The prepared silica powders before and after plasma treatment were examined by scanning electron microscopy, X-ray diffraction, and laser granulometric analysis. Results indicated that the average size of the silica particles increased, and the transformation of crystals into the amorphous state occurred after plasma treatment. Discharge image processing was employed to analyze the effect of the plasma temperature field on the spheroidization rate. The spheroidization rate of the silica powder increased with the increase of the hydrogen content in the sheath gas. On the other hand, the spheroidization rate of the silica power first increased and then decreased with the increase of the nitrogen content in the sheath gas. Moreover, the amorphous content increased with the increase of the spheroidization rate of the silica powder.