期刊文献+
共找到209篇文章
< 1 2 11 >
每页显示 20 50 100
An Instrumented Sharp Indentation Method for Measuring Equibiaxial Residual Stress without Using Stress-Free Specimens
1
作者 Guangjian Peng Saifei Li +3 位作者 Liang Zhang Peijian Chen Wei Xiong Taihua Zhang 《Acta Mechanica Solida Sinica》 2025年第2期290-299,共10页
The presence of residual stresses in materials or engineering structures can significantly influence their mechanical per-formance.Accurate measurement of residual stresses is of great importance to ensure their in-se... The presence of residual stresses in materials or engineering structures can significantly influence their mechanical per-formance.Accurate measurement of residual stresses is of great importance to ensure their in-service reliability.Although numerous instrumented indentation methods have been proposed to evaluate residual stresses,the majority of them require a stress-free reference sample as a comparison benchmark,thereby limiting their applicability in scenarios where obtaining stress-free reference samples is challenging.In this work,through a number of finite element simulations,it was found that the loading exponent of the loading load-depth curve and the recovered depth during unloading are insensitive to residual stresses.The loading curve of the stress-free specimen was virtually reconstructed using such stress-insensitive parameters extracted from the load-depth curves of the stressed state,thus eliminating the requirement for stress-free reference samples.The residual stress was then correlated with the fractional change in loading work between stressed and stress-free loading curves through dimensional analysis and finite element simulations.Based on this correlation,an instrumented sharp indentation method for measuring equibiaxial residual stress without requiring a stress-free specimen was established.Both numerical and experimental verifications were carried out to demonstrate the accuracy and reliability of the newly proposed method.The maximum relative error and absolute error in measured residual stresses are typically within±20%and±20 MPa,respectively. 展开更多
关键词 Experimental mechanics Residual stress measurement Instrumented indentation Finite element simulation Dimensional analysis
原文传递
Spherical Indentation on a Piezoelectric Semiconductor Film/Elastic Substrate System
2
作者 Shijing Gao Guoquan Nie +1 位作者 Jinxi Liu Weiqiu Chen 《Acta Mechanica Solida Sinica》 2025年第5期872-883,共12页
We study the axisymmetric frictionless indentation problem of a piezoelectric semiconductor(PSC)thin film perfectly bonded to a semi-infinite isotropic elastic substrate by a rigid and insulating spherical indenter.Th... We study the axisymmetric frictionless indentation problem of a piezoelectric semiconductor(PSC)thin film perfectly bonded to a semi-infinite isotropic elastic substrate by a rigid and insulating spherical indenter.The Hankel integral transformation is first employed to derive the general solutions for the governing differential equations of the PSC film and elastic substrate.Then,using the boundary and interface conditions,the complicated indentation problem is reduced to numerically solve a Fredholm integral equation of the second kind.Numerical results are given to demonstrate the effects of semiconducting property,film thickness as well as Young’s modulus and Poisson’s ratio of the substrate on the indentation responses.The obtained findings will contribute to the establishment of indentation experiments for PSC film/substrate systems. 展开更多
关键词 indentation Piezoelectric semiconductor Singular integral equation Substrate effect Thin film
原文传递
Characterization of Anisotropy in Additively Manufactured Materials through Instrumented Indentation Testing
3
作者 Zhuoshao Cai Zhiwei Yang +5 位作者 Liang Meng Kaijie Lin Yuliang Hou Thaneshan Sapanathan Jihong Zhu Weihong Zhang 《Chinese Journal of Mechanical Engineering》 2025年第1期1-16,共16页
The accurate characterization of anisotropy for additively manufactured materials is of vital importance for both highperformance structural design and printing processing optimization.To avoid the repetitive and redu... The accurate characterization of anisotropy for additively manufactured materials is of vital importance for both highperformance structural design and printing processing optimization.To avoid the repetitive and redundant tensile testing on specimens prepared along diverse directions,this study proposes an instrumented indentation-based inverse identification method for the efficient characterization of additively manufactured materials.In the present work,a 3D finite element model of indentation test is first established for the printed material,for which an anisotropic material constitutive model is incorporated.We have demonstrated that the indentation responses are information-rich,and material anisotropy along different directions can be interpreted by a single indentation imprint.Subsequently,an inverse identification framework is built,in which an Euclidean error norm between simulated and experimental indentation responses is minimized via optimization algorithms such as the Globally Convergent Method of Moving Asymptotes(GCMMA).The developed method has been verified on diverse printed materials referring to either the indentation curve or the residual imprint,and the superiority of this latter over the former is confirmed by a better and faster convergence of inverse identification.Experimental validations on 3D printed materials(including stainless steel 316L,aluminum alloy AlSi10Mg,and titanium alloy TC4)reveal that the developed method is both accurate and reliable when compared with material constitutive behaviors obtained from uni-axial tensile tests,regardless of the degree of anisotropy among different materials. 展开更多
关键词 Additive manufacturing Anisotropy property Inverse identification indentation test
在线阅读 下载PDF
Indentation of a Plate on a Thin Transversely Isotropic Elastic Layer
4
作者 Juyao Li Guozheng Zhang +1 位作者 Liu Wang Zhaohe Dai 《Acta Mechanica Solida Sinica》 2025年第2期331-340,共10页
This work investigates the indentation response of an elastic plate resting upon a thin,transversely isotropic elastic layer supported by a rigid substrate.Such a scenario is encountered across a range of length scale... This work investigates the indentation response of an elastic plate resting upon a thin,transversely isotropic elastic layer supported by a rigid substrate.Such a scenario is encountered across a range of length scales from piezoresistive tests on graphite nanoflakes to the bending of floating ice shelves atop seabed,where the elastic layer commonly exhibits certain anisotropy.We first develop an approximate model to describe the elastic response of a transversely isotropic layer by exploiting the slenderness of the layer.We show that this approximate model can be reduced to the classic compressible Winkler foundation model as the elastic constants of the layer are set isotropic.We then investigate the combined response of an elastic plate on the transversely isotropic elastic layer.Facilitated by the simplicity of our proposed approximate model,we can derive simple analytical solutions for the cases of small and large indenter radi.The analytical results agree well with numerical calculations obtained via finite element methods,as long as the system is sufficiently slender in a mechanical sense.These results offer quantitative insights into the mechanical behavior of numerous semiconductor materials characterized by transverse isotropy and employed with slender geometries in various practical applications where the thin layer works as conductive and functional layers. 展开更多
关键词 indentation Elastic layers-Transversely isotropic Winkler foundation GRAPHITE
原文传递
A review of rock macro-indentation:Theories,experiments,simulations,and applications
5
作者 Weiqiang Xie Xiaoli Liu +2 位作者 Xiaoping Zhang Xinmei Yang Xiaoxiong Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2351-2374,共24页
Rock macro-indentation plays a fundamental role in mechanical rock breaking for various rock engineering application,such as drilling,tunneling,cutting,and sawing.Over the past decades,extensive research has been cond... Rock macro-indentation plays a fundamental role in mechanical rock breaking for various rock engineering application,such as drilling,tunneling,cutting,and sawing.Over the past decades,extensive research has been conducted to understand the indentation mechanisms and responses through various approaches.This review aims to provide an overview of the current status and recent advancements in theories,experiments,numerical simulations,and applications of macro-indentation in rock engineering.It starts with elaborating on the mechanisms of macro-indentation,followed by a discussion of the merits and limitations of commonly used models.Influence factors and their effects on indentation test results are then summarized.Various numerical simulation methods for rock macro-indentation are highlighted,along with their advantages and disadvantages.Subsequently,the applications of indentation tests and indentation indices in characterizing rock properties are explored.It reveals that compression-tension,compression-shear,and composite models are widely employed in rock macroindentation.While the compression-tension model is straightforward to use,it may overlook the anisotropic properties of rocks.On the other hand,the composite model provides a more comprehensive description of rock indentation but requires complex calculations.Additionally,factors,such as indentation rate,indenter geometry,rock type,specimen size,and confining pressure,can significantly influence the indentation results.Simulation methods for macro-indentation encompass continuous medium,discontinuous medium,and continuous-discontinuous medium methods,with selection based on their differences in principle.Furthermore,rock macro-indentation can be practically applied to mining engineering,tunneling engineering,and petroleum drilling engineering.Indentation indices serve as valuable tools for characterizing rock strength,brittleness,and drillability.This review sheds light on the development of rock macro-indentation and its extensive application in engineering practice.Specialists in the field can gain a comprehensive understanding of the indentation process and its potential in various rock engineering endeavors. 展开更多
关键词 Rock macro-indentation indentation test indentation indices MECHANISM Rock breaking
在线阅读 下载PDF
Vibration-assisted material damage mechanism:From indentation cracks to scratch cracks 被引量:1
6
作者 Bingrui LV Bin LIN +5 位作者 Tianyi SUI Chunyan LIU Jinshuo ZHANG Longfei WANG Xuhui CHEN Jingguo ZHOU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第8期527-546,共20页
Vibration-assisted grinding is one of the most promising technologies for manufacturing optical components due to its efficiency and quality advantages.However,the damage and crack propagation mechanisms of materials ... Vibration-assisted grinding is one of the most promising technologies for manufacturing optical components due to its efficiency and quality advantages.However,the damage and crack propagation mechanisms of materials in vibration-assisted grinding are not well understood.In order to elucidate the mechanism of abrasive scratching during vibration-assisted grinding,a kinematic model of vibration scratching was developed.The influence of process parameters on the evolution of vibration scratches to indentation or straight scratches is revealed by displacement metrics and velocity metrics.Indentation,scratch and vibration scratch experiments were performed on quartz glass,and the results showed that the vibration scratch cracks are a combination of indentation cracks and scratch cracks.Vibration scratch cracks change from indentation cracks to scratch cracks as the indenter moves from the entrance to the exit of the workpiece or as the vibration frequency changes from high to low.A vertical vibration scratch stress field model is established for the first time,which reveals that the maximum principal stress and tensile stress distribution is the fundamental cause for inducing the transformation of the vibration scratch cracking system.This model provides a theoretical basis for understanding of the mechanism of material damage and crack propagation during vibration-assisted grinding. 展开更多
关键词 Vibration assisted grinding indentation Vibration scratch Material removal mechanism Stress field model Crack propagation mechanism
原文传递
Anisotropic Mechanical Response of Nacre to Heat Treatment Under Indentation:Effect of Structural Orientation
7
作者 Simin Liang Yingying Li +1 位作者 Hongmei Ji Xiaowu Li 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第3期1453-1464,共12页
It is generally considered that heat treatments have a negative impact on the mechanical properties of nacre due to thermal decomposition of the organic matrix.However,the present work investigated the microindentatio... It is generally considered that heat treatments have a negative impact on the mechanical properties of nacre due to thermal decomposition of the organic matrix.However,the present work investigated the microindentation behavior on fresh and heat-treated nacres from two orthogonal directions,and the results demonstrate that both hardness value and damage tolerance can remain almost unchanged on the cross-section with the organic matrix degeneration,despite a significant deterioration on the platelet surface.Theoretical analyses suggest that the anisotropic response of indentation behavior to heat treatment in nacre is primarily caused by its structural orientation.Specifically,compared with a single layer of irregular interplatelet interfaces in cross-sectional specimens,the multiple layers of parallel interlamellar interfaces in in-plane specimens exhibit a much greater ability to impede indenter-triggered destruction,and heat treatments would reduce the in-plane hardness but nearly have no effect on the cross-sectional hardness.Moreover,the deeper embedding of platelets in cross-sectional specimens enhances their resistance to interface cracking caused by organic matrix degradation at high temperatures,leading to a reduced sensitivity to damage.Therefore,the indentation behavior of nacre shows different tendencies in response to variations in the organic matrix state along normal and parallel directions. 展开更多
关键词 NACRE Structural orientation Heat treatment indentation behavior Organic matrix
在线阅读 下载PDF
Novel method for measuring surface residual stress using flat-ended cylindrical indentation
8
作者 Guangzhao HAN Lixun CAI Xiaokun LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第8期486-495,共10页
Instrumented indentation is a promising technique for estimating surface residual stresses and mechanical properties in engineering components.The relative difference between the indentation loads for unstressed and s... Instrumented indentation is a promising technique for estimating surface residual stresses and mechanical properties in engineering components.The relative difference between the indentation loads for unstressed and stressed specimens was selected as the key parameter for measuring surface residual stresses in flat-ended cylindrical indentations.Based on the equivalent material method and finite element simulations,a dimensionless mapping model with six constants was established between the relative load difference,constitutive model parameters,and normalized residual stress.A novel method for measuring the surface residual stress and constitutive model parameters of metallic material through flat-ended cylindrical indentations was proposed using this model and a mechanical properties determination method.Numerical simulations were conducted using numerous elastoplastic materials with different residual stresses to verify the proposed model;good agreements were observed between the predicted residual stresses and those previously applied in finite element analysis.Flat-ended cylindrical indentation tests were performed on four metallic materials using cruciform specimens subjected to various equibiaxial stresses.The results exhibited good conformance between the stress–strain curves obtained using the proposed method and those from traditional tensile tests,and the absolute differences between the predicted residual stresses and applied stresses were within 40 MPa in most cases. 展开更多
关键词 Instrumented indentation Residual stress Finite element simulation Equivalent material method Mechanical property
原文传递
Study of damage behavior and repair effectiveness of patch repaired carbon fiber laminate under quasi-static indentation loading
9
作者 Alok Kumar Chinmaya Kumar Sahoo A.Arockiarajan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期29-41,共13页
Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the ... Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load. 展开更多
关键词 Carbon fiber reinforced polymers(CFRP) Quasi-isotropic laminate Quasi static indentation(QSI) Acoustic emission(AE) Composite repair
在线阅读 下载PDF
Unexpected Twinning and Phase-Transition of the Indentation Standards, Their Transition Energies, and Scientific Dichotomy
10
作者 Gerd Kaupp 《Journal of Applied Mathematics and Physics》 2024年第6期2119-2159,共41页
The general use of aluminium as an indentation standard for the iteration of contact heights for the determination of ISO-14577 hardness and elastic modulus is challenged because of as yet not appreciated phase-change... The general use of aluminium as an indentation standard for the iteration of contact heights for the determination of ISO-14577 hardness and elastic modulus is challenged because of as yet not appreciated phase-changes in the physical force-depth standard curve that seemed to be secured by claims from 1992. The physical and mathematical analyses with closed formulas avoid the still world-wide standardized energy-law violation by not reserving 33.33% (h2 belief) (or 20% h3/2 physical law) of the loading force and thus energy for all not depth producing events but using 100% for the depth formation is a severe violation of the energy law. The not depth producing part of the indentation work cannot be done with zero energy! Both twinning and structural phase-transition onsets and normalized phase-transition energies are now calculated without iterations but with physically correct closed arithmetic equations. These are reported for Berkovich and cubecorner indentations, including their comparison on geometric grounds and an indentation standard without mechanical twinning is proposed. Characteristic data are reported. This is the first detection of the indentation twinning of aluminium at room temperature and the mechanical twinning of fused quartz is also new. Their disqualification as indentation standards is established. Also, the again found higher load phase-transitions disqualify aluminium and fused quartz as ISO-ASTM 14577 (International Standardization Organization and American Society for Testing and Materials) standards for the contact depth “hc” iterations. The incorrect and still world-wide used black-box values for H- and Er-values (the latter are still falsely called “Young’s moduli” even though they are not directional) and all mechanical properties that depend on them. They lack relation to bulk moduli from compression experiments. Experimentally obtained and so published force vs depth parabolas always follow the linear FN = kh3/2 + Fa equation, where Fa is the axis-cut before and after the phase-transition branches (never “h2” as falsely enforced and used for H, Er and giving incorrectly calculated parameters). The regression slopes k are the precise physical hardness values, which for the first time allow for precise calculation of the mechanical qualities by indentation in relation to the geometry of the indenter tip. Exactly 20% of the applied force and thus energy is not available for the indentation depth. Only these scientific k-values must be used for AI-advises at the expense of falsely iterated indentation hardness H-values. Any incorrect H-ISO-ASTM and also the iterated Er-ISO-ASTM modulus values of technical materials in artificial intelligence will be a disaster for the daily safety. The AI must be told that these are unscientific and must therefore be replaced by physical data. Iterated data (3 and 8 free parameters!) cannot be transformed into physical data. One has to start with real experimental loading curves and an absolute ZerodurR standard that must be calibrated with standard force and standard length to create absolute indentation results. . 展开更多
关键词 Aluminium Fused Quartz Copper TWINNING Structural Phase-Transitions Undue indentation Standards Data Manipulation ZerodurR Absolute Hardness
在线阅读 下载PDF
Factors Resulting in Micron Indentation Hardness Descending in Indentation Tests 被引量:1
11
作者 李敏 陈伟民 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第1期43-48,共6页
Some factors that affect the experimental results in nanoindentation tests such as the contact depth,contact area,load and loading duration are analyzed in this article. Combining with the results of finite element nu... Some factors that affect the experimental results in nanoindentation tests such as the contact depth,contact area,load and loading duration are analyzed in this article. Combining with the results of finite element numerical simulation,we find that the creep property of the tested material is one of the important factors causing the micron indentation hardness descending with the increase of indentation depth. The analysis of experimental results with different indentation depths demonstrates that the hardn... 展开更多
关键词 NANOindentation HARDNESS indentation size effect
原文传递
Effect of indentation size and grain/sub-grain size on microhardness of high purity tungsten 被引量:2
12
作者 刘光玉 倪颂 宋旼 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3240-3246,共7页
Hardness of materials depends significantly on the indentation size and grain/sub-grain size via microindentation and nanoindentation tests of high-purity tungsten with different structures.The grain boundary effect a... Hardness of materials depends significantly on the indentation size and grain/sub-grain size via microindentation and nanoindentation tests of high-purity tungsten with different structures.The grain boundary effect and indentation size effect were explored.The indentation hardness was fitted using the Nix-Gao model by considering the scaling factor.The results show that the scaling factor is barely correlated with the grain/sub-grain size.The interaction between the plastically deformed zone(PDZ) boundary and the grain/sub-grain boundary is believed to be the reason that leads to an increase of the measured hardness at the specific depths.Results also indicate that the area of the PDZ is barely correlated with the grain/sub-grain size,and the indentation hardness starts to stabilize once the PDZ expands to the dimension of an individual grain/sub-grain. 展开更多
关键词 high purity tungsten indentation hardness indentation size effect grain boundary plastic deformation zone
在线阅读 下载PDF
Influence of Residual Stress on the Elastic-plastic Response to Indentation
13
作者 孙渊 王庆明 《Journal of Donghua University(English Edition)》 EI CAS 2008年第4期366-372,共7页
The indentation method is useful in determining the residual stress according to the elastic-plastic properties of materials.So the effect of the residual stress on the elastic-plastic indentation properties of materi... The indentation method is useful in determining the residual stress according to the elastic-plastic properties of materials.So the effect of the residual stress on the elastic-plastic indentation properties of materials was studied by using the finite element method to find better indentation parameters which are strongly induced by the residual stress.The results show that load-depth curve,plastic pile-up,indentation shape,indentation contact stress and indentation residual stress are affected by different residual stress,and these parameters can be used to deduce the residual stress.Also,a special indentation equipment was developed to analyze the elastic-plastic properties of materials with different residual stress,and the experimental results show a good agreement with the FEM results.For practical application,the elastic-plastic indentation properties of materials with unknown residual stress could be obtained by the developed equipment to deduce the residual stress comprehensively. 展开更多
关键词 indentation method residual stress elastc-plastic indentation properties finite element method indentation experiment
在线阅读 下载PDF
Indentation behavior of a semi-infinite piezoelectric semiconductor under a rigid flat-ended cylindrical indenter
14
作者 Shijing GAO Lele ZHANG +2 位作者 Jinxi LIU Guoquan NIE Weiqiu CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期649-662,共14页
This paper theoretically studies the axisymmetric frictionless indentation of a transversely isotropic piezoelectric semiconductor(PSC)half-space subject to a rigid flatended cylindrical indenter.The contact area and ... This paper theoretically studies the axisymmetric frictionless indentation of a transversely isotropic piezoelectric semiconductor(PSC)half-space subject to a rigid flatended cylindrical indenter.The contact area and other surface of the PSC half-space are assumed to be electrically insulating.By the Hankel integral transformation,the problem is reduced to the Fredholm integral equation of the second kind.This equation is solved numerically to obtain the indentation behaviors of the PSC half-space,mainly including the indentation force-depth relation and the electric potential-depth relation.The results show that the effect of the semiconductor property on the indentation responses is limited within a certain range of variation of the steady carrier concentration.The dependence of indentation behavior on material properties is also analyzed by two different kinds of PSCs.Finite element simulations are conducted to verify the results calculated by the integral equation technique,and good agreement is demonstrated. 展开更多
关键词 piezoelectric semiconductor(PSC) insulating indenter electromechanical response singular integral equation finite element simulation
在线阅读 下载PDF
Microstructure and indentation toughness of Cr/CrN multilayer coatings by arc ion plating 被引量:5
15
作者 宋贵宏 娄茁 +2 位作者 李锋 陈立佳 贺春林 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第3期811-816,共6页
Cr/CrN multilayer coatings with bilayer periods in the range from 1351 to 260 nm were prepared on 304 stainless steel substrates by arc ion plating to study the microstructure and properties of multilayer coatings and... Cr/CrN multilayer coatings with bilayer periods in the range from 1351 to 260 nm were prepared on 304 stainless steel substrates by arc ion plating to study the microstructure and properties of multilayer coatings and stimulate their application.SEM results confirm the clear periodicity of the Cr/CrN multilayer coatings and the clear interface between individual layers.XRD patterns reveal that these multilayer coatings contain Cr,CrN and Cr_2N phases.Because Cr layer is softer than its nitride layer,the hardness decreases with the shortening of the bilayer period(or increasing volume fraction of Cr layer).The Cr/CrN multilayer coating with 862 nm period possesses the highest indentation toughness due to a proper individual Cr and nitride layer thickness.However,for the Cr/CrN multilayer with the bilayer period of 1351 nm,it possesses the lowest toughness due to more nitride phase.The indentation toughness of Cr/CrN multilayer coatings is related with their bilayer period.A coating with a proper individual Cr and nitride layer thickness possesses the highest indentation toughness. 展开更多
关键词 Cr/CrN multilayer coating bilayer period HARDNESS indentation toughness
在线阅读 下载PDF
Indentation of sandwich beams with metal foam core
16
作者 秦庆华 张建勋 +2 位作者 王正锦 李慧敏 郭丹 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2440-2446,共7页
The quasi-static indentation behavior of sandwich beams with a metal foam core was investigated. An analytical model was developed to predict the large deflections of indention of the sandwich beams with a metal foam ... The quasi-static indentation behavior of sandwich beams with a metal foam core was investigated. An analytical model was developed to predict the large deflections of indention of the sandwich beams with a metal foam core subjected to a concentrated loading. The interaction of plastic bending and stretching in the local deformation regions of the face sheet was considered in the analytical model. Moreover, the effects of the shear strength of the foam core on the indentation behavior were discussed in detail. The finite element simulations were preformed to validate the theoretical model. Comparisons between the analytical predictions and finite element results were conducted and good agreement was achieved. The results show that the membrane force dominates indentation behavior of the sandwich beams when the maximum deflection exceeds the thickness of the face sheet. 展开更多
关键词 indentation sandwich beam energy absorption metal foam large deflection
在线阅读 下载PDF
Indentation Size Effect on the Mechanical Properties of Supersonic Plasma Sprayed NiCr-Cr_3C_2 Coating 被引量:1
17
作者 Zhu Lina1,2,Xu Binshi2,Wang Haidou2,Wang Chengbiao1 1 School of Engineering and Technology,China University of Geosciences,Beijing 100083,China 2 National Key Laboratory for Remanufacturing,Academy of Armored Forces Engineering,Beijing 100072,China 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2012年第S1期296-298,共3页
In this paper,NiCr-Cr3C2 coating was deposited onto AISI 1045 steel substrate by employing supersonic plasma spraying technique.The surface and cross-section morphologies of the NiCr-Cr3C2 coating were observed by SEM... In this paper,NiCr-Cr3C2 coating was deposited onto AISI 1045 steel substrate by employing supersonic plasma spraying technique.The surface and cross-section morphologies of the NiCr-Cr3C2 coating were observed by SEM.The phase constituents of the coating were identified by XRD.The SEM images showed that the coating was very dense,and it had a low porosity structure.The XRD pattern implied that the coating was mainly composed of NiCr,Cr3C2 and Cr7C2.Nanoindentation tests were performed on the coating surface by a Nano indenter.The widely used Oliver-Pharr method was adopted to extract the mechanical properties of the coating.The hardness exhibited a strong peak-load-dependence,i.e.indentation size effect;the elastic modulus was not affected by indentation size effect. 展开更多
关键词 NANOindentation MECHANICAL PROPERTY indentation size effect
原文传递
PIEZOSPECTROSCOPIC STUDY OF RESIDUAL STRESSES AROUND INDENTATIONS IN SiC/Al_O_3 NANOCOMPOSITE
18
作者 陶杰 崔益华 杨斌鹏 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2003年第1期85-90,共6页
A new experimental measurement of residual stresses around Vickers′ indentations on the surface of the SiC/Al 2O 3 nanocomposites is proposed with the aid of a Raman microprobe. Results s how that the shifts of R... A new experimental measurement of residual stresses around Vickers′ indentations on the surface of the SiC/Al 2O 3 nanocomposites is proposed with the aid of a Raman microprobe. Results s how that the shifts of R lines in the fluorescence spectra va ry with the distance from the centre of indentation. The magnitude of load appli ed on the surface of the materials through the indenter influences the shifts of R lines to great extent. The luminescence of R lines of the materials before indenting is used to determine the residual stresses around the indentation in the materials, assuming that the stress tensor is transversely isotropic. Final ly, the term of hydrostatic stress is adopted to explain and compare different residual stresses around indentations with the increase of the indenting load an d the distance from the centre of indentations. < 展开更多
关键词 residual stress NANOCOMPOSITE piezospec troscopi c method indentation SiC/Al 2O 3
在线阅读 下载PDF
Nanoindentation Size Effect on Type 316 Stainless Steel 被引量:1
19
作者 姚远 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第B10期30-33,共4页
Nanoindentation size effect was investigated under very low loads on type 316 stainless steel. Nanoindentation measurements were carried out on the samples surfaces with a Berkovich pyramidal diamond indenter applying... Nanoindentation size effect was investigated under very low loads on type 316 stainless steel. Nanoindentation measurements were carried out on the samples surfaces with a Berkovich pyramidal diamond indenter applying loads in the range of 25-1000μN. Simultaneously, AFM images of the sample surface were recorded before and after indentation process .For type 316 stainless steel, the indentation size effect was found. The results were discussed in the terms of the model of geometrically necessary dislocations proposed to interpret the indentation size effect.It can be seen that the square of the nanohardness, H 2, vs the inverse of indentation depth, 1/h, is linearly dependent on the indented depth in the range of 25-150nm,which is a good qualitative agreement with the predictions of the model. However, for shallow indents, the slope of the line severely changes.Some possible mechanisms for this change were proposed. 展开更多
关键词 NANOindentation indentation size effect type 316 stainless steel
在线阅读 下载PDF
Multimodal probe for optical coherence tomography epidetection and micron-scale indentation
20
作者 L.Bartolini F.Feroldi +3 位作者 J.J.A.Weda M.Slaman J.F.de Boer D.Iannuzzi 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2017年第6期64-72,共9页
We present a multimodal ferrule-top sensor designed to perform the integrated epidetection of Optical Coberence Tomognphy(OCT)depth-profiles and micron-scale indentation by all-optical detection.By scarning a sample u... We present a multimodal ferrule-top sensor designed to perform the integrated epidetection of Optical Coberence Tomognphy(OCT)depth-profiles and micron-scale indentation by all-optical detection.By scarning a sample under the probe,we can obtain structural crosse soction images and identify a region of interest in a nonhomogencous sample.Then,with the same probe and setup,we can immediately target that area with a series of spherical indentation measurements,in which the applied load is known with aμN precision,the indentation depth with sub-/m precision and a maximum contact radius of 100 pm.Thanks to the visualization of the internal structure of the sample,we can gain a better insi ght into the observed mechanical behavior.The ability to impart a small,confined load,and perfomn OCT A scans at the same time,could lead to an altemative,high transverse resolution,Optical Coherence Elastography(OCE)sensor. 展开更多
关键词 Optomechanical MICROindentation optical coherence tomography indentation multimodal sensor epidetection
原文传递
上一页 1 2 11 下一页 到第
使用帮助 返回顶部