Processes supported by process-aware information systems are subject to continuous and often subtle changes due to evolving operational,organizational,or regulatory factors.These changes,referred to as incremental con...Processes supported by process-aware information systems are subject to continuous and often subtle changes due to evolving operational,organizational,or regulatory factors.These changes,referred to as incremental concept drift,gradually alter the behavior or structure of processes,making their detection and localization a challenging task.Traditional process mining techniques frequently assume process stationarity and are limited in their ability to detect such drift,particularly from a control-flow perspective.The objective of this research is to develop an interpretable and robust framework capable of detecting and localizing incremental concept drift in event logs,with a specific emphasis on the structural evolution of control-flow semantics in processes.We propose DriftXMiner,a control-flow-aware hybrid framework that combines statistical,machine learning,and process model analysis techniques.The approach comprises three key components:(1)Cumulative Drift Scanner that tracks directional statistical deviations to detect early drift signals;(2)a Temporal Clustering and Drift-Aware Forest Ensemble(DAFE)to capture distributional and classification-level changes in process behavior;and(3)Petri net-based process model reconstruction,which enables the precise localization of structural drift using transition deviation metrics and replay fitness scores.Experimental validation on the BPI Challenge 2017 event log demonstrates that DriftXMiner effectively identifies and localizes gradual and incremental process drift over time.The framework achieves a detection accuracy of 92.5%,a localization precision of 90.3%,and an F1-score of 0.91,outperforming competitive baselines such as CUSUM+Histograms and ADWIN+Alpha Miner.Visual analyses further confirm that identified drift points align with transitions in control-flow models and behavioral cluster structures.DriftXMiner offers a novel and interpretable solution for incremental concept drift detection and localization in dynamic,process-aware systems.By integrating statistical signal accumulation,temporal behavior profiling,and structural process mining,the framework enables finegrained drift explanation and supports adaptive process intelligence in evolving environments.Its modular architecture supports extension to streaming data and real-time monitoring contexts.展开更多
In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):104...In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):1045-1049]and Monrad and Rootzén[Probab.Theory Related Fields,1995,101(2):173-192].展开更多
This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic mo...This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic model considering additional forces and moments resulting during the morphing process,and convert it into a Multiple Input Multiple Output(MIMO)virtual control system by importing virtual inputs.Secondly,a classical dynamics inversion controller is designed for the outer-loop system.A new Global Fast Terminal Incremental Sliding Mode Controller(NDO-GFTISMC)is proposed for the inner-loop system,in which an adaptive law is implemented to weaken control surface chattering,and a Nonlinear Disturbance Observer(NDO)is integrated to compensate for unknown disturbances.The whole control system is proven semiglobally uniformly ultimately bounded based on the multi-Lyapunov function method.Furthermore,we consider tracking errors and self-characteristics of actuators,a quadratic programmingbased dynamic control allocation law is designed,which allocates virtual control inputs to the asymmetrically deformed wingtip and rudder.Actuator dynamic models are incorporated to ensure physical realizability of designed allocation law.Finally,comparative experimental results validate the effectiveness of the designed control system and control allocation law.The NDO-GFTISMC features faster convergence,stronger robustness,and 81.25%and 75.0%reduction in maximum state tracking error under uncertainty compared to the Incremental Nonlinear Dynamic Inversion Controller based on NDO(NDO-INDI)and Incremental Sliding Mode Controller based on NDO(NDO-ISMC),respectively.The design of the morphing aircraft significantly enhances lateral maneuver capability,maintaining a substantial control margin during lateral maneuvering,reducing the burden of the rudder surface,and effectively solving the actuator saturation problem of traditional aircraft during lateral maneuvering.展开更多
A new analytical model for geometric size and forming force prediction in incremental flanging(IF)is presented in this work.The complex deformation characteristics of IF are considered in the modeling process,which ca...A new analytical model for geometric size and forming force prediction in incremental flanging(IF)is presented in this work.The complex deformation characteristics of IF are considered in the modeling process,which can accurately describe the strain and stress states in IF.Based on strain analysis,the model can predict the material thickness distribution and neck height after IF.By considering contact area,strain characteristics,material thickness changes,and friction,the model can predict specific moments and corresponding values of maximum axial forming force and maximum horizontal forming force during IF.In addition,an IF experiment involving different tool diameters,flanging diameters,and opening hole diameters is conducted.On the basis of the experimental strain paths,the strain characteristics of different deformation zones are studied,and the stable strain ratio is quantitatively described through two dimensionless parameters:relative tool diameter and relative hole diameter.Then,the changing of material thickness and forming force in IF,and the variation of minimum material thickness,neck height,maximum axial forming force,and maximum horizontal forming force with flanging parameters are studied,and the reliability of the analytical model is verified in this process.Finally,the influence of the horizontal forming force on the tool design and the fluctuation of the forming force are explained.展开更多
Incremental search provides real-time suggestions as users type their queries.However,recent studies demonstrate that its encrypted search traffic can disclose privacy-sensitive data through side channels.Specifically...Incremental search provides real-time suggestions as users type their queries.However,recent studies demonstrate that its encrypted search traffic can disclose privacy-sensitive data through side channels.Specifically,attackers can derive information about user keystrokes from observable traffic features,like packet sizes,timings,and directions,thereby inferring the victim's entered search query.This vulnerability is known as a remote keystroke inference attack.While various attacks leveraging different traffic features have been developed,accompanied by obfuscation-based countermeasures,there is still a lack of overall and in-depth understanding regarding these attacks and defenses.To fill this gap,we conduct the first comprehensive evaluation of existing remote keystroke inference attacks and defenses.We carry out extensive experiments on five well-known incremental search websites.all listed in Alexa's top 50,to evaluate and compare their realworld performance.The results demonstrate that attacks utilizing multidimensional request features pose the greatest risk to user privacy,and random padding is currently considered the optimal defense balancing both efficacy and resource demands.Our work sheds light on the real-world implications of remote keystroke inference attacks and provides developers with guidelines to enhance privacy protection strategies.展开更多
The field of biometric identification has seen significant advancements over the years,with research focusing on enhancing the accuracy and security of these systems.One of the key developments is the integration of d...The field of biometric identification has seen significant advancements over the years,with research focusing on enhancing the accuracy and security of these systems.One of the key developments is the integration of deep learning techniques in biometric systems.However,despite these advancements,certain challenges persist.One of the most significant challenges is scalability over growing complexity.Traditional methods either require maintaining and securing a growing database,introducing serious security challenges,or relying on retraining the entiremodelwhen new data is introduced-a process that can be computationally expensive and complex.This challenge underscores the need for more efficient methods to scale securely.To this end,we introduce a novel approach that addresses these challenges by integrating multimodal biometrics,cancelable biometrics,and incremental learning techniques.This work is among the first attempts to seamlessly incorporate deep cancelable biometrics with dynamic architectural updates,applied incrementally to the deep learning model as new users are enrolled,achieving high performance with minimal catastrophic forgetting.By leveraging a One-Dimensional Convolutional Neural Network(1D-CNN)architecture combined with a hybrid incremental learning approach,our system achieves high recognition accuracy,averaging 98.98% over incrementing datasets,while ensuring user privacy through cancelable templates generated via a pre-trained CNN model and random projection.The approach demonstrates remarkable adaptability,utilizing the least intrusive biometric traits like facial features and fingerprints,ensuring not only robust performance but also long-term serviceability.展开更多
A relationship was discovered between the amplification factor and the number of load increments that are needed to limit the relative error to one percent in second-order elastic analyses with a predictor-corrector s...A relationship was discovered between the amplification factor and the number of load increments that are needed to limit the relative error to one percent in second-order elastic analyses with a predictor-corrector solution scheme.Previous research by the authors proposed a design equation to determine the required minimum number of load increments based on an evaluation of the elastic critical buckling load ratio.Further research has shown that an approximate amplification factor equation that is based on the B2 multiplier equation produces similar results when the amplification factor is less than approximately four.Eleven moment frames are used to verify the use of the new approximate amplification factor in the proposed design equation.展开更多
Current machine learning models for predicting geological conditions during earth pressure balance(EPB)shield tunneling predominantly rely on accurate geological conditions as model label inputs.This study introduces ...Current machine learning models for predicting geological conditions during earth pressure balance(EPB)shield tunneling predominantly rely on accurate geological conditions as model label inputs.This study introduces an innovative approach for the real-time prediction of geological conditions in EPB shield tunneling by utilizing an unsupervised incremental learning model that integrates deep temporal clustering(DTC)with elastic weight consolidation(EWC).The model was trained and tested using data from an EPB shield tunneling project in Nanjing,China.Results demonstrate that the DTC model outperforms nine comparison models by clustering the entire dataset into four distinct groups representing various geological conditions without requiring labeled data.Additionally,integrating EWC into the DTC model significantly enhances its continuous learning capabilities,enabling automatic parameter updates with incoming data and facilitating the real-time recognition of geological conditions.Feature importance was evaluated using the feature elimination method and the Shapley additive explanations(SHAP)method,underscoring the critical roles of earth chamber pressure and cutterhead rotation speed in predicting geological conditions.The proposed EWC-DTC model demonstrates practical utility for EPB shield tunneling in complex environments.展开更多
In this paper,an incremental contact model is developed for the elastic self-affine fractal rough surfaces under plane strain condition.The contact between a rough surface and a rigid plane is simplified by the accumu...In this paper,an incremental contact model is developed for the elastic self-affine fractal rough surfaces under plane strain condition.The contact between a rough surface and a rigid plane is simplified by the accumulation of identical line contacts with half-width given by the truncated area divided by the contact patch number at varying heights.Based on the contact stiffness of two-dimensional flat punch,the total stiffness of rough surface is estimated,and then the normal load is calculated by an incremental method.For various rough surfaces,the approximately linear load-area relationships predicted by the proposed model agree well with the results of finite element simulations.It is found that the real average contact pressure depends significantly on profile properties.展开更多
The incremental capacity analysis(ICA)technique is notably limited by its sensitivity to variations in charging conditions,which constrains its practical applicability in real-world scenarios.This paper introduces an ...The incremental capacity analysis(ICA)technique is notably limited by its sensitivity to variations in charging conditions,which constrains its practical applicability in real-world scenarios.This paper introduces an ICA-compensation technique to address this limitation and propose a generalized framework for assessing the state of health(SOH)of batteries based on ICA that is applicable under differing charging conditions.This novel approach calculates the voltage profile under quasi-static conditions by subtracting the voltage increase attributable to the additional polarization effects at high currents from the measured voltage profile.This approach's efficacy is contingent upon precisely acquiring the equivalent impedance.To obtain the equivalent impedance throughout the batteries'lifespan while minimizing testing costs,this study employs a current interrupt technique in conjunction with a long short-term memory(LSTM)network to develop a predictive model for equivalent impedance.Following the derivation of ICA curves using voltage profiles under quasi-static conditions,the research explores two scenarios for SOH estimation:one utilizing only incremental capacity(IC)features and the other incorporating both IC features and IC sampling.A genetic algorithm-optimized backpropagation neural network(GABPNN)is employed for the SOH estimation.The proposed generalized framework is validated using independent training and test datasets.Variable test conditions are applied for the test set to rigorously evaluate the methodology under challenging conditions.These evaluation results demonstrate that the proposed framework achieves an estimation accuracy of 1.04%for RMSE and 0.90%for MAPE across a spectrum of charging rates ranging from 0.1 C to 1 C and starting SOCs between 0%and 70%,which constitutes a major advancement compared to established ICA methods.It also significantly enhances the applicability of conventional ICA techniques in varying charging conditions and negates the necessity for separate testing protocols for each charging scenario.展开更多
Semantic communication(SemCom)aims to achieve high-fidelity information delivery under low communication consumption by only guaranteeing semantic accuracy.Nevertheless,semantic communication still suffers from unexpe...Semantic communication(SemCom)aims to achieve high-fidelity information delivery under low communication consumption by only guaranteeing semantic accuracy.Nevertheless,semantic communication still suffers from unexpected channel volatility and thus developing a re-transmission mechanism(e.g.,hybrid automatic repeat request[HARQ])becomes indispensable.In that regard,instead of discarding previously transmitted information,the incremental knowledge-based HARQ(IK-HARQ)is deemed as a more effective mechanism that could sufficiently utilize the information semantics.However,considering the possible existence of semantic ambiguity in image transmission,a simple bit-level cyclic redundancy check(CRC)might compromise the performance of IK-HARQ.Therefore,there emerges a strong incentive to revolutionize the CRC mechanism,thus more effectively reaping the benefits of both SemCom and HARQ.In this paper,built on top of swin transformer-based joint source-channel coding(JSCC)and IK-HARQ,we propose a semantic image transmission framework SC-TDA-HARQ.In particular,different from the conventional CRC,we introduce a topological data analysis(TDA)-based error detection method,which capably digs out the inner topological and geometric information of images,to capture semantic information and determine the necessity for re-transmission.Extensive numerical results validate the effectiveness and efficiency of the proposed SC-TDA-HARQ framework,especially under the limited bandwidth condition,and manifest the superiority of TDA-based error detection method in image transmission.展开更多
Ever since the research in machine learning gained traction in recent years,it has been employed to address challenges in a wide variety of domains,including mechanical devices.Most of the machine learning models are ...Ever since the research in machine learning gained traction in recent years,it has been employed to address challenges in a wide variety of domains,including mechanical devices.Most of the machine learning models are built on the assumption of a static learning environment,but in practical situations,the data generated by the process is dynamic.This evolution of the data is termed concept drift.This research paper presents an approach for predictingmechanical failure in real-time using incremental learning based on the statistically calculated parameters of mechanical equipment.The method proposed here is applicable to allmechanical devices that are susceptible to failure or operational degradation.The proposed method in this paper is equipped with the capacity to detect the drift in data generation and adaptation.The proposed approach evaluates the machine learning and deep learning models for their efficacy in handling the errors related to industrial machines due to their dynamic nature.It is observed that,in the settings without concept drift in the data,methods like SVM and Random Forest performed better compared to deep neural networks.However,this resulted in poor sensitivity for the smallest drift in the machine data reported as a drift.In this perspective,DNN generated the stable drift detection method;it reported an accuracy of 84%and an AUC of 0.87 while detecting only a single drift point,indicating the stability to performbetter in detecting and adapting to new data in the drifting environments under industrial measurement settings.展开更多
The influence of geometric configuration on the friction characteristics during incremental sheet forming of AA5052 was analyzed by integrating surface morphology and its characteristic parameters,along with plastic s...The influence of geometric configuration on the friction characteristics during incremental sheet forming of AA5052 was analyzed by integrating surface morphology and its characteristic parameters,along with plastic strain,contact pressure,and area.The interface promotes lubrication and support when wall angles were≤40°,a 0.5 mm-thin sheet was used,and a 10 mm-large tool radius was employed.This mainly results in micro-plowing and plastic extrusion flow,leading to lower friction coefficient.However,when wall angles exceed 40°,significant plastic strain roughening occurs,leading to inadequate lubrication on the newly formed surface.Increased sheet thickness and decreased tool radius elevate contact pressure.These actions trigger micro-cutting and adhesion,potentially leading to localized scuffing and dimple tears,and higher friction coefficient.The friction mechanisms remain unaffected by the part’s plane curve features.As the forming process progresses,abrasive wear intensifies,and surface morphology evolves unfavorably for lubrication and friction reduction.展开更多
In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath f...In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath for ISF. A three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the process and the simulated results were compared with those from the experiment. The springback angle was found to be in accordance with the experimental result, proving the FEM to be effective. A coupled artificial neural networks (ANN) and finite element method technique was developed to simulate and predict springback responses to changes in the processing parameters. A particle swarm optimization (PSO) algorithm was used to optimize the weights and thresholds of the neural network model. The neural network was trained using available FEM simulation data. The results showed that a more accurate prediction of s!oringback can be acquired using the FEM-PSONN model.展开更多
[ Objective] The aim of the research was to provide reference for reasonable application of nitrogen fertilizer for high yield.cultivation of hybrid rape cuhivar Youyan 9 and Youyan 10. [ Method] The net increment cha...[ Objective] The aim of the research was to provide reference for reasonable application of nitrogen fertilizer for high yield.cultivation of hybrid rape cuhivar Youyan 9 and Youyan 10. [ Method] The net increment changes of individual plant fresh weight and dry matter weight of Youyan 9 and Youyan 10 with different nitrogen application treatments were studied. [ Result] The differences among average fresh weight increments of individual plant and average dry matter weight increment of individual plant with different treatments reached 0. 01 extremely significant level. Fresh weight increment and dry matter weight net increment of individual plant declined gradually with the increase of nitrogen application. In growtheourse ,fresh weight net increment of individual plant increased firstly then decreased and the maximum was in beginning flowering stage, besides that dry matter net increment increased gradually and the maximum was in mature period. The correlations among fresh net increment, dry matter weight net increment and yield net increment were positive or extremely positive. [ Conclusion] Under experimental condition, when nitrogen application was 225 kg/hm^2, hybrid rape Yanyou 9 and Yanyou 10 with low erucic,low glucosinolate could obtain high yield.展开更多
We present a novel incremental algorithm for non-slicing floorplans based on the corner block list representation. The horizontal and vertical adjacency graphs are derived from the packing of the initial floorplanning...We present a novel incremental algorithm for non-slicing floorplans based on the corner block list representation. The horizontal and vertical adjacency graphs are derived from the packing of the initial floorplanning results. Based on the critical path and the accumulated slack distances we define,we choose the best position for insertion and do a series of operations incrementally, such as deleting modules, adding modules, and resizing modules quickly. This incremental floorplanning algorithm has a very high speed less than 1μm,which is one of the most important measures in this research. The algorithm preserves the original good performances on area and wire length. It can also supply other tools with good physical estimates for area, wire length, and other performance guidelines.展开更多
Reduced Q-matrix (Qr matrix) plays an important role in the rule space model (RSM) and the attribute hierarchy method (AHM). Based on the attribute hierarchy, a valid/invalid item is defined. The judgment method...Reduced Q-matrix (Qr matrix) plays an important role in the rule space model (RSM) and the attribute hierarchy method (AHM). Based on the attribute hierarchy, a valid/invalid item is defined. The judgment method of the valid/invalid item is developed on the relation between reachability matrix and valid items. And valid items are explained from the perspective of graph theory. An incremental augment algorithm for constructing Qr matrix is proposed based on the idea of incremental forward regression, and its validity is theoretically considered. Results of empirical tests are given in order to compare the performance of the incremental augment algo-rithm and the Tatsuoka algorithm upon the running time. Empirical evidence shows that the algorithm outper-forms the Tatsuoka algorithm, and the analysis of the two algorithms also show linear growth with respect to the number of valid items. Mathematical models with 10 attributes are built for the two algorithms by the linear regression analysis.展开更多
A method utilizing variable depth increments during incremental forming was proposed and then optimized based on numerical simulation and intelligent algorithm.Initially,a finite element method(FEM) model was set up a...A method utilizing variable depth increments during incremental forming was proposed and then optimized based on numerical simulation and intelligent algorithm.Initially,a finite element method(FEM) model was set up and then experimentally verified.And the relation between depth increment and the minimum thickness tmin as well as its location was analyzed through the FEM model.Afterwards,the variation of depth increments was defined.The designed part was divided into three areas according to the main deformation mechanism,with Di(i=1,2) representing the two dividing locations.And three different values of depth increment,Δzi(i=1,2,3) were utilized for the three areas,respectively.Additionally,an orthogonal test was established to research the relation between the five process parameters(D and Δz) and tmin as well as its location.The result shows that Δz2 has the most significant influence on the thickness distribution for the corresponding area is the largest one.Finally,a single evaluating indicator,taking into account of both tmin and its location,was formatted with a linear weighted model.And the process parameters were optimized through a genetic algorithm integrated with an artificial neural network based on the evaluating index.The result shows that the proposed algorithm is satisfactory for the optimization of variable depth increment.展开更多
The double-sided incremental forming(DSIF)improved the process flexibility compared to other incremental sheet forming(ISF)processes.Despite the flexible nature,it faces the challenge of low geometric precision like I...The double-sided incremental forming(DSIF)improved the process flexibility compared to other incremental sheet forming(ISF)processes.Despite the flexible nature,it faces the challenge of low geometric precision like ISF variants.In this work,two strategies are used to overcome this.First,a novel method is employed to determine the optimal support tool location for improving geometric precision.In this method,the toolpath oriented the tools to each other systematically in the circumferential direction.Besides,it squeezed the sheet by the same amount at the point of interest.The impacts of various support tool positions in the circumferential direction are evaluated for geometric precision.The results demonstrate that the support tool should support the master tool within 10°to its local normal in the circumferential direction to improve the geometric accuracy.Second,a two-stage process reduced the geometric error of the part by incrementally accommodating the springback error by artificially increasing the step size for the second stage.With the optimal support tool position and two-stage DSIF,the geometric precision of the part has improved significantly.The proposed method is compared to the best DSIF toolpath strategies for geometric accuracy,surface roughness,forming time,and sheet thickness fluctuations using grey relational analysis(GRA).It outperforms the other toolpath strategies including single-stage DSIF,accumulative double-sided incremental forming(ADSIF),and two-stage mixed double sided incre-mental forming(MDSIF).Our approach can improve geometric precision in complex parts by successfully employing the support tool and managing the springback incrementally.展开更多
The relationship between eco-hydrographic benefit of forest vegetation and climatic environmental factors is one of the focuses in the research on environmental protection and ecosystem countermeasures in Wetland. Th...The relationship between eco-hydrographic benefit of forest vegetation and climatic environmental factors is one of the focuses in the research on environmental protection and ecosystem countermeasures in Wetland. The runoff, sediment and soil moisture rate dynamics in Robinia pseudoacacia plantation and its clearcut area were investigated in the natural runoff experiment plots in Yellow River Delta Wet- land, Shandong Province, China. The correlation of height increment ofR. pseudoacacia with nine climate factors such as light, water, heat, etc. was analyzed by stepwise regression analysis. The results showed that the amounts of runoff and sediment in clearcut area of R. pseudoacacia were 53.9%-150.8% and 172.8%-387.1% higher than that in Robinia pseudoacacia plantation, respectively. The runoff peak value in R. pseudoacacia stand was obviously lower than that in clerarcut area, meantime, the occurrence of runoffpeak in R. pseudoacacia stand was 25 min later than in its clerarcut area. The soil moisture rates in R. pseudoacacia stand and its clearcut varied periodically with annual rainfall precipitation in both dry season and humid season. The annual mean soil moisture rate in R. pseudoacacia stand was 23.3%-25.6% higher than that in its clearcut area. Meanwhile, a regression model reflecting the correlation between the height increment of R. pseudoacacia and climatic factors was developed by stepwise regression procedure method. It showed that the light was the most important factor for the height increment ofR. pseudoacacia, followed by water and heat factors.展开更多
文摘Processes supported by process-aware information systems are subject to continuous and often subtle changes due to evolving operational,organizational,or regulatory factors.These changes,referred to as incremental concept drift,gradually alter the behavior or structure of processes,making their detection and localization a challenging task.Traditional process mining techniques frequently assume process stationarity and are limited in their ability to detect such drift,particularly from a control-flow perspective.The objective of this research is to develop an interpretable and robust framework capable of detecting and localizing incremental concept drift in event logs,with a specific emphasis on the structural evolution of control-flow semantics in processes.We propose DriftXMiner,a control-flow-aware hybrid framework that combines statistical,machine learning,and process model analysis techniques.The approach comprises three key components:(1)Cumulative Drift Scanner that tracks directional statistical deviations to detect early drift signals;(2)a Temporal Clustering and Drift-Aware Forest Ensemble(DAFE)to capture distributional and classification-level changes in process behavior;and(3)Petri net-based process model reconstruction,which enables the precise localization of structural drift using transition deviation metrics and replay fitness scores.Experimental validation on the BPI Challenge 2017 event log demonstrates that DriftXMiner effectively identifies and localizes gradual and incremental process drift over time.The framework achieves a detection accuracy of 92.5%,a localization precision of 90.3%,and an F1-score of 0.91,outperforming competitive baselines such as CUSUM+Histograms and ADWIN+Alpha Miner.Visual analyses further confirm that identified drift points align with transitions in control-flow models and behavioral cluster structures.DriftXMiner offers a novel and interpretable solution for incremental concept drift detection and localization in dynamic,process-aware systems.By integrating statistical signal accumulation,temporal behavior profiling,and structural process mining,the framework enables finegrained drift explanation and supports adaptive process intelligence in evolving environments.Its modular architecture supports extension to streaming data and real-time monitoring contexts.
基金Supported by NSFC(Nos.11661025,12161024)Natural Science Foundation of Guangxi(Nos.2020GXNSFAA159118,2021GXNSFAA196045)+2 种基金Guangxi Science and Technology Project(No.Guike AD20297006)Training Program for 1000 Young and Middle-aged Cadre Teachers in Universities of GuangxiNational College Student's Innovation and Entrepreneurship Training Program(No.202110595049)。
文摘In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):1045-1049]and Monrad and Rootzén[Probab.Theory Related Fields,1995,101(2):173-192].
基金supported by the National Natural Science Foundation of China(Nos.62103052 and No.52175214)。
文摘This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic model considering additional forces and moments resulting during the morphing process,and convert it into a Multiple Input Multiple Output(MIMO)virtual control system by importing virtual inputs.Secondly,a classical dynamics inversion controller is designed for the outer-loop system.A new Global Fast Terminal Incremental Sliding Mode Controller(NDO-GFTISMC)is proposed for the inner-loop system,in which an adaptive law is implemented to weaken control surface chattering,and a Nonlinear Disturbance Observer(NDO)is integrated to compensate for unknown disturbances.The whole control system is proven semiglobally uniformly ultimately bounded based on the multi-Lyapunov function method.Furthermore,we consider tracking errors and self-characteristics of actuators,a quadratic programmingbased dynamic control allocation law is designed,which allocates virtual control inputs to the asymmetrically deformed wingtip and rudder.Actuator dynamic models are incorporated to ensure physical realizability of designed allocation law.Finally,comparative experimental results validate the effectiveness of the designed control system and control allocation law.The NDO-GFTISMC features faster convergence,stronger robustness,and 81.25%and 75.0%reduction in maximum state tracking error under uncertainty compared to the Incremental Nonlinear Dynamic Inversion Controller based on NDO(NDO-INDI)and Incremental Sliding Mode Controller based on NDO(NDO-ISMC),respectively.The design of the morphing aircraft significantly enhances lateral maneuver capability,maintaining a substantial control margin during lateral maneuvering,reducing the burden of the rudder surface,and effectively solving the actuator saturation problem of traditional aircraft during lateral maneuvering.
基金supported in part by financial support from the National Key R&D Program of China(No.2023YFB3407003)the National Natural Science Foundation of China(No.52375378).
文摘A new analytical model for geometric size and forming force prediction in incremental flanging(IF)is presented in this work.The complex deformation characteristics of IF are considered in the modeling process,which can accurately describe the strain and stress states in IF.Based on strain analysis,the model can predict the material thickness distribution and neck height after IF.By considering contact area,strain characteristics,material thickness changes,and friction,the model can predict specific moments and corresponding values of maximum axial forming force and maximum horizontal forming force during IF.In addition,an IF experiment involving different tool diameters,flanging diameters,and opening hole diameters is conducted.On the basis of the experimental strain paths,the strain characteristics of different deformation zones are studied,and the stable strain ratio is quantitatively described through two dimensionless parameters:relative tool diameter and relative hole diameter.Then,the changing of material thickness and forming force in IF,and the variation of minimum material thickness,neck height,maximum axial forming force,and maximum horizontal forming force with flanging parameters are studied,and the reliability of the analytical model is verified in this process.Finally,the influence of the horizontal forming force on the tool design and the fluctuation of the forming force are explained.
基金supported by the National Natural Science Foundation of China(Nos.62172027 and U24B20117)the Zhejiang Provincial Natural Science Foundation of China(No.LZ23F020013)the National Key R&D Program of China(No.2020YFB1005601).
文摘Incremental search provides real-time suggestions as users type their queries.However,recent studies demonstrate that its encrypted search traffic can disclose privacy-sensitive data through side channels.Specifically,attackers can derive information about user keystrokes from observable traffic features,like packet sizes,timings,and directions,thereby inferring the victim's entered search query.This vulnerability is known as a remote keystroke inference attack.While various attacks leveraging different traffic features have been developed,accompanied by obfuscation-based countermeasures,there is still a lack of overall and in-depth understanding regarding these attacks and defenses.To fill this gap,we conduct the first comprehensive evaluation of existing remote keystroke inference attacks and defenses.We carry out extensive experiments on five well-known incremental search websites.all listed in Alexa's top 50,to evaluate and compare their realworld performance.The results demonstrate that attacks utilizing multidimensional request features pose the greatest risk to user privacy,and random padding is currently considered the optimal defense balancing both efficacy and resource demands.Our work sheds light on the real-world implications of remote keystroke inference attacks and provides developers with guidelines to enhance privacy protection strategies.
基金the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through project number RI-44-0833.
文摘The field of biometric identification has seen significant advancements over the years,with research focusing on enhancing the accuracy and security of these systems.One of the key developments is the integration of deep learning techniques in biometric systems.However,despite these advancements,certain challenges persist.One of the most significant challenges is scalability over growing complexity.Traditional methods either require maintaining and securing a growing database,introducing serious security challenges,or relying on retraining the entiremodelwhen new data is introduced-a process that can be computationally expensive and complex.This challenge underscores the need for more efficient methods to scale securely.To this end,we introduce a novel approach that addresses these challenges by integrating multimodal biometrics,cancelable biometrics,and incremental learning techniques.This work is among the first attempts to seamlessly incorporate deep cancelable biometrics with dynamic architectural updates,applied incrementally to the deep learning model as new users are enrolled,achieving high performance with minimal catastrophic forgetting.By leveraging a One-Dimensional Convolutional Neural Network(1D-CNN)architecture combined with a hybrid incremental learning approach,our system achieves high recognition accuracy,averaging 98.98% over incrementing datasets,while ensuring user privacy through cancelable templates generated via a pre-trained CNN model and random projection.The approach demonstrates remarkable adaptability,utilizing the least intrusive biometric traits like facial features and fingerprints,ensuring not only robust performance but also long-term serviceability.
文摘A relationship was discovered between the amplification factor and the number of load increments that are needed to limit the relative error to one percent in second-order elastic analyses with a predictor-corrector solution scheme.Previous research by the authors proposed a design equation to determine the required minimum number of load increments based on an evaluation of the elastic critical buckling load ratio.Further research has shown that an approximate amplification factor equation that is based on the B2 multiplier equation produces similar results when the amplification factor is less than approximately four.Eleven moment frames are used to verify the use of the new approximate amplification factor in the proposed design equation.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52378392,52408356)Foal Eagle Program Youth Top-notch Talent Project of Fujian Province,China(Grant No.00387088).
文摘Current machine learning models for predicting geological conditions during earth pressure balance(EPB)shield tunneling predominantly rely on accurate geological conditions as model label inputs.This study introduces an innovative approach for the real-time prediction of geological conditions in EPB shield tunneling by utilizing an unsupervised incremental learning model that integrates deep temporal clustering(DTC)with elastic weight consolidation(EWC).The model was trained and tested using data from an EPB shield tunneling project in Nanjing,China.Results demonstrate that the DTC model outperforms nine comparison models by clustering the entire dataset into four distinct groups representing various geological conditions without requiring labeled data.Additionally,integrating EWC into the DTC model significantly enhances its continuous learning capabilities,enabling automatic parameter updates with incoming data and facilitating the real-time recognition of geological conditions.Feature importance was evaluated using the feature elimination method and the Shapley additive explanations(SHAP)method,underscoring the critical roles of earth chamber pressure and cutterhead rotation speed in predicting geological conditions.The proposed EWC-DTC model demonstrates practical utility for EPB shield tunneling in complex environments.
基金supported by the National Natural Science Foundation of China(Grant Nos.12372100,12302126,and 12302141)the China Postdoctoral Science Foundation(Grant No.2023M732799)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.xzy012024020)Sihe Wang also thanks the support from the China Scholarship Council(CSC).
文摘In this paper,an incremental contact model is developed for the elastic self-affine fractal rough surfaces under plane strain condition.The contact between a rough surface and a rigid plane is simplified by the accumulation of identical line contacts with half-width given by the truncated area divided by the contact patch number at varying heights.Based on the contact stiffness of two-dimensional flat punch,the total stiffness of rough surface is estimated,and then the normal load is calculated by an incremental method.For various rough surfaces,the approximately linear load-area relationships predicted by the proposed model agree well with the results of finite element simulations.It is found that the real average contact pressure depends significantly on profile properties.
基金funded by the Bavarian State Ministry of ScienceResearch and Art(Grant number:H.2-F1116.WE/52/2)。
文摘The incremental capacity analysis(ICA)technique is notably limited by its sensitivity to variations in charging conditions,which constrains its practical applicability in real-world scenarios.This paper introduces an ICA-compensation technique to address this limitation and propose a generalized framework for assessing the state of health(SOH)of batteries based on ICA that is applicable under differing charging conditions.This novel approach calculates the voltage profile under quasi-static conditions by subtracting the voltage increase attributable to the additional polarization effects at high currents from the measured voltage profile.This approach's efficacy is contingent upon precisely acquiring the equivalent impedance.To obtain the equivalent impedance throughout the batteries'lifespan while minimizing testing costs,this study employs a current interrupt technique in conjunction with a long short-term memory(LSTM)network to develop a predictive model for equivalent impedance.Following the derivation of ICA curves using voltage profiles under quasi-static conditions,the research explores two scenarios for SOH estimation:one utilizing only incremental capacity(IC)features and the other incorporating both IC features and IC sampling.A genetic algorithm-optimized backpropagation neural network(GABPNN)is employed for the SOH estimation.The proposed generalized framework is validated using independent training and test datasets.Variable test conditions are applied for the test set to rigorously evaluate the methodology under challenging conditions.These evaluation results demonstrate that the proposed framework achieves an estimation accuracy of 1.04%for RMSE and 0.90%for MAPE across a spectrum of charging rates ranging from 0.1 C to 1 C and starting SOCs between 0%and 70%,which constitutes a major advancement compared to established ICA methods.It also significantly enhances the applicability of conventional ICA techniques in varying charging conditions and negates the necessity for separate testing protocols for each charging scenario.
基金supported in part by the National Key Research and Development Program of China under Grant 2024YFE0200600in part by the National Natural Science Foundation of China under Grant 62071425+3 种基金in part by the Zhejiang Key Research and Development Plan under Grant 2022C01093in part by the Zhejiang Provincial Natural Science Foundation of China under Grant LR23F010005in part by the National Key Laboratory of Wireless Communications Foundation under Grant 2023KP01601in part by the Big Data and Intelligent Computing Key Lab of CQUPT under Grant BDIC-2023-B-001.
文摘Semantic communication(SemCom)aims to achieve high-fidelity information delivery under low communication consumption by only guaranteeing semantic accuracy.Nevertheless,semantic communication still suffers from unexpected channel volatility and thus developing a re-transmission mechanism(e.g.,hybrid automatic repeat request[HARQ])becomes indispensable.In that regard,instead of discarding previously transmitted information,the incremental knowledge-based HARQ(IK-HARQ)is deemed as a more effective mechanism that could sufficiently utilize the information semantics.However,considering the possible existence of semantic ambiguity in image transmission,a simple bit-level cyclic redundancy check(CRC)might compromise the performance of IK-HARQ.Therefore,there emerges a strong incentive to revolutionize the CRC mechanism,thus more effectively reaping the benefits of both SemCom and HARQ.In this paper,built on top of swin transformer-based joint source-channel coding(JSCC)and IK-HARQ,we propose a semantic image transmission framework SC-TDA-HARQ.In particular,different from the conventional CRC,we introduce a topological data analysis(TDA)-based error detection method,which capably digs out the inner topological and geometric information of images,to capture semantic information and determine the necessity for re-transmission.Extensive numerical results validate the effectiveness and efficiency of the proposed SC-TDA-HARQ framework,especially under the limited bandwidth condition,and manifest the superiority of TDA-based error detection method in image transmission.
文摘Ever since the research in machine learning gained traction in recent years,it has been employed to address challenges in a wide variety of domains,including mechanical devices.Most of the machine learning models are built on the assumption of a static learning environment,but in practical situations,the data generated by the process is dynamic.This evolution of the data is termed concept drift.This research paper presents an approach for predictingmechanical failure in real-time using incremental learning based on the statistically calculated parameters of mechanical equipment.The method proposed here is applicable to allmechanical devices that are susceptible to failure or operational degradation.The proposed method in this paper is equipped with the capacity to detect the drift in data generation and adaptation.The proposed approach evaluates the machine learning and deep learning models for their efficacy in handling the errors related to industrial machines due to their dynamic nature.It is observed that,in the settings without concept drift in the data,methods like SVM and Random Forest performed better compared to deep neural networks.However,this resulted in poor sensitivity for the smallest drift in the machine data reported as a drift.In this perspective,DNN generated the stable drift detection method;it reported an accuracy of 84%and an AUC of 0.87 while detecting only a single drift point,indicating the stability to performbetter in detecting and adapting to new data in the drifting environments under industrial measurement settings.
基金the support of the Key Research and Development Program of Shaanxi Province,China(No.2021GXLH-Z-049)。
文摘The influence of geometric configuration on the friction characteristics during incremental sheet forming of AA5052 was analyzed by integrating surface morphology and its characteristic parameters,along with plastic strain,contact pressure,and area.The interface promotes lubrication and support when wall angles were≤40°,a 0.5 mm-thin sheet was used,and a 10 mm-large tool radius was employed.This mainly results in micro-plowing and plastic extrusion flow,leading to lower friction coefficient.However,when wall angles exceed 40°,significant plastic strain roughening occurs,leading to inadequate lubrication on the newly formed surface.Increased sheet thickness and decreased tool radius elevate contact pressure.These actions trigger micro-cutting and adhesion,potentially leading to localized scuffing and dimple tears,and higher friction coefficient.The friction mechanisms remain unaffected by the part’s plane curve features.As the forming process progresses,abrasive wear intensifies,and surface morphology evolves unfavorably for lubrication and friction reduction.
基金Project(50175034) supported by the National Natural Science Foundation of China
文摘In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath for ISF. A three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the process and the simulated results were compared with those from the experiment. The springback angle was found to be in accordance with the experimental result, proving the FEM to be effective. A coupled artificial neural networks (ANN) and finite element method technique was developed to simulate and predict springback responses to changes in the processing parameters. A particle swarm optimization (PSO) algorithm was used to optimize the weights and thresholds of the neural network model. The neural network was trained using available FEM simulation data. The results showed that a more accurate prediction of s!oringback can be acquired using the FEM-PSONN model.
基金Funds for Transformation of Scientific and Technological Achievements of Ministry of Science and Technology of China (04EFN215200268)the Nomarch Special Foundation for the Excellent Science and Technology Talents of Guizhou Province[(2005(77)]the Science and Technology Program of Guizhou Province[(2006)6001]~~
文摘[ Objective] The aim of the research was to provide reference for reasonable application of nitrogen fertilizer for high yield.cultivation of hybrid rape cuhivar Youyan 9 and Youyan 10. [ Method] The net increment changes of individual plant fresh weight and dry matter weight of Youyan 9 and Youyan 10 with different nitrogen application treatments were studied. [ Result] The differences among average fresh weight increments of individual plant and average dry matter weight increment of individual plant with different treatments reached 0. 01 extremely significant level. Fresh weight increment and dry matter weight net increment of individual plant declined gradually with the increase of nitrogen application. In growtheourse ,fresh weight net increment of individual plant increased firstly then decreased and the maximum was in beginning flowering stage, besides that dry matter net increment increased gradually and the maximum was in mature period. The correlations among fresh net increment, dry matter weight net increment and yield net increment were positive or extremely positive. [ Conclusion] Under experimental condition, when nitrogen application was 225 kg/hm^2, hybrid rape Yanyou 9 and Yanyou 10 with low erucic,low glucosinolate could obtain high yield.
文摘We present a novel incremental algorithm for non-slicing floorplans based on the corner block list representation. The horizontal and vertical adjacency graphs are derived from the packing of the initial floorplanning results. Based on the critical path and the accumulated slack distances we define,we choose the best position for insertion and do a series of operations incrementally, such as deleting modules, adding modules, and resizing modules quickly. This incremental floorplanning algorithm has a very high speed less than 1μm,which is one of the most important measures in this research. The algorithm preserves the original good performances on area and wire length. It can also supply other tools with good physical estimates for area, wire length, and other performance guidelines.
基金Supported by the National Natural Science Foundation of China (30860084,60673014,60263005)the Backbone Young Teachers Foundation of Fujian Normal University(2008100244)the Department of Education Foundation of Fujian Province (ZA09047)~~
文摘Reduced Q-matrix (Qr matrix) plays an important role in the rule space model (RSM) and the attribute hierarchy method (AHM). Based on the attribute hierarchy, a valid/invalid item is defined. The judgment method of the valid/invalid item is developed on the relation between reachability matrix and valid items. And valid items are explained from the perspective of graph theory. An incremental augment algorithm for constructing Qr matrix is proposed based on the idea of incremental forward regression, and its validity is theoretically considered. Results of empirical tests are given in order to compare the performance of the incremental augment algo-rithm and the Tatsuoka algorithm upon the running time. Empirical evidence shows that the algorithm outper-forms the Tatsuoka algorithm, and the analysis of the two algorithms also show linear growth with respect to the number of valid items. Mathematical models with 10 attributes are built for the two algorithms by the linear regression analysis.
文摘A method utilizing variable depth increments during incremental forming was proposed and then optimized based on numerical simulation and intelligent algorithm.Initially,a finite element method(FEM) model was set up and then experimentally verified.And the relation between depth increment and the minimum thickness tmin as well as its location was analyzed through the FEM model.Afterwards,the variation of depth increments was defined.The designed part was divided into three areas according to the main deformation mechanism,with Di(i=1,2) representing the two dividing locations.And three different values of depth increment,Δzi(i=1,2,3) were utilized for the three areas,respectively.Additionally,an orthogonal test was established to research the relation between the five process parameters(D and Δz) and tmin as well as its location.The result shows that Δz2 has the most significant influence on the thickness distribution for the corresponding area is the largest one.Finally,a single evaluating indicator,taking into account of both tmin and its location,was formatted with a linear weighted model.And the process parameters were optimized through a genetic algorithm integrated with an artificial neural network based on the evaluating index.The result shows that the proposed algorithm is satisfactory for the optimization of variable depth increment.
基金supported by the National Natural Science Foun-dation of China(Nos.52075025,51975328)Project funded by China Postdoctoral Science Foundation(No.2021T140418)。
文摘The double-sided incremental forming(DSIF)improved the process flexibility compared to other incremental sheet forming(ISF)processes.Despite the flexible nature,it faces the challenge of low geometric precision like ISF variants.In this work,two strategies are used to overcome this.First,a novel method is employed to determine the optimal support tool location for improving geometric precision.In this method,the toolpath oriented the tools to each other systematically in the circumferential direction.Besides,it squeezed the sheet by the same amount at the point of interest.The impacts of various support tool positions in the circumferential direction are evaluated for geometric precision.The results demonstrate that the support tool should support the master tool within 10°to its local normal in the circumferential direction to improve the geometric accuracy.Second,a two-stage process reduced the geometric error of the part by incrementally accommodating the springback error by artificially increasing the step size for the second stage.With the optimal support tool position and two-stage DSIF,the geometric precision of the part has improved significantly.The proposed method is compared to the best DSIF toolpath strategies for geometric accuracy,surface roughness,forming time,and sheet thickness fluctuations using grey relational analysis(GRA).It outperforms the other toolpath strategies including single-stage DSIF,accumulative double-sided incremental forming(ADSIF),and two-stage mixed double sided incre-mental forming(MDSIF).Our approach can improve geometric precision in complex parts by successfully employing the support tool and managing the springback incrementally.
基金the National "11th Five Year" Plan of Science and technology (2006BAD26B06,2006BAD03A1205) Ecological Restore Project of Water Resources Ministry of China (2006-2008)
文摘The relationship between eco-hydrographic benefit of forest vegetation and climatic environmental factors is one of the focuses in the research on environmental protection and ecosystem countermeasures in Wetland. The runoff, sediment and soil moisture rate dynamics in Robinia pseudoacacia plantation and its clearcut area were investigated in the natural runoff experiment plots in Yellow River Delta Wet- land, Shandong Province, China. The correlation of height increment ofR. pseudoacacia with nine climate factors such as light, water, heat, etc. was analyzed by stepwise regression analysis. The results showed that the amounts of runoff and sediment in clearcut area of R. pseudoacacia were 53.9%-150.8% and 172.8%-387.1% higher than that in Robinia pseudoacacia plantation, respectively. The runoff peak value in R. pseudoacacia stand was obviously lower than that in clerarcut area, meantime, the occurrence of runoffpeak in R. pseudoacacia stand was 25 min later than in its clerarcut area. The soil moisture rates in R. pseudoacacia stand and its clearcut varied periodically with annual rainfall precipitation in both dry season and humid season. The annual mean soil moisture rate in R. pseudoacacia stand was 23.3%-25.6% higher than that in its clearcut area. Meanwhile, a regression model reflecting the correlation between the height increment of R. pseudoacacia and climatic factors was developed by stepwise regression procedure method. It showed that the light was the most important factor for the height increment ofR. pseudoacacia, followed by water and heat factors.