期刊文献+
共找到535篇文章
< 1 2 27 >
每页显示 20 50 100
A systematic data-driven modelling framework for nonlinear distillation processes incorporating data intervals clustering and new integrated learning algorithm
1
作者 Zhe Wang Renchu He Jian Long 《Chinese Journal of Chemical Engineering》 2025年第5期182-199,共18页
The distillation process is an important chemical process,and the application of data-driven modelling approach has the potential to reduce model complexity compared to mechanistic modelling,thus improving the efficie... The distillation process is an important chemical process,and the application of data-driven modelling approach has the potential to reduce model complexity compared to mechanistic modelling,thus improving the efficiency of process optimization or monitoring studies.However,the distillation process is highly nonlinear and has multiple uncertainty perturbation intervals,which brings challenges to accurate data-driven modelling of distillation processes.This paper proposes a systematic data-driven modelling framework to solve these problems.Firstly,data segment variance was introduced into the K-means algorithm to form K-means data interval(KMDI)clustering in order to cluster the data into perturbed and steady state intervals for steady-state data extraction.Secondly,maximal information coefficient(MIC)was employed to calculate the nonlinear correlation between variables for removing redundant features.Finally,extreme gradient boosting(XGBoost)was integrated as the basic learner into adaptive boosting(AdaBoost)with the error threshold(ET)set to improve weights update strategy to construct the new integrated learning algorithm,XGBoost-AdaBoost-ET.The superiority of the proposed framework is verified by applying this data-driven modelling framework to a real industrial process of propylene distillation. 展开更多
关键词 Integrated learning algorithm Data intervals clustering Feature selection Application of artificial intelligence in distillation industry Data-driven modelling
在线阅读 下载PDF
Construction and validation of a machine learning algorithm-based predictive model for difficult colonoscopy insertion
2
作者 Ren-Xuan Gao Xin-Lei Wang +6 位作者 Ming-Jie Tian Xiao-Ming Li Jia-Jia Zhang Jun-Jing Wang Jing Gao Chao Zhang Zhi-Ting Li 《World Journal of Gastrointestinal Endoscopy》 2025年第7期149-161,共13页
BACKGROUND Difficulty of colonoscopy insertion(DCI)significantly affects colonoscopy effectiveness and serves as a key quality indicator.Predicting and evaluating DCI risk preoperatively is crucial for optimizing intr... BACKGROUND Difficulty of colonoscopy insertion(DCI)significantly affects colonoscopy effectiveness and serves as a key quality indicator.Predicting and evaluating DCI risk preoperatively is crucial for optimizing intraoperative strategies.AIM To evaluate the predictive performance of machine learning(ML)algorithms for DCI by comparing three modeling approaches,identify factors influencing DCI,and develop a preoperative prediction model using ML algorithms to enhance colonoscopy quality and efficiency.METHODS This cross-sectional study enrolled 712 patients who underwent colonoscopy at a tertiary hospital between June 2020 and May 2021.Demographic data,past medical history,medication use,and psychological status were collected.The endoscopist assessed DCI using the visual analogue scale.After univariate screening,predictive models were developed using multivariable logistic regression,least absolute shrinkage and selection operator(LASSO)regression,and random forest(RF)algorithms.Model performance was evaluated based on discrimination,calibration,and decision curve analysis(DCA),and results were visualized using nomograms.RESULTS A total of 712 patients(53.8%male;mean age 54.5 years±12.9 years)were included.Logistic regression analysis identified constipation[odds ratio(OR)=2.254,95%confidence interval(CI):1.289-3.931],abdominal circumference(AC)(77.5–91.9 cm,OR=1.895,95%CI:1.065-3.350;AC≥92 cm,OR=1.271,95%CI:0.730-2.188),and anxiety(OR=1.071,95%CI:1.044-1.100)as predictive factors for DCI,validated by LASSO and RF methods.Model performance revealed training/validation sensitivities of 0.826/0.925,0.924/0.868,and 1.000/0.981;specificities of 0.602/0.511,0.510/0.562,and 0.977/0.526;and corresponding area under the receiver operating characteristic curves(AUCs)of 0.780(0.737-0.823)/0.726(0.654-0.799),0.754(0.710-0.798)/0.723(0.656-0.791),and 1.000(1.000-1.000)/0.754(0.688-0.820),respectively.DCA indicated optimal net benefit within probability thresholds of 0-0.9 and 0.05-0.37.The RF model demonstrated superior diagnostic accuracy,reflected by perfect training sensitivity(1.000)and highest validation AUC(0.754),outperforming other methods in clinical applicability.CONCLUSION The RF-based model exhibited superior predictive accuracy for DCI compared to multivariable logistic and LASSO regression models.This approach supports individualized preoperative optimization,enhancing colonoscopy quality through targeted risk stratification. 展开更多
关键词 COLONOSCOPY Difficulty of colonoscopy insertion Machine learning algorithms Predictive model Logistic regression Least absolute shrinkage and selection operator regression Random forest
暂未订购
An Optimization Algorithm Employing Multiple Metamodels and Optimizers 被引量:2
3
作者 Yoel Tenne 《International Journal of Automation and computing》 EI CSCD 2013年第3期227-241,共15页
Modern engineering design optimization often relies on computer simulations to evaluate candidate designs, a setup which results in expensive black-box optimization problems. Such problems introduce unique challenges,... Modern engineering design optimization often relies on computer simulations to evaluate candidate designs, a setup which results in expensive black-box optimization problems. Such problems introduce unique challenges, which has motivated the application of metamodel-assisted computational intelligence algorithms to solve them. Such algorithms combine a computational intelligence optimizer which employs a population of candidate solutions, with a metamodel which is a computationally cheaper approximation of the expensive computer simulation. However, although a variety of metamodels and optimizers have been proposed, the optimal types to employ are problem dependant. Therefore, a priori prescribing the type of metamodel and optimizer to be used may degrade its effectiveness. Leveraging on this issue, this study proposes a new computational intelligence algorithm which autonomously adapts the type of the metamodel and optimizer during the search by selecting the most suitable types out of a family of candidates at each stage. Performance analysis using a set of test functions demonstrates the effectiveness of the proposed algorithm, and highlights the merit of the proposed adaptation approach. 展开更多
关键词 Expensive optimization problems computational intelligence adaptive algorithms METAmodelLING model selection.
原文传递
MultiDMet: Designing a Hybrid Multidimensional Metrics Framework to Predictive Modeling for Performance Evaluation and Feature Selection
4
作者 Tesfay Gidey Hailu Taye Abdulkadir Edris 《Intelligent Information Management》 2023年第6期391-425,共35页
In a competitive digital age where data volumes are increasing with time, the ability to extract meaningful knowledge from high-dimensional data using machine learning (ML) and data mining (DM) techniques and making d... In a competitive digital age where data volumes are increasing with time, the ability to extract meaningful knowledge from high-dimensional data using machine learning (ML) and data mining (DM) techniques and making decisions based on the extracted knowledge is becoming increasingly important in all business domains. Nevertheless, high-dimensional data remains a major challenge for classification algorithms due to its high computational cost and storage requirements. The 2016 Demographic and Health Survey of Ethiopia (EDHS 2016) used as the data source for this study which is publicly available contains several features that may not be relevant to the prediction task. In this paper, we developed a hybrid multidimensional metrics framework for predictive modeling for both model performance evaluation and feature selection to overcome the feature selection challenges and select the best model among the available models in DM and ML. The proposed hybrid metrics were used to measure the efficiency of the predictive models. Experimental results show that the decision tree algorithm is the most efficient model. The higher score of HMM (m, r) = 0.47 illustrates the overall significant model that encompasses almost all the user’s requirements, unlike the classical metrics that use a criterion to select the most appropriate model. On the other hand, the ANNs were found to be the most computationally intensive for our prediction task. Moreover, the type of data and the class size of the dataset (unbalanced data) have a significant impact on the efficiency of the model, especially on the computational cost, and the interpretability of the parameters of the model would be hampered. And the efficiency of the predictive model could be improved with other feature selection algorithms (especially hybrid metrics) considering the experts of the knowledge domain, as the understanding of the business domain has a significant impact. 展开更多
关键词 Predictive modeling Hybrid Metrics Feature selection model selection algorithm Analysis Machine Learning
在线阅读 下载PDF
Test selection and optimization for PHM based on failure evolution mechanism model 被引量:8
5
作者 Jing Qiu Xiaodong Tan +1 位作者 Guanjun Liu Kehong L 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第5期780-792,共13页
The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuse... The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level. 展开更多
关键词 test selection and optimization (TSO) prognostics and health management (PHM) failure evolution mechanism model (FEMM) adaptive simulated annealing genetic algorithm (ASAGA).
在线阅读 下载PDF
Application of Genetic Algorithm in Estimation of Gyro Drift Error Model 被引量:1
6
作者 LI Dongmei BAI Taixun +1 位作者 HE Xiaoxia ZHANG Rong 《Aerospace China》 2019年第1期3-8,共6页
Extended Kalman Filter(EKF)algorithm is widely used in parameter estimation for nonlinear systems.The estimation precision is sensitively dependent on EKF’s initial state covariance matrix and state noise matrix.The ... Extended Kalman Filter(EKF)algorithm is widely used in parameter estimation for nonlinear systems.The estimation precision is sensitively dependent on EKF’s initial state covariance matrix and state noise matrix.The grid optimization method is always used to find proper initial matrix for off-line estimation.However,the grid method has the draw back being time consuming hence,coarse grid followed by a fine grid method is adopted.To further improve efficiency without the loss of estimation accuracy,we propose a genetic algorithm for the coarse grid optimization in this paper.It is recognized that the crossover rate and mutation rate are the main influencing factors for the performance of the genetic algorithm,so sensitivity experiments for these two factors are carried out and a set of genetic algorithm parameters with good adaptability were selected by testing with several gyros’experimental data.Experimental results show that the proposed algorithm has higher efficiency and better estimation accuracy than the traversing grid algorithm. 展开更多
关键词 genetic algorithm traversing GRID algorithm coarse GRID optimization GYRO DRIFT error model CROSSOVER RATE and mutation RATE selecting
在线阅读 下载PDF
Variable selection for skew-normal mixture of joint location and scale models
7
作者 WU Liu-cang YANG Song-qin TAO Ye 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2021年第4期475-491,共17页
Although there are many papers on variable selection methods based on mean model in the nite mixture of regression models,little work has been done on how to select signi cant explanatory variables in the modeling of ... Although there are many papers on variable selection methods based on mean model in the nite mixture of regression models,little work has been done on how to select signi cant explanatory variables in the modeling of the variance parameter.In this paper,we propose and study a novel class of models:a skew-normal mixture of joint location and scale models to analyze the heteroscedastic skew-normal data coming from a heterogeneous population.The problem of variable selection for the proposed models is considered.In particular,a modi ed Expectation-Maximization(EM)algorithm for estimating the model parameters is developed.The consistency and the oracle property of the penalized estimators is established.Simulation studies are conducted to investigate the nite sample performance of the proposed methodolo-gies.An example is illustrated by the proposed methodologies. 展开更多
关键词 heterogeneous population skew-normal(SN)distribution mixture of joint location and scale models variable selection EM algorithm
在线阅读 下载PDF
Theoretical Basis in Regression Model Based Selection of the Most Cost Effective Parameters of Hard Rock Surface Mining
8
作者 Antipas T. S. Massawe Karim R. Baruti Paul S. M. Gongo 《Engineering(科研)》 2011年第2期156-161,共6页
What determines selection of the most cost effective parameters of hard rock surface mining is consideration of all alternative variants of mine design and the conflicting effect of their parameters on cost. Considera... What determines selection of the most cost effective parameters of hard rock surface mining is consideration of all alternative variants of mine design and the conflicting effect of their parameters on cost. Consideration could be realized based on the mathematical model of the cumulative influence of rockmass and mine design variables on the overall cost per ton of the hard rock drilled, blasted, hauled and primary crushed. Available works on the topic mostly dwelt on four processes of hard rock surface mining separately. This paper dwells on the theoretical part of a research proposed to enhance effectiveness in the selection of the parameters of hard rock surface mining design based on the regression model of overall cost per tonne of the rock mined fit on the determinant variations of rockmass and mine design. The regression model could be developed based on the statistical data generated by many of the hard rock surface mines operating in variable conditions of rockmass and mine design worldwide. Also, a regression model based general algorithm has been formulated for the development of software and computer aided selection of the most cost effective parameters of hard rock surface mining. 展开更多
关键词 PARAMETERS of Rockmass PARAMETERS of MINING Design Regression model algorithm of selection
暂未订购
Prediction of(n,2n)reaction cross-sections of long-lived fission products based on tensor model
9
作者 Jia-Li Huang Hui Wang +7 位作者 Ying-Ge Huang Er-Xi Xiao Yu-Jie Feng Xin Lei Fu-Chang Gu Long Zhu Yong-Jing Chen Jun Su 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第10期208-221,共14页
Interest has recently emerged in potential applications of(n,2n)reactions of unstable nuclei.Challenges have arisen because of the scarcity of experimental cross-sectional data.This study aims to predict the(n,2n)reac... Interest has recently emerged in potential applications of(n,2n)reactions of unstable nuclei.Challenges have arisen because of the scarcity of experimental cross-sectional data.This study aims to predict the(n,2n)reaction cross-section of long-lived fission products based on a tensor model.This tensor model is an extension of the collaborative filtering algorithm used for nuclear data.It is based on tensor decomposition and completion to predict(n,2n)reaction cross-sections;the corresponding EXFOR data are applied as training data.The reliability of the proposed tensor model was validated by comparing the calculations with data from EXFOR and different databases.Predictions were made for long-lived fission products such as^(60)Co,^(79)Se,^(93)Zr,^(107)P,^(126)Sn,and^(137)Cs,which provide a predicted energy range to effectively transmute long-lived fission products into shorter-lived or less radioactive isotopes.This method could be a powerful tool for completing(n,2n)reaction cross-sectional data and shows the possibility of selective transmutation of nuclear waste. 展开更多
关键词 (n 2n)Reaction cross-section Tensor model Machine learning Collaborative filtering algorithm Selective transmutation
在线阅读 下载PDF
Gaussian mixture model clustering with completed likelihood minimum message length criterion 被引量:1
10
作者 曾洪 卢伟 宋爱国 《Journal of Southeast University(English Edition)》 EI CAS 2013年第1期43-47,共5页
An improved Gaussian mixture model (GMM)- based clustering method is proposed for the difficult case where the true distribution of data is against the assumed GMM. First, an improved model selection criterion, the ... An improved Gaussian mixture model (GMM)- based clustering method is proposed for the difficult case where the true distribution of data is against the assumed GMM. First, an improved model selection criterion, the completed likelihood minimum message length criterion, is derived. It can measure both the goodness-of-fit of the candidate GMM to the data and the goodness-of-partition of the data. Secondly, by utilizing the proposed criterion as the clustering objective function, an improved expectation- maximization (EM) algorithm is developed, which can avoid poor local optimal solutions compared to the standard EM algorithm for estimating the model parameters. The experimental results demonstrate that the proposed method can rectify the over-fitting tendency of representative GMM-based clustering approaches and can robustly provide more accurate clustering results. 展开更多
关键词 Gaussian mixture model non-Gaussian distribution model selection expectation-maximization algorithm completed likelihood minimum message length criterion
在线阅读 下载PDF
基于自适应贪心-遗传混合算法的健身中心选址方法
11
作者 陈龙强 林海潮 郑意 《福建师范大学学报(自然科学版)》 北大核心 2025年第6期34-44,53,共12页
在全民健身大背景下,针对健身中心选址问题,提出了一种基于自适应贪心—遗传混合算法(adaptive greedy-genetic algorithm,AGGA)的多目标选址方法。该方法旨在对健身中心进行合理布局,以实现服务点覆盖率和综合收益最大化。首先,综合考... 在全民健身大背景下,针对健身中心选址问题,提出了一种基于自适应贪心—遗传混合算法(adaptive greedy-genetic algorithm,AGGA)的多目标选址方法。该方法旨在对健身中心进行合理布局,以实现服务点覆盖率和综合收益最大化。首先,综合考虑人口密度、交通便捷度、健身需求等因素,采用Huff重力模型评估健身中心对居民的吸引力,并结合国家标准对健身中心的配置方案进行优化。其次,为避免遗传算法(genetic algorithm,GA)存在的变异盲目性与随机性,引入贪心策略,有效提高了AGGA算法在处理复杂选址问题中的稳定性。实验结果表明,AGGA算法在不同覆盖半径条件下均能有效地优化健身中心的选择规划方案,与传统经典启发式算法相比,所提方法在5 km覆盖半径下,综合收益提升了5.56%~9.28%,能够为居民提供良好的健身服务体验。 展开更多
关键词 健身中心 Huff重力模型 选址优化 自适应遗传算法
在线阅读 下载PDF
基于时空大数据的工程建设项目智慧选址系统建设研究
12
作者 邓潇潇 刘彦 刘莉 《自然资源信息化》 2025年第5期10-17,共8页
在生态文明建设背景下,如何协调建设项目选址与国土空间管控要求,已成为土地要素保障的关键课题。本文系统梳理了工程建设项目类型及其选址影响因素,建立了融合国土空间管控要求的工程建设项目智慧选址技术指标体系,构建了基于模型库、... 在生态文明建设背景下,如何协调建设项目选址与国土空间管控要求,已成为土地要素保障的关键课题。本文系统梳理了工程建设项目类型及其选址影响因素,建立了融合国土空间管控要求的工程建设项目智慧选址技术指标体系,构建了基于模型库、知识库的建设项目选址模型及节地分析模型,研发出具有量化分析功能的智慧选址信息系统。该系统应用于湖南省土地管理工作,使建设项目土地要素保障效率提高70%、审批周期缩短50%。本研究提出的技术方法有效解决了建设项目选址与国土空间管控的协同难题,为生态文明建设背景下的土地资源优化配置提供了可推广的解决方案,对提高土地要素保障效率具有重要实践价值。 展开更多
关键词 时空大数据 工程建设项目 智慧选址 算法模型 信息系统
在线阅读 下载PDF
基于BT-TVPF的变转速下轴承剩余寿命预测方法 被引量:1
13
作者 杨黎凯 张来斌 +2 位作者 何仁洋 段礼祥 张继旺 《机电工程》 北大核心 2025年第6期1118-1125,共8页
变转速下滚动轴承劣化趋势严重,会导致滚动轴承的剩余寿命难以精准预测。针对这一问题,提出了一种基于基线转换(BT)和时变粒子滤波(TVPF)算法的滚动轴承剩余寿命预测方法。首先,提取了20个适用于变转速下滚动轴承振动信号的时频域特征,... 变转速下滚动轴承劣化趋势严重,会导致滚动轴承的剩余寿命难以精准预测。针对这一问题,提出了一种基于基线转换(BT)和时变粒子滤波(TVPF)算法的滚动轴承剩余寿命预测方法。首先,提取了20个适用于变转速下滚动轴承振动信号的时频域特征,并采用BT算法将特征值转换到基线速度下,降低了因变转速引起的过大波动性;然后,利用综合指标筛选了该特征,并使用核主成分分析方法进行了降维融合,构建了用以表征滚动轴承健康状态的最优指标;根据变转速下滚动轴承运行状态的动态变化情况,采用TVPF算法自适应选择了最优退化模型,并利用实时测试数据动态更新了模型参数,完成了滚动轴承剩余寿命精准预测;最后,设计了变转速下滚动轴承全寿命加速实验,对该方法的有效性进行了验证。研究结果表明:和传统模型相比,该方法预测误差降低了39%以上。该方法可以为变转速的工业设备滚动轴承寿命预测提供新的解决思路。 展开更多
关键词 滚动轴承 基线转换算法 时变粒子滤波算法 退化模型构建 健康指标构建 特征选择与降维
在线阅读 下载PDF
基于特征选择的SHAP-Transformer高炉铁水硅含量预报模型 被引量:1
14
作者 马居安 郑华伟 +4 位作者 刘栋梁 陆昊 周进东 毕学工 熊玮 《钢铁》 北大核心 2025年第8期68-78,共11页
数据驱动方法在高炉铁水硅含量预报方面取得了一定的成功,但由于高炉的复杂性,特征参数的强耦合、大时滞和多时间尺度特点提高了模型的训练难度,这是硅预报模型应用需要持续研究和特别关注的问题。采用时间窗口和主成分分析(principal c... 数据驱动方法在高炉铁水硅含量预报方面取得了一定的成功,但由于高炉的复杂性,特征参数的强耦合、大时滞和多时间尺度特点提高了模型的训练难度,这是硅预报模型应用需要持续研究和特别关注的问题。采用时间窗口和主成分分析(principal component analysis,PCA)将22个分钟级的特征参数转化为铁次级参数,进一步采用滑动窗口和最大信息系数(maximal information coefficient,Cimax)确定了参数的滞后时长。利用随机森林优化的SHAP算法对34个参数在强耦合条件下的重要性进行评估,筛选出7个关键参数。使用SHAP算法优化Transformer的自注意力机制,构建了SHAP-Transformer铁水硅含量预报模型,通过现场数据验证了模型的有效性。结果表明,铁水硅质量分数预测误差为-0.05~0.05和-0.1~0.1时,基于滑动窗口时滞分析及耦合参数优选的SHAP-Transformer模型的命中率最高,分别为72.12%和95.76%,比基于MIC参数选择的SHAP-Transformer模型提高了26.67%和21.21%,比基于滑动窗口时滞分析及耦合参数优选的长短时记忆网络(long short-term memory,LSTM)模型提高了17.57%和9.7%。基于滑动窗口时滞分析及耦合参数优选的SHAP-Transformer模型对铁水硅含量的变化趋势预测也有较高的精度,趋势方向预测的准确率为87.3%,趋势类别预测的准确率为60.5%,研究能够为高炉操作者提前判断炉温变化提供可靠依据。 展开更多
关键词 高炉 铁水硅含量 特征选择 时滞分析 随机森林 SHAP算法 炼铁 预报模型
原文传递
基于改进蚁群优化算法的输电线路智能选线研究
15
作者 谢枫 孟宪乔 +2 位作者 刘耀中 张家倩 都海波 《控制工程》 北大核心 2025年第7期1330-1335,共6页
为了提高输电线路选线的效率,降低输电线路的建设成本,提出了一种基于地理信息系统的改进蚁群优化算法。首先,对规划区域进行栅格化建模,阐述传统蚁群优化算法在输电线路选线中的应用原理;然后,针对传统蚁群优化算法易陷入局部最优和搜... 为了提高输电线路选线的效率,降低输电线路的建设成本,提出了一种基于地理信息系统的改进蚁群优化算法。首先,对规划区域进行栅格化建模,阐述传统蚁群优化算法在输电线路选线中的应用原理;然后,针对传统蚁群优化算法易陷入局部最优和搜索到的路径存在较多拐点的问题,提出了信息素浓度自适应更新机制和节点优化机制对其进行改进。实验以安徽省某区域为例进行输电线路选线。实验结果表明,与传统蚁群优化算法相比,改进蚁群优化算法的搜索效率更高,搜索到的路径具有更少的拐点,可以有效减少输电线路的建设成本。 展开更多
关键词 栅格模型 蚁群优化算法 节点优化 智能选线
原文传递
基于DVR模型的低复杂度数字预失真方法
16
作者 陆旭 吴雅琦 +2 位作者 周先春 朱心悦 陈章 《微波学报》 北大核心 2025年第1期51-57,共7页
数字预失真技术是一种被广泛应用的功率放大器线性化技术。分解矢量旋转(DVR)数字预失真模型因其容易实现的硬件结构,良好的线性化性能,被广泛地用于功放非线性的改善。然而,DVR模型参数提取的计算复杂度与运算开销会随着算子矩阵项数... 数字预失真技术是一种被广泛应用的功率放大器线性化技术。分解矢量旋转(DVR)数字预失真模型因其容易实现的硬件结构,良好的线性化性能,被广泛地用于功放非线性的改善。然而,DVR模型参数提取的计算复杂度与运算开销会随着算子矩阵项数和数据长度的增多而急剧增加。针对这一问题,本文提出了一种基于DVR模型的低运算复杂度数字预失真方法。所提方法包含低复杂度分解矢量旋转(LCDVR)数字预失真模型和非均匀选择采样(NSS)算法两个方面,共同减少模型参数提取时的运算开销。所提LCDVR模型通过增加算子矩阵中0项的数量,减少了所需的乘法运算操作;同时,根据信号幅度分布特点,采用NSS算法进行数据采样点选取,可以减少参数提取时所需的数据长度,并使选择后的信号幅度分布相对均匀,便于分析LCDVR模型幅度分段值的选取。实验结果表明,当输入信号数据长度为70000时,LCDVR模型的θ_(max)为0.7,θ_(min)为0.3;采用NSS算法后的数据长度为10849时,本文所提方法的参数提取所需乘法运算量仅为DVR模型的2.24%,且能够保持相当的线性化效果。因此,本文所提方法可以在保持线性化精度的同时显著降低参数提取中的运算复杂度,具有较强的应用性和可实现性。 展开更多
关键词 线性化 数字预失真 功率放大器 低复杂度分解矢量旋转模型 非均匀选择采样算法
原文传递
多约束人机协作U型拆卸线问题建模与优化
17
作者 陈海烨 张则强 +2 位作者 梁巍 郭磊 段淇耀 《浙江大学学报(工学版)》 北大核心 2025年第11期2248-2258,共11页
针对现有人机协作拆卸线研究中未同时考虑人机任务时间差异和任务属性约束,且未将机器人购置成本考虑在人机协作长期成本中的问题,结合U型拆卸线,提出多约束人机协作拆卸线平衡问题.以工作站数量、空闲时间均衡指标和长期成本为目标函数... 针对现有人机协作拆卸线研究中未同时考虑人机任务时间差异和任务属性约束,且未将机器人购置成本考虑在人机协作长期成本中的问题,结合U型拆卸线,提出多约束人机协作拆卸线平衡问题.以工作站数量、空闲时间均衡指标和长期成本为目标函数,构建考虑人机任务属性、人机任务时间、AND/OR优先关系等多种问题特征约束的U型拆卸线整数规划模型.提出改进混合克隆模拟退火算法,设计双层编码、解码和考虑问题特性的变异和交叉操作.引入克隆操作增强算法的局部搜索能力,通过两阶段退火加快算法的收敛速度.应用Gurobi软件求解中小规模问题,与算法的求解结果进行对比,验证了模型和算法的正确性和有效性.通过分别计算和对比不同模式拆卸线的成本随拆卸线预估运行时间的变化情况,验证了该模型具有柔性拆卸线规划的优点. 展开更多
关键词 U型拆卸线平衡问题 人机协作拆卸线 改进混合克隆模拟退火算法 整数规划模型 多目标优化
在线阅读 下载PDF
基于变分模态分解和深度学习算法的污水出水水质预测
18
作者 梅丹 张恒 《长江科学院院报》 北大核心 2025年第9期67-74,82,共9页
准确预测出水水质对于污水处理厂的节能降耗具有重要意义。近年来,以废水处理仿真基准模型1号(BSM1)为代表的机理模型和各种深度学习算法被广泛运用于污水处理厂出水水质预测。然而,出水水质具有复杂的非线性关系,现有的预测模型通用性... 准确预测出水水质对于污水处理厂的节能降耗具有重要意义。近年来,以废水处理仿真基准模型1号(BSM1)为代表的机理模型和各种深度学习算法被广泛运用于污水处理厂出水水质预测。然而,出水水质具有复杂的非线性关系,现有的预测模型通用性较差。基于此,提出一种基于变分模态分解(VMD)和4种深度学习算法的预测框架。通过变分模态分解方法将水质序列分解后,引入综合评价指标(CEI)为分解后的子序列寻求预测性能最好的算法,最后叠加各子模型的预测值得到最终的预测结果。以湖北省武汉市的一座污水处理厂出水化学需氧量(COD)浓度为例进行实例验证,结果表明,所提出的模型较单一模型在预测性能上达到了最佳效果,均方根误差(RMSE)达到了0.485。 展开更多
关键词 水质预测 变分模态分解 综合评价指标 最优子模型选择 深度学习算法
在线阅读 下载PDF
基于改进A^(*)算法的施工道路智能选线方法研究
19
作者 王金铜 米佳鑫 +2 位作者 吴海兵 闫田青 赵毅 《土木建筑工程信息技术》 2025年第3期45-50,共6页
传统施工道路选线依赖于人工经验,复杂情况下难以确定最优线路,本文旨在利用数字高程模型(DEM)进行施工道路自动选线,减少人工干预,提高选线效率。基于规则格网形式的DEM模型,结合A^(*)搜索算法和多控制点引导构建了施工道路智能选线算... 传统施工道路选线依赖于人工经验,复杂情况下难以确定最优线路,本文旨在利用数字高程模型(DEM)进行施工道路自动选线,减少人工干预,提高选线效率。基于规则格网形式的DEM模型,结合A^(*)搜索算法和多控制点引导构建了施工道路智能选线算法。该选线算法以三维距离和坡度作为选线评估指标来设计评价函数,对选线算法生成路径的最大坡度进行约束以满足公路设计规范,同时加入多控制点引导来降低算法的搜索深度,实现施工道路自动选线。对广西某工程项目所在区域进行案例研究,结果表明改进A^(*)算法所选线路满足选线要求,并总结了该算法中扩大系数k的选取方法。该施工道路智能选线方法为施工道路选线提供了新的解决方案,有利于提高施工道路选线效率。 展开更多
关键词 施工道路 智能选线 改进A^(*)算法 数字高程模型 路径规划
在线阅读 下载PDF
线性回归模型中基于GMD算法的两阶段组Lasso多变点估计
20
作者 安子祯 董翠玲 《新疆师范大学学报(自然科学版)》 2025年第4期1-9,共9页
利用变量选择方法估计和检测变点是目前流行且有效的方法。文章提出了一种基于GMD算法的两阶段组Lasso多变点估计方法,该方法可以同时估计出线性回归模型中多变点的位置和数量。数值模拟结果显示,与基于GMD算法未分段的组Lasso、未分段... 利用变量选择方法估计和检测变点是目前流行且有效的方法。文章提出了一种基于GMD算法的两阶段组Lasso多变点估计方法,该方法可以同时估计出线性回归模型中多变点的位置和数量。数值模拟结果显示,与基于GMD算法未分段的组Lasso、未分段的自适应Lasso和未分段的Lasso三种变量选择算法的多变点估计方法相比,基于GMD算法的两阶段组Lasso多变点估计方法在估计精度和计算速度两方面均有显著优势。 展开更多
关键词 变量选择 组Lasso GMD算法 线性回归模型 多变点
在线阅读 下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部