针对跟踪复杂机动目标过程中由于目标运动状态发生变化导致的跟踪误差较大的问题,提出一种自适应交互多模型无迹卡尔曼滤波(interacting multiple model unscented Kalman filter,IMM-UKF)算法,使用模型概率后验信息和模型似然函数自适...针对跟踪复杂机动目标过程中由于目标运动状态发生变化导致的跟踪误差较大的问题,提出一种自适应交互多模型无迹卡尔曼滤波(interacting multiple model unscented Kalman filter,IMM-UKF)算法,使用模型概率后验信息和模型似然函数自适应修正马尔可夫转移概率矩阵(transition probability matrix,TPM)。设计模型概率校正方法和模型转移加速方法,两种方法分别作用于模型稳定阶段和模型转移阶段,提高模型概率准确度和模型转移响应速度,减小状态估计误差。最后,通过两种场景下的实验验证所提算法在目标具有复杂运动状态下的性能,并与传统方法进行对比分析,在目标做机动运动时,位置精度和速度精度分别提高了15%和26%,验证了算法的有效性和可行性。展开更多
The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first i...The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first immune cells to be activated after an ischemic stroke,microglia play an important immunomodulatory role in the progression of the condition.After an ischemic stroke,peripheral blood immune cells(mainly T cells)are recruited to the central nervous system by chemokines secreted by immune cells in the brain,where they interact with central nervous system cells(mainly microglia)to trigger a secondary neuroimmune response.This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke.We found that,during ischemic stroke,T cells and microglia demonstrate a more pronounced synergistic effect.Th1,Th17,and M1 microglia can co-secrete proinflammatory factors,such as interferon-γ,tumor necrosis factor-α,and interleukin-1β,to promote neuroinflammation and exacerbate brain injury.Th2,Treg,and M2 microglia jointly secrete anti-inflammatory factors,such as interleukin-4,interleukin-10,and transforming growth factor-β,to inhibit the progression of neuroinflammation,as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury.Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation,which in turn determines the prognosis of ischemic stroke patients.Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke.However,such studies have been relatively infrequent,and clinical experience is still insufficient.In summary,in ischemic stroke,T cell subsets and activated microglia act synergistically to regulate inflammatory progression,mainly by secreting inflammatory factors.In the future,a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells,along with the activation of M2-type microglia.These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.展开更多
The concept of neuroimmune interactions has shown significant advancements over the years. Modern research has revealed many areas of connection between fields, which were previously viewed as distinct disciplines. Fo...The concept of neuroimmune interactions has shown significant advancements over the years. Modern research has revealed many areas of connection between fields, which were previously viewed as distinct disciplines. For example, the nervous system can sense changes in the external environment and convey these changes through molecules and mediators with receptors in the immune system to modulate immune responses. Neuromediators can act on different receptors in the same group of cells, producing antipodal effects. Identification of the anti-inflammatory role of glucocorticoids highlighted that the body functions properly in an integrated manner. These interactions and crosstalk are not unidirectional, as the immune system can also influence various aspects of the nervous system, such as synaptic plasticity and fever. Strict integration of neuro-immuno-endocrine circuits is indispensable for homeostasis. Understanding these circuits and molecules can lead to advances in the understanding of various immune diseases, which will offer promising therapeutic options.展开更多
Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P...Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P fractions is potentially an adaptive strategy for plants to cope with soil N(P)availability and nutrient-limiting conditions.However,the impact of the interactions between imbalanced anthropogenic N and P inputs on the concentrations and allocation proportions of leaf P fractions in forest woody plants remains elusive.We conducted a metaanalysis of data about the concentrations and allocation proportions of leaf P fractions,specifically associated with individual and combined additions of N and P in evergreen forests,the dominant vegetation type in southern China where the primary productivity is usually considered limited by P.This assessment allowed us to quantitatively evaluate the effects of N and P additions alone and interactively on leaf P allocation and use strategies.Nitrogen addition(exacerbating P limitation)reduced the concentrations of leaf total P and different leaf P fractions.Nitrogen addition reduced the allocation to leaf metabolic P but increased the allocation to other fractions,while P addition showed opposite trends.The simultaneous additions of N and P showed an antagonistic(mutual suppression)effect on the concentrations of leaf P fractions,but an additive(summary)effect on the allocation proportions of leaf P fractions.These results highlight the importance of strategies of leaf P fraction allocation in forest plants under changes in environmental nutrient availability.Importantly,our study identified critical interactions associated with combined N and P inputs that affect leaf P fractions,thus aiding in predicting plant acclimation strategies in the context of intensifying and imbalanced anthropogenic nutrient inputs.展开更多
The nervous system processes a vast amount of information,performing computations that underlie perception,cognition,and behavior.During development,neuronal guidance genes,which encode extracellular cues,their recept...The nervous system processes a vast amount of information,performing computations that underlie perception,cognition,and behavior.During development,neuronal guidance genes,which encode extracellular cues,their receptors,and downstream signal transducers,organize neural wiring to generate the complex architecture of the nervous system.It is now evident that many of these neuroguidance cues and their receptors are active during development and are also expressed in the adult nervous system.This suggests that neuronal guidance pathways are critical not only for neural wiring but also for ongoing function and maintenance of the mature nervous system.Supporting this view,these pathways continue to regulate synaptic connectivity,plasticity,and remodeling,and overall brain homeostasis throughout adulthood.Genetic and transcriptomic analyses have further revealed many neuronal guidance genes to be associated with a wide range of neurodegenerative and neuropsychiatric disorders.Although the precise mechanisms by which aberrant neuronal guidance signaling drives the pathogenesis of these diseases remain to be clarified,emerging evidence points to several common themes,including dysfunction in neurons,microglia,astrocytes,and endothelial cells,along with dysregulation of neuron-microglia-astrocyte,neuroimmune,and neurovascular interactions.In this review,we explore recent advances in understanding the molecular and cellular mechanisms by which aberrant neuronal guidance signaling contributes to disease pathogenesis through altered cell-cell interactions.For instance,recent studies have unveiled two distinct semaphorin-plexin signaling pathways that affect microglial activation and neuroinflammation.We discuss the challenges ahead,along with the therapeutic potentials of targeting neuronal guidance pathways for treating neurodegenerative diseases.Particular focus is placed on how neuronal guidance mechanisms control neuron-glia and neuroimmune interactions and modulate microglial function under physiological and pathological conditions.Specifically,we examine the crosstalk between neuronal guidance signaling and TREM2,a master regulator of microglial function,in the context of pathogenic protein aggregates.It is well-established that age is a major risk factor for neurodegeneration.Future research should address how aging and neuronal guidance signaling interact to influence an individual’s susceptibility to various late-onset neurological diseases and how the progression of these diseases could be therapeutically blocked by targeting neuronal guidance pathways.展开更多
The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themse...The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themselves.This paper explores practical strategies for implementing this model,focusing on four key aspects:deepening teachers’understanding of the model through continuous learning,innovating interactive methods such as questioning techniques and practical activities,leveraging modern technology to integrate resources and track learning progress,and establishing a communication platform that centers on student participation.By adopting these approaches,the model fosters a student-centered classroom environment,improves comprehensive English application skills,and optimizes overall teaching quality.展开更多
Background Fibromyalgia(FM)is a chronic rheumatic disorder characterised by musculoskeletal pain,fatigue,and psychoemotional symptoms.Virtual reality(VR)has proven to be an innovative and motivating tool for managing ...Background Fibromyalgia(FM)is a chronic rheumatic disorder characterised by musculoskeletal pain,fatigue,and psychoemotional symptoms.Virtual reality(VR)has proven to be an innovative and motivating tool for managing FM,with several studies indicating that it can improve quality of life indices and reduce psychoemotional symptoms.However,studies on immersive VR-based exercise(iVRE)are limited.Methods The aim of this study was to evaluate the effects of iVRE on quality of life,stress,anxiety,depression,and handgrip strength in patients with FM.A single-arm pre-post-test pilot study was conducted.Individuals diagnosed with FM were recruited using convenience sampling.The iVRE protocol consisted of 12 sessions of 10 min warm-up and 15 min exercises applied with the Oculus Quest 2TM device.The impact on quality of life was assessed using the Revised Fibromyalgia Impact Questionnaire,and the effects on stress,anxiety,and depression were determined using the Depression Anxiety Stress Scale-21 questionnaire.Handgrip strength was evaluated using the Baseline®dynamometer.The normality assumption was evaluated,and the pre-post means were compared using Student's ttest(p<0.05).Results Eleven individuals(40.6±11.2 years)completed the protocol(10 women).There were significant differences in favour of iVRE in quality of life impact(p<0.001,Cohen's d:1.48),handgrip strength(p<0.05,Cohen's d:0.26),depression(p<0.05,Cohen's d:0.73),and anxiety(p<0.05,Cohen's d:0.73).Conclusions A six-week iVRE program significantly reduces the impact on quality of life,anxiety,and depression and improves handgrip strength in people with FM.Future studies should investigate the physiological effects using systemic biomarkers to explain the scope of this therapeutic modality.展开更多
Population migration data derived from location-based services has often been used to delineate population flows between cities or construct intercity relationship networks to reveal and explore the complex interactio...Population migration data derived from location-based services has often been used to delineate population flows between cities or construct intercity relationship networks to reveal and explore the complex interaction patterns underlying human activities.Nevertheless,the inherent heterogeneity in multimodal migration big data has been ignored.This study conducts an in-depth comparison and quantitative analysis through a comprehensive lens of spatial association.Initially,the intercity interactive networks in China were constructed,utilizing migration data from Baidu and AutoNavi collected during the same time period.Subsequently,the characteristics and spatial structure similarities of the two types of intercity interactive networks were quantitatively assessed and analyzed from overall(network)and local(node)perspectives.Furthermore,the precision of these networks at the local scale is corroborated by constructing an intercity network from mobile phone(MP)data.Results indicate that the intercity interactive networks in China,as delineated by Baidu and AutoNavi migration flows,exhibit a high degree of structure equivalence.The correlation coefficient between these two networks is 0.874.Both networks exhibit a pronounced spatial polarization trend and hierarchical structure.This is evident in their distinct core and peripheral structures,as well as in the varying importance and influence of different nodes within the networks.Nevertheless,there are notable differences worthy of attention.Baidu intercity interactive network exhibits pronounced cross-regional effects,and its high-level interactions are characterized by a“rich-club”phenomenon.The AutoNavi intercity interactive network presents a more significant distance attenuation effect,and the high-level interactions display a gradient distribution pattern.Notably,there exists a substantial correlation between the AutoNavi and MP networks at the local scale,evidenced by a high correlation coefficient of 0.954.Furthermore,the“spatial dislocations”phenomenon was observed within the spatial structures at different levels,extracted from the Baidu and AutoNavi intercity networks.However,the measured results of network spatial structure similarity from three dimensions,namely,node location,node size,and local structure,indicate a relatively high similarity and consistency between the two networks.展开更多
The role of hydrodynamic effect in the meeting of multiple fish is a fascinating topic.The interactions of two self-propelled flexi-ble plates swimming in opposite directions horizontally and maintaining a certain lat...The role of hydrodynamic effect in the meeting of multiple fish is a fascinating topic.The interactions of two self-propelled flexi-ble plates swimming in opposite directions horizontally and maintaining a certain lateral distance are numerically simulated using a penalty-immersed boundary method.The effects of the flapping phase and lateral distance on the propulsive performance of two fish meetings are analyzed.Results show that,when two plates meet,if their leading edges diverge laterally,the individual plate can efficiently and rapidly move apart from the other horizontally.If their leading edges converge laterally,the plate motion can be retarded,leading to high energy consumption.Moreover,an increasing lateral distance between two plates significantly weakens the fluid-structure interactions,resulting in an exponential decline in mean cruising speed.A quantitative force analysis based on vortex dynamic theory is performed to gain physics insight into the hydrodynamic interaction mechanism.It is found that lateral separation between the two leading edges enhances the vorticity generation and boundary vorticity flux on the surface of the plate,subsequently reinforcing the thrust effect and increasing horizontal velocity.This study offers insight into the hydro-dynamic mechanisms of the fluid-structure interactions among fish moving toward each other and suggests potential strategies for enhancing the maneuverability of robotic fish in complex environment.展开更多
Microbes play a critical role in shaping immune development,with growing interest in how rhinovirus(RV)interacts with the host immune system,particularly in individuals with asthma and chronic obstructive pul-monary d...Microbes play a critical role in shaping immune development,with growing interest in how rhinovirus(RV)interacts with the host immune system,particularly in individuals with asthma and chronic obstructive pul-monary disease(COPD).Disruptions in microbial balance during RV infections can impair immune homeostasis and worsen disease outcomes.Recent studies emphasize RV-induced regulation of antiviral defenses,cytokine production,and immune tolerance.This review explores the interplay between RV,the immune system,and microbiota,highlighting the importance of these interactions in guiding effective therapies for respiratory in-fections.It advances existing literature by considering microbiota-mediated therapies as a novel approach to managing RV exacerbations in respiratory diseases like asthma and COPD.展开更多
文摘针对跟踪复杂机动目标过程中由于目标运动状态发生变化导致的跟踪误差较大的问题,提出一种自适应交互多模型无迹卡尔曼滤波(interacting multiple model unscented Kalman filter,IMM-UKF)算法,使用模型概率后验信息和模型似然函数自适应修正马尔可夫转移概率矩阵(transition probability matrix,TPM)。设计模型概率校正方法和模型转移加速方法,两种方法分别作用于模型稳定阶段和模型转移阶段,提高模型概率准确度和模型转移响应速度,减小状态估计误差。最后,通过两种场景下的实验验证所提算法在目标具有复杂运动状态下的性能,并与传统方法进行对比分析,在目标做机动运动时,位置精度和速度精度分别提高了15%和26%,验证了算法的有效性和可行性。
基金supported by the National Natural Science Foundation of China,Nos.82104560(to CL),U21A20400(to QW)the Natural Science Foundation of Beijing,No.7232279(to XW)the Project of Beijing University of Chinese Medicine,No.2022-JYB-JBZR-004(to XW)。
文摘The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first immune cells to be activated after an ischemic stroke,microglia play an important immunomodulatory role in the progression of the condition.After an ischemic stroke,peripheral blood immune cells(mainly T cells)are recruited to the central nervous system by chemokines secreted by immune cells in the brain,where they interact with central nervous system cells(mainly microglia)to trigger a secondary neuroimmune response.This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke.We found that,during ischemic stroke,T cells and microglia demonstrate a more pronounced synergistic effect.Th1,Th17,and M1 microglia can co-secrete proinflammatory factors,such as interferon-γ,tumor necrosis factor-α,and interleukin-1β,to promote neuroinflammation and exacerbate brain injury.Th2,Treg,and M2 microglia jointly secrete anti-inflammatory factors,such as interleukin-4,interleukin-10,and transforming growth factor-β,to inhibit the progression of neuroinflammation,as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury.Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation,which in turn determines the prognosis of ischemic stroke patients.Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke.However,such studies have been relatively infrequent,and clinical experience is still insufficient.In summary,in ischemic stroke,T cell subsets and activated microglia act synergistically to regulate inflammatory progression,mainly by secreting inflammatory factors.In the future,a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells,along with the activation of M2-type microglia.These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.
文摘The concept of neuroimmune interactions has shown significant advancements over the years. Modern research has revealed many areas of connection between fields, which were previously viewed as distinct disciplines. For example, the nervous system can sense changes in the external environment and convey these changes through molecules and mediators with receptors in the immune system to modulate immune responses. Neuromediators can act on different receptors in the same group of cells, producing antipodal effects. Identification of the anti-inflammatory role of glucocorticoids highlighted that the body functions properly in an integrated manner. These interactions and crosstalk are not unidirectional, as the immune system can also influence various aspects of the nervous system, such as synaptic plasticity and fever. Strict integration of neuro-immuno-endocrine circuits is indispensable for homeostasis. Understanding these circuits and molecules can lead to advances in the understanding of various immune diseases, which will offer promising therapeutic options.
基金supported by the National Natural Science Foundation of China(No.41473068)supported by China Postdoctoral Science Foundation(No.2022M722667)。
文摘Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P fractions is potentially an adaptive strategy for plants to cope with soil N(P)availability and nutrient-limiting conditions.However,the impact of the interactions between imbalanced anthropogenic N and P inputs on the concentrations and allocation proportions of leaf P fractions in forest woody plants remains elusive.We conducted a metaanalysis of data about the concentrations and allocation proportions of leaf P fractions,specifically associated with individual and combined additions of N and P in evergreen forests,the dominant vegetation type in southern China where the primary productivity is usually considered limited by P.This assessment allowed us to quantitatively evaluate the effects of N and P additions alone and interactively on leaf P allocation and use strategies.Nitrogen addition(exacerbating P limitation)reduced the concentrations of leaf total P and different leaf P fractions.Nitrogen addition reduced the allocation to leaf metabolic P but increased the allocation to other fractions,while P addition showed opposite trends.The simultaneous additions of N and P showed an antagonistic(mutual suppression)effect on the concentrations of leaf P fractions,but an additive(summary)effect on the allocation proportions of leaf P fractions.These results highlight the importance of strategies of leaf P fraction allocation in forest plants under changes in environmental nutrient availability.Importantly,our study identified critical interactions associated with combined N and P inputs that affect leaf P fractions,thus aiding in predicting plant acclimation strategies in the context of intensifying and imbalanced anthropogenic nutrient inputs.
基金supported by JSPS(KAKENHI:21K06205,23K06937,24K23419)AMED(to JYK,SaY,TM,SiY,YT,and NH)JYW had long been supported by the NIH.
文摘The nervous system processes a vast amount of information,performing computations that underlie perception,cognition,and behavior.During development,neuronal guidance genes,which encode extracellular cues,their receptors,and downstream signal transducers,organize neural wiring to generate the complex architecture of the nervous system.It is now evident that many of these neuroguidance cues and their receptors are active during development and are also expressed in the adult nervous system.This suggests that neuronal guidance pathways are critical not only for neural wiring but also for ongoing function and maintenance of the mature nervous system.Supporting this view,these pathways continue to regulate synaptic connectivity,plasticity,and remodeling,and overall brain homeostasis throughout adulthood.Genetic and transcriptomic analyses have further revealed many neuronal guidance genes to be associated with a wide range of neurodegenerative and neuropsychiatric disorders.Although the precise mechanisms by which aberrant neuronal guidance signaling drives the pathogenesis of these diseases remain to be clarified,emerging evidence points to several common themes,including dysfunction in neurons,microglia,astrocytes,and endothelial cells,along with dysregulation of neuron-microglia-astrocyte,neuroimmune,and neurovascular interactions.In this review,we explore recent advances in understanding the molecular and cellular mechanisms by which aberrant neuronal guidance signaling contributes to disease pathogenesis through altered cell-cell interactions.For instance,recent studies have unveiled two distinct semaphorin-plexin signaling pathways that affect microglial activation and neuroinflammation.We discuss the challenges ahead,along with the therapeutic potentials of targeting neuronal guidance pathways for treating neurodegenerative diseases.Particular focus is placed on how neuronal guidance mechanisms control neuron-glia and neuroimmune interactions and modulate microglial function under physiological and pathological conditions.Specifically,we examine the crosstalk between neuronal guidance signaling and TREM2,a master regulator of microglial function,in the context of pathogenic protein aggregates.It is well-established that age is a major risk factor for neurodegeneration.Future research should address how aging and neuronal guidance signaling interact to influence an individual’s susceptibility to various late-onset neurological diseases and how the progression of these diseases could be therapeutically blocked by targeting neuronal guidance pathways.
文摘The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themselves.This paper explores practical strategies for implementing this model,focusing on four key aspects:deepening teachers’understanding of the model through continuous learning,innovating interactive methods such as questioning techniques and practical activities,leveraging modern technology to integrate resources and track learning progress,and establishing a communication platform that centers on student participation.By adopting these approaches,the model fosters a student-centered classroom environment,improves comprehensive English application skills,and optimizes overall teaching quality.
基金Supported by collaborative project(ID3003)of the Vice-Rectors Office for University Outreach(VCM,Spanish acronym)of the Universidad San Sebastián Concepción,Republic of Chile.
文摘Background Fibromyalgia(FM)is a chronic rheumatic disorder characterised by musculoskeletal pain,fatigue,and psychoemotional symptoms.Virtual reality(VR)has proven to be an innovative and motivating tool for managing FM,with several studies indicating that it can improve quality of life indices and reduce psychoemotional symptoms.However,studies on immersive VR-based exercise(iVRE)are limited.Methods The aim of this study was to evaluate the effects of iVRE on quality of life,stress,anxiety,depression,and handgrip strength in patients with FM.A single-arm pre-post-test pilot study was conducted.Individuals diagnosed with FM were recruited using convenience sampling.The iVRE protocol consisted of 12 sessions of 10 min warm-up and 15 min exercises applied with the Oculus Quest 2TM device.The impact on quality of life was assessed using the Revised Fibromyalgia Impact Questionnaire,and the effects on stress,anxiety,and depression were determined using the Depression Anxiety Stress Scale-21 questionnaire.Handgrip strength was evaluated using the Baseline®dynamometer.The normality assumption was evaluated,and the pre-post means were compared using Student's ttest(p<0.05).Results Eleven individuals(40.6±11.2 years)completed the protocol(10 women).There were significant differences in favour of iVRE in quality of life impact(p<0.001,Cohen's d:1.48),handgrip strength(p<0.05,Cohen's d:0.26),depression(p<0.05,Cohen's d:0.73),and anxiety(p<0.05,Cohen's d:0.73).Conclusions A six-week iVRE program significantly reduces the impact on quality of life,anxiety,and depression and improves handgrip strength in people with FM.Future studies should investigate the physiological effects using systemic biomarkers to explain the scope of this therapeutic modality.
基金National Natural Science Foundation of China,No.42361040。
文摘Population migration data derived from location-based services has often been used to delineate population flows between cities or construct intercity relationship networks to reveal and explore the complex interaction patterns underlying human activities.Nevertheless,the inherent heterogeneity in multimodal migration big data has been ignored.This study conducts an in-depth comparison and quantitative analysis through a comprehensive lens of spatial association.Initially,the intercity interactive networks in China were constructed,utilizing migration data from Baidu and AutoNavi collected during the same time period.Subsequently,the characteristics and spatial structure similarities of the two types of intercity interactive networks were quantitatively assessed and analyzed from overall(network)and local(node)perspectives.Furthermore,the precision of these networks at the local scale is corroborated by constructing an intercity network from mobile phone(MP)data.Results indicate that the intercity interactive networks in China,as delineated by Baidu and AutoNavi migration flows,exhibit a high degree of structure equivalence.The correlation coefficient between these two networks is 0.874.Both networks exhibit a pronounced spatial polarization trend and hierarchical structure.This is evident in their distinct core and peripheral structures,as well as in the varying importance and influence of different nodes within the networks.Nevertheless,there are notable differences worthy of attention.Baidu intercity interactive network exhibits pronounced cross-regional effects,and its high-level interactions are characterized by a“rich-club”phenomenon.The AutoNavi intercity interactive network presents a more significant distance attenuation effect,and the high-level interactions display a gradient distribution pattern.Notably,there exists a substantial correlation between the AutoNavi and MP networks at the local scale,evidenced by a high correlation coefficient of 0.954.Furthermore,the“spatial dislocations”phenomenon was observed within the spatial structures at different levels,extracted from the Baidu and AutoNavi intercity networks.However,the measured results of network spatial structure similarity from three dimensions,namely,node location,node size,and local structure,indicate a relatively high similarity and consistency between the two networks.
基金joined PI of Westlake University(Grant Nos.041030150118 and 103110556022101)Scientific Research Funding Project of Westlake University(Grant No.2021WUFP017).
文摘The role of hydrodynamic effect in the meeting of multiple fish is a fascinating topic.The interactions of two self-propelled flexi-ble plates swimming in opposite directions horizontally and maintaining a certain lateral distance are numerically simulated using a penalty-immersed boundary method.The effects of the flapping phase and lateral distance on the propulsive performance of two fish meetings are analyzed.Results show that,when two plates meet,if their leading edges diverge laterally,the individual plate can efficiently and rapidly move apart from the other horizontally.If their leading edges converge laterally,the plate motion can be retarded,leading to high energy consumption.Moreover,an increasing lateral distance between two plates significantly weakens the fluid-structure interactions,resulting in an exponential decline in mean cruising speed.A quantitative force analysis based on vortex dynamic theory is performed to gain physics insight into the hydrodynamic interaction mechanism.It is found that lateral separation between the two leading edges enhances the vorticity generation and boundary vorticity flux on the surface of the plate,subsequently reinforcing the thrust effect and increasing horizontal velocity.This study offers insight into the hydro-dynamic mechanisms of the fluid-structure interactions among fish moving toward each other and suggests potential strategies for enhancing the maneuverability of robotic fish in complex environment.
文摘Microbes play a critical role in shaping immune development,with growing interest in how rhinovirus(RV)interacts with the host immune system,particularly in individuals with asthma and chronic obstructive pul-monary disease(COPD).Disruptions in microbial balance during RV infections can impair immune homeostasis and worsen disease outcomes.Recent studies emphasize RV-induced regulation of antiviral defenses,cytokine production,and immune tolerance.This review explores the interplay between RV,the immune system,and microbiota,highlighting the importance of these interactions in guiding effective therapies for respiratory in-fections.It advances existing literature by considering microbiota-mediated therapies as a novel approach to managing RV exacerbations in respiratory diseases like asthma and COPD.