The paper builds the high-current plasma beams model under different dimensions (1D, 2D, and 3D) by continuum (magnetohydrodynamics MHD) and statistical (Monte Carlo MC) mechanics under conditions of low pressures (10...The paper builds the high-current plasma beams model under different dimensions (1D, 2D, and 3D) by continuum (magnetohydrodynamics MHD) and statistical (Monte Carlo MC) mechanics under conditions of low pressures (10<sup>-3</sup> Pa). After detailed presentation of the model, two methods firstly have been analyzed in terms of plasma beam properties. Then, we compare the simulation results of MHD numerical simulation with MC stochastic particles simulation. Finally, through further analysis, it is demonstrated that integrated hybrid MHD and MC method (IMHDMC) provides an innovative practical tool to capture essential properties of high-current plasma beams.展开更多
文摘The paper builds the high-current plasma beams model under different dimensions (1D, 2D, and 3D) by continuum (magnetohydrodynamics MHD) and statistical (Monte Carlo MC) mechanics under conditions of low pressures (10<sup>-3</sup> Pa). After detailed presentation of the model, two methods firstly have been analyzed in terms of plasma beam properties. Then, we compare the simulation results of MHD numerical simulation with MC stochastic particles simulation. Finally, through further analysis, it is demonstrated that integrated hybrid MHD and MC method (IMHDMC) provides an innovative practical tool to capture essential properties of high-current plasma beams.