期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
北京文旅亮相IMEX——以中秋文化为媒,塑造首都国际会奖新名片
1
作者 裴超 《中国会展》 2025年第20期32-33,共2页
当地时间2025年10月7日至9日,全球会奖旅游业界盛会——2025拉斯维加斯国际会议及奖励旅游展(IMEX)在美国成功举办。北京市文化和旅游局组织博悦咨询(北京)有限公司、环亚风景国际旅行社、北京碧山国际旅行社、北京欣欣翼翔国际旅行社... 当地时间2025年10月7日至9日,全球会奖旅游业界盛会——2025拉斯维加斯国际会议及奖励旅游展(IMEX)在美国成功举办。北京市文化和旅游局组织博悦咨询(北京)有限公司、环亚风景国际旅行社、北京碧山国际旅行社、北京欣欣翼翔国际旅行社有限公司以及中国旅游集团旅行服务有限公司等五家北京会奖企业,精彩亮相文化和旅游部“你好!中国”主题展区,面向全球业界集中展示北京作为国际会奖旅游目的地的资源优势与文化魅力。 展开更多
关键词 imex 国际会奖旅游 中秋文化 北京文旅
在线阅读 下载PDF
IMEXθ法对延迟微分方程的GP稳定性
2
作者 张立霞 田帅生 刘建国 《佳木斯大学学报(自然科学版)》 CAS 2008年第4期559-560,共2页
先从标量测试方程u′(t)=λu(t)+μu(t-τ)出发,介绍了它的渐近稳定性,这里τ是正延迟,λ,μ是复数参数.然后将IMEXθ法应用于方程u′(t)=λu(t)+μu(t-τ),证明了IMEXθ法当且仅当θ=1时是GP稳定的.最后给出数值试验.
关键词 imexθ法 GP稳定性 渐近稳定性 延迟微分方程
在线阅读 下载PDF
A Low Mach Number IMEX Flux Splitting for the Level Set Ghost Fluid Method
3
作者 Jonas Zeifang Andrea Beck 《Communications on Applied Mathematics and Computation》 2023年第2期722-750,共29页
Considering droplet phenomena at low Mach numbers,large differences in the magnitude of the occurring characteristic waves are presented.As acoustic phenomena often play a minor role in such applications,classical exp... Considering droplet phenomena at low Mach numbers,large differences in the magnitude of the occurring characteristic waves are presented.As acoustic phenomena often play a minor role in such applications,classical explicit schemes which resolve these waves suffer from a very restrictive timestep restriction.In this work,a novel scheme based on a specific level set ghost fluid method and an implicit-explicit(IMEX)flux splitting is proposed to overcome this timestep restriction.A fully implicit narrow band around the sharp phase interface is combined with a splitting of the convective and acoustic phenomena away from the interface.In this part of the domain,the IMEX Runge-Kutta time discretization and the high order discontinuous Galerkin spectral element method are applied to achieve high accuracies in the bulk phases.It is shown that for low Mach numbers a significant gain in computational time can be achieved compared to a fully explicit method.Applica-tions to typical droplet dynamic phenomena validate the proposed method and illustrate its capabilities. 展开更多
关键词 imex flux splitting Level set method Ghost fluid method Low Mach number flows
在线阅读 下载PDF
Strong Stability Preserving IMEX Methods for Partitioned Systems of Differential Equations
4
作者 Giuseppe Izzo Zdzislaw Jackiewicz 《Communications on Applied Mathematics and Computation》 2021年第4期719-758,共40页
We investigate strong stability preserving(SSP)implicit-explicit(IMEX)methods for partitioned systems of differential equations with stiff and nonstiff subsystems.Conditions for order p and stage order q=p are derived... We investigate strong stability preserving(SSP)implicit-explicit(IMEX)methods for partitioned systems of differential equations with stiff and nonstiff subsystems.Conditions for order p and stage order q=p are derived,and characterization of SSP IMEX methods is provided following the recent work by Spijker.Stability properties of these methods with respect to the decoupled linear system with a complex parameter,and a coupled linear system with real parameters are also investigated.Examples of methods up to the order p=4 and stage order q—p are provided.Numerical examples on six partitioned test systems confirm that the derived methods achieve the expected order of convergence for large range of stepsizes of integration,and they are also suitable for preserving the accuracy in the stiff limit or preserving the positivity of the numerical solution for large stepsizes. 展开更多
关键词 Partitioned systems of differential equations SSP property imex general linear methods Construction of highly stable methods
在线阅读 下载PDF
On the Stability of IMEX Upwind gSBP Schemes for 1D Linear Advection-Diffusion Equations
5
作者 Sigrun Ortleb 《Communications on Applied Mathematics and Computation》 2025年第4期1195-1224,共30页
A fully discrete energy stability analysis is carried out for linear advection-diffusion problems discretized by generalized upwind summation-by-parts(upwind gSBP)schemes in space and implicit-explicit Runge-Kutta(IME... A fully discrete energy stability analysis is carried out for linear advection-diffusion problems discretized by generalized upwind summation-by-parts(upwind gSBP)schemes in space and implicit-explicit Runge-Kutta(IMEX-RK)schemes in time.Hereby,advection terms are discretized explicitly,while diffusion terms are solved implicitly.In this context,specific combinations of space and time discretizations enjoy enhanced stability properties.In fact,if the first-and second-derivative upwind gSBP operators fulfill a compatibility condition,the allowable time step size is independent of grid refinement,although the advective terms are discretized explicitly.In one space dimension it is shown that upwind gSBP schemes represent a general framework including standard discontinuous Galerkin(DG)schemes on a global level.While previous work for DG schemes has demonstrated that the combination of upwind advection fluxes and the central-type first Bassi-Rebay(BR1)scheme for diffusion does not allow for grid-independent stable time steps,the current work shows that central advection fluxes are compatible with BR1 regarding enhanced stability of IMEX time stepping.Furthermore,unlike previous discrete energy stability investigations for DG schemes,the present analysis is based on the discrete energy provided by the corresponding SBP norm matrix and yields time step restrictions independent of the discretization order in space,since no finite-element-type inverse constants are involved.Numerical experiments are provided confirming these theoretical findings. 展开更多
关键词 Upwind SBP schemes Implicit-explicit(imex) ADVECTION-DIFFUSION Energy stability
在线阅读 下载PDF
A Novel Full-Euler Low Mach Number IMEX Splitting 被引量:1
6
作者 Jonas Zeifang Jochen Schutz +3 位作者 Klaus Kaiser Andrea Beck Maria Lukacova-Medvid’ova Sebastian Noelle 《Communications in Computational Physics》 SCIE 2020年第1期292-320,共29页
In this paper,we introduce an extension of a splitting method for singularly perturbed equations,the socalled RS-IMEX splitting[Kaiser et al.,Journal of Scientific Computing,70(3),1390–1407],to deal with the fully co... In this paper,we introduce an extension of a splitting method for singularly perturbed equations,the socalled RS-IMEX splitting[Kaiser et al.,Journal of Scientific Computing,70(3),1390–1407],to deal with the fully compressible Euler equations.The straightforward application of the splitting yields sub-equations that are,due to the occurrence of complex eigenvalues,not hyperbolic.A modification,slightly changing the convective flux,is introduced that overcomes this issue.It is shown that the splitting gives rise to a discretization that respects the low-Mach number limit of the Euler equations;numerical results using finite volume and discontinuous Galerkin schemes show the potential of the discretization. 展开更多
关键词 Euler equations low-Mach imex Runge-Kutta RS-imex
原文传递
A Sylvester-Based IMEXMethod via Differentiation Matrices for Solving Nonlinear Parabolic Equations
7
作者 Francisco de la Hoz Fernando Vadillo 《Communications in Computational Physics》 SCIE 2013年第9期1001-1026,共26页
In this paper we describe a new pseudo-spectral method to solve numerically two and three-dimensional nonlinear diffusion equations over unbounded domains,taking Hermite functions,sinc functions,and rational Chebyshev... In this paper we describe a new pseudo-spectral method to solve numerically two and three-dimensional nonlinear diffusion equations over unbounded domains,taking Hermite functions,sinc functions,and rational Chebyshev polynomials as basis functions.The idea is to discretize the equations by means of differentiation matrices and to relate them to Sylvester-type equations by means of a fourth-order implicit-explicit scheme,being of particular interest the treatment of three-dimensional Sylvester equations that we make.The resulting method is easy to understand and express,and can be implemented in a transparent way by means of a few lines of code.We test numerically the three choices of basis functions,showing the convenience of this new approach,especially when rational Chebyshev polynomials are considered. 展开更多
关键词 Semi-linear diffusion equations pseudo-spectral methods differentiation matrices Hermite functions sinc functions rational Chebyshev polynomials imex methods Sylvester equations BLOW-UP
原文传递
会奖之星——法兰克福抒写会奖旅游多彩乐章
8
作者 裴超 《中国会展》 2025年第12期54-59,共6页
法兰克福是欧洲重要的会奖旅游目的地之一。法兰克福会议奖励旅游展览会(IMEX Frankfurt)是该地区最具影响力的会奖旅游展览会之一,每年吸引大量会奖旅游专业人士参加。2025年5月20日至22日,法兰克福展览中心举办IMEX Frankfurt 2025,... 法兰克福是欧洲重要的会奖旅游目的地之一。法兰克福会议奖励旅游展览会(IMEX Frankfurt)是该地区最具影响力的会奖旅游展览会之一,每年吸引大量会奖旅游专业人士参加。2025年5月20日至22日,法兰克福展览中心举办IMEX Frankfurt 2025,这是会奖旅游行业的年度盛事。因此,法兰克福在全球会奖旅游市场中占据重要地位,与伦敦、巴黎等城市竞争激烈。法兰克福的会展设施完善,服务优质,吸引了众多国际会议和展览在此举办。 展开更多
关键词 imex Frankfurt 法兰克福
在线阅读 下载PDF
微分方程数值解的隐显式Runge-Kutta方法 被引量:2
9
作者 张磊 王其波 《科技信息》 2012年第33期233-234,共2页
Runge-Kutta方法作为一种单步高阶方法在求解常微分方程和方程组中受到了广泛的关注,它具有单步方法较少的存储优点,也能根据Taylor展开来提高阶数并无需增加计算来求导。Runge-Kutta方法的各种改进在很多领域也得到应用。本文主要研究... Runge-Kutta方法作为一种单步高阶方法在求解常微分方程和方程组中受到了广泛的关注,它具有单步方法较少的存储优点,也能根据Taylor展开来提高阶数并无需增加计算来求导。Runge-Kutta方法的各种改进在很多领域也得到应用。本文主要研究在Runge-Kutta方法基础上改进的一种办法,即:隐显式Runge-Kutta方法。 展开更多
关键词 Runge—Kutta方法 常微分方程 隐显式 数值解
在线阅读 下载PDF
Parallel Implicit-Explicit General Linear Methods
10
作者 Steven Roberts Arash Sarshar Adrian Sandu 《Communications on Applied Mathematics and Computation》 2021年第4期649-669,共21页
High-order discretizations of partial differential equations(PDEs)necessitate high-order time integration schemes capable of handling both stiff and nonstiff operators in an efficient manner.Implicit-explicit(IMEX)int... High-order discretizations of partial differential equations(PDEs)necessitate high-order time integration schemes capable of handling both stiff and nonstiff operators in an efficient manner.Implicit-explicit(IMEX)integration based on general linear methods(GLMs)offers an attractive solution due to their high stage and method order,as well as excellent stability properties.The IMEX characteristic allows stiff terms to be treated implicitly and nonstiff terms to be efficiently integrated explicitly.This work develops two systematic approaches for the development of IMEX GLMs of arbitrary order with stages that can be solved in parallel.The first approach is based on diagonally implicit multi-stage integration methods(DIMSIMs)of types 3 and 4.The second is a parallel generalization of IMEX Euler and has the interesting feature that the linear stability is independent of the order of accuracy.Numerical experiments confirm the theoretical rates of convergence and reveal that the new schemes are more efficient than serial IMEX GLMs and IMEX Runge-Kutta methods. 展开更多
关键词 PARALLEL Time integration imex methods General linear
在线阅读 下载PDF
求解跳-扩散期权定价方程的隐显Runge-Kutta方法
11
作者 李子丰 王晚生 《上海师范大学学报(自然科学版)》 2022年第3期277-283,共7页
金融衍生話的定价研究一直是金融数学研究的难题之一.随着期权定价理论的不断发展和完善,跳-扩散期权定价模型的研究更是成为热点,该模型是一个无界区域上的偏积分微分方程.研究跳-扩散模型下欧式期权定价问题的外插变步长隐显(IMEX)Run... 金融衍生話的定价研究一直是金融数学研究的难题之一.随着期权定价理论的不断发展和完善,跳-扩散期权定价模型的研究更是成为热点,该模型是一个无界区域上的偏积分微分方程.研究跳-扩散模型下欧式期权定价问题的外插变步长隐显(IMEX)Runge-Kutta方法,结合有限差分空间离散,并通过数值实验验证该方法的有效性. 展开更多
关键词 期权定价 偏积分微分方程 外插 变步长隐显(imex)Runge-Kutta方法 有限差分法
在线阅读 下载PDF
Stability and Time-Step Constraints of Implicit-Explicit Runge-Kutta Methods for the Linearized Korteweg-de Vries Equation
12
作者 Joseph Hunter Zheng Sun Yulong Xing 《Communications on Applied Mathematics and Computation》 EI 2024年第1期658-687,共30页
This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either... This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints. 展开更多
关键词 Linearized Korteweg-de Vries(KdV)equation Implicit-explicit(imex)Runge-Kutta(RK)method STABILITY Courant-Friedrichs-Lewy(CFL)condition Finite difference(FD)method Local discontinuous Galerkin(DG)method
在线阅读 下载PDF
Benjamin方程的高精度紧致有限差分法 被引量:1
13
作者 李晓芳 谢树森 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第A02期193-197,共5页
本文提出一个解Benjamin方程的高精度显隐多步紧致有限差分格式,即在时间上对线性部分用三阶向后差分隐格式,非线性部分用显格式,空间上采用四阶精度紧致差分格式,最终在时间上和空间上分别达到三阶和四阶精度。证明了半离散紧致差分格... 本文提出一个解Benjamin方程的高精度显隐多步紧致有限差分格式,即在时间上对线性部分用三阶向后差分隐格式,非线性部分用显格式,空间上采用四阶精度紧致差分格式,最终在时间上和空间上分别达到三阶和四阶精度。证明了半离散紧致差分格式的四阶收敛性,给出了利用快速离散Fourier变换求解全离散格式的数值算法。最后数值算例验证了理论分析结果,并且数值解满足质量守恒定律。 展开更多
关键词 BENJAMIN方程 HILBERT变换 紧致差分法 显隐多步向后差分法
在线阅读 下载PDF
Kou跳扩散下欧式期权定价的隐-显BDF2方法
14
作者 张艳萍 《运城学院学报》 2021年第3期17-21,共5页
研究Kou跳扩散下欧式期权模型求解的隐-显BDF2方法。针对期权满足的偏积分微分方程,首先将无穷积分项截断到有限区间上进行数值积分,对空间导数项利用中心差分格式离散,然后在时间方向上运用隐-显BDF2方法离散,并采用Gauss-Seidel迭代... 研究Kou跳扩散下欧式期权模型求解的隐-显BDF2方法。针对期权满足的偏积分微分方程,首先将无穷积分项截断到有限区间上进行数值积分,对空间导数项利用中心差分格式离散,然后在时间方向上运用隐-显BDF2方法离散,并采用Gauss-Seidel迭代法求解离散后的线性系统。数值实验表明了方法的高效性和稳健性。 展开更多
关键词 期权定价 跳扩散模型 偏微分积分方程 隐-显BDF2方法
在线阅读 下载PDF
粘性Burgers方程的高阶精度半隐式WCNS方法 被引量:3
15
作者 陈勋 蒋艳群 +2 位作者 陈琦 张旭 胡迎港 《数值计算与计算机应用》 2022年第1期76-87,共12页
Burgers方程为Navier-Stokes方程组的简化形式,在计算数学和计算流体力学领域中有着广泛应用.本文设计了粘性Burgers方程的高阶精度半隐式加权紧致非线性格式(WCNS),并给出了稳定性分析.方程对流项和粘性项分别采用五阶精度WCNS格式和... Burgers方程为Navier-Stokes方程组的简化形式,在计算数学和计算流体力学领域中有着广泛应用.本文设计了粘性Burgers方程的高阶精度半隐式加权紧致非线性格式(WCNS),并给出了稳定性分析.方程对流项和粘性项分别采用五阶精度WCNS格式和四阶中心差分格式计算.半离散系统采用三阶精度IMEX Runge-Kutta方法计算,对流项和粘性项分别进行显式和隐式处理.数值结果表明IMEX Runge-Kutta WCNS格式可达到三阶时间精度和五阶空间精度,比显式TVD Runge-Kutta WCNS格式计算效率高,且具有高分辨率的激波捕捉能力. 展开更多
关键词 BURGERS方程 WCNS格式 imex Runge-Kutta方法 计算效率 激波捕捉
原文传递
VARIABLE STEP-SIZE IMPLICIT-EXPLICIT LINEAR MULTISTEP METHODS FOR TIME-DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS 被引量:2
16
作者 DongWang Steven J. Ruuth 《Journal of Computational Mathematics》 SCIE CSCD 2008年第6期838-855,共18页
Implicit-explicit (IMEX) linear multistep methods are popular techniques for solving partial differential equations (PDEs) with terms of different types. While fixed timestep versions of such schemes have been dev... Implicit-explicit (IMEX) linear multistep methods are popular techniques for solving partial differential equations (PDEs) with terms of different types. While fixed timestep versions of such schemes have been developed and studied, implicit-explicit schemes also naturally arise in general situations where the temporal smoothness of the solution changes. In this paper we consider easily implementable variable step-size implicit-explicit (VSIMEX) linear multistep methods for time-dependent PDEs. Families of order-p, pstep VSIMEX schemes are constructed and analyzed, where p ranges from 1 to 4. The corresponding schemes are simple to implement and have the property that they reduce to the classical IMEX schemes whenever constant time step-sizes are imposed. The methods are validated on the Burgers' equation. These results demonstrate that by varying the time step-size, VSIMEX methods can outperform their fixed time step counterparts while still maintaining good numerical behavior. 展开更多
关键词 Implicit-explicit imex linear multistep methods Variable step-size Zero-stability Burgers' equation.
原文传递
High order semi-implicit weighted compact nonlinear scheme for the all-Mach isentropic Euler system 被引量:2
17
作者 Yanqun Jiang Xun Chen +2 位作者 Xu Zhang Tao Xiong Shuguang Zhou 《Advances in Aerodynamics》 2020年第1期555-578,共24页
The computation of compressible flows at all Mach numbers is a very challenging problem.An efficient numerical method for solving this problem needs to have shock-capturing capability in the high Mach number regime,wh... The computation of compressible flows at all Mach numbers is a very challenging problem.An efficient numerical method for solving this problem needs to have shock-capturing capability in the high Mach number regime,while it can deal with stiffness and accuracy in the low Mach number regime.This paper designs a high order semi-implicit weighted compact nonlinear scheme(WCNS)for the all-Mach isentropic Euler system of compressible gas dynamics.To avoid severe Courant-Friedrichs-Levy(CFL)restrictions for low Mach flows,the nonlinear fluxes in the Euler equations are split into stiff and non-stiff components.A third-order implicit-explicit(IMEX)method is used for the time discretization of the split components and a fifth-order WCNS is used for the spatial discretization of flux derivatives.The high order IMEX method is asymptotic preserving and asymptotically accurate in the zero Mach number limit.One-and two-dimensional numerical examples in both compressible and incompressible regimes are given to demonstrate the advantages of the designed IMEX WCNS. 展开更多
关键词 High order scheme imex time discretization WCNS Asymptotic-preserving property Low Mach number Isentropic Euler equations
原文传递
A Jacobian-Free Newton Krylov Implicit-Explicit Time Integration Method for Incompressible Flow Problems
18
作者 Samet Y.Kadioglu Dana A.Knoll 《Communications in Computational Physics》 SCIE 2013年第5期1408-1431,共24页
We have introduced a fully second order IMplicit/EXplicit(IMEX)time integration technique for solving the compressible Euler equations plus nonlinear heat conduction problems(also known as the radiation hydrodynamics ... We have introduced a fully second order IMplicit/EXplicit(IMEX)time integration technique for solving the compressible Euler equations plus nonlinear heat conduction problems(also known as the radiation hydrodynamics problems)in Kadioglu et al.,J.Comp.Physics[22,24].In this paper,we study the implications when this method is applied to the incompressible Navier-Stokes(N-S)equations.The IMEX method is applied to the incompressible flow equations in the following manner.The hyperbolic terms of the flow equations are solved explicitly exploiting the well understood explicit schemes.On the other hand,an implicit strategy is employed for the non-hyperbolic terms.The explicit part is embedded in the implicit step in such a way that it is solved as part of the non-linear function evaluation within the framework of the Jacobian-Free Newton Krylov(JFNK)method[8,29,31].This is done to obtain a self-consistent implementation of the IMEX method that eliminates the potential order reduction in time accuracy due to the specific operator separation.We employ a simple yet quite effective fractional step projection methodology(similar to those in[11,19,21,30])as our preconditioner inside the JFNK solver.We present results from several test calculations.For each test,we show second order time convergence.Finally,we present a study for the algorithm performance of the JFNK solver with the new projection method based preconditioner. 展开更多
关键词 Incompressible flow Navier-Stokes equations imex method JFNK method PRECONDITIONER
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部