随着当前低轨卫星组网星座计划的日益增加,对卫星间高精度校时、测距需求也越来越迫切。提出基于直调直检IM/DD(Intensity Modulation with Direct Detection)的测距技术的实现方法,使其能同时兼顾测距精度及系统成本。基于IM/DD的测距...随着当前低轨卫星组网星座计划的日益增加,对卫星间高精度校时、测距需求也越来越迫切。提出基于直调直检IM/DD(Intensity Modulation with Direct Detection)的测距技术的实现方法,使其能同时兼顾测距精度及系统成本。基于IM/DD的测距是利用高精度的秒脉冲到达时间来测量距离。使用IM/DD光通信的数据传输方式,在正常的数据帧传输中插入少量的测距信息,无需中断正常的通信模式,也无需网络时钟频率同步,数据帧的发送周期也无需与秒脉冲保持同步关系,即可使用双向单程测距方法进行测距。使用秒脉冲对本地时钟进行频率测量,对测距过程参数进行修正,只需要采用普通晶体振荡器作为本地时钟源,不需要使用高精度测距通常所需的全网络同步时钟信号或者高稳定度时钟源,便可以达到IM/DD通信码元时间量级的测距准确度和精确度,同时降低了时频同步系统的复杂度、对元器件的要求以及整个通信测距系统的成本,解决了现有技术中测距精度及系统成本不易同时兼顾的问题。展开更多
We propose a layered asymmetrically clipped optical fast orthogonal frequency division multiplexing(ACO-FOFDM)scheme for intensitymodulated and directdetected(IM/DD)systems. Layered ACO-FOFDM can compensate the weakne...We propose a layered asymmetrically clipped optical fast orthogonal frequency division multiplexing(ACO-FOFDM)scheme for intensitymodulated and directdetected(IM/DD)systems. Layered ACO-FOFDM can compensate the weaknessof conventional ACO-FOFDM in low spectral efficiency. For FOFDM system, the utilization of discrete cosine transform(DCT) instead of fast Fourier transform(FFT) can reduce thecomputational complexity without any influence on bit errorrate(BER) performance. At transmitter, the superposition ofmultiple layers is performed in frequency domain, and the iterative receiver is used to recover transmitted signals by subtracting the clipping noise of each layer. We compare theBER performance of the proposed layered ACO-FOFDM system and DC-offset FOFDM(DCO-FOFDM) system with optimal DCbias at the same spectral efficiency. Simulation results show that in terms of optical bit energy to noise powerratio, the layered ACO-OFDM system has 1.23 dB, 2.77 dB,3.67 dB and 0.78 dB improvement at the forward error correction(FEC) limit compared with DCO-FOFDM system whenthe spectral efficiencies are 1 bit/s/Hz, 2 bits/s/Hz, 3 bits/s/Hz and 4 bits/s/Hz. The layered ACO-FOFDM system with zero DC-bias is more suitable for adaptive system, so this system also has potential for application in IM/DD systems.展开更多
Modulation techniques for light fidelity (Li-Fi) are reviewed in this paper. Li-Fi is the fully networked solution for nmltiple users that combines communication and illumination simultaneously. Light emitting diod...Modulation techniques for light fidelity (Li-Fi) are reviewed in this paper. Li-Fi is the fully networked solution for nmltiple users that combines communication and illumination simultaneously. Light emitting diodes (LEDs) are used in Li-Fi as visible light transmitters, therefore, only intensity modulated direct detected modulation techniques can be achieved. Single carrier modulation techniques are straightforward to be used in Li-Fi, however, computationally complex equalization processes are required in fre- quency selective Li-Fi channels. On the other hand, multiearrier modulation techniques offer a viable solution for Li-Fi in terms of power, spectral and computational efficiency. In particular, orthogonal frequency division multiplexing (OFDM) based modulation techniques offer a practical solution for Li-Fi, especially when direct current (DC) wander, and adaptive bit and power loading techniques are considered. Li-Fi modulation techniques need to also satisfy illumination requirements. Flickering avoidance and dimming control are considered in the variant modulation techniques presented. This paper surveys the suitable modulation techniques for Li-Fi including those which explore time, frequency and colour domains.展开更多
Optical Wireless Communication(OWC)is a new trend in communication systems to achieve large bandwidth,high bit rate,high security,fast deployment,and low cost.The basic idea of the OWC is to transmit data on unguided ...Optical Wireless Communication(OWC)is a new trend in communication systems to achieve large bandwidth,high bit rate,high security,fast deployment,and low cost.The basic idea of the OWC is to transmit data on unguided media with light.This system requires multi-carrier modulation such as Orthogonal Frequency Division Multiplexing(OFDM).This paper studies optical OFDM performance based on Intensity Modulation with Direct Detection(IM/DD)system.This system requires a non-negativity constraint.The paper presents a framework for wireless optical OFDM system that comprises(IM/DD)with different forms,Direct Current biased Optical OFDM(DCO-OFDM),Asymmetrically Clipped Optical OFDM(ACO-OFDM),Asymmetrically DC-biased Optical OFDM(ADO-OFDM),and Flip-OFDM.It also considers channel coding as a tool for error control,channel equalization for reducing deterioration due to channel effects,and investigation of the turbulence effects.The evaluation results of the proposed framework reveal enhancement of performance.The performance of the IM/DD-OFDM system is investigated over different channel models such as AWGN,log-normal turbulence channel model,and ceiling bounce channel model.The simulation results show that the BER performance of the IM/DD-OFDM communication system is enhanced while the fading strength is decreased.The results reveal also that Hamming codes,BCH codes,and convolutional codes achieve better BER performance.Also,two algorithms of channel estimation and equalization are considered and compared.These algorithms include the Least Squares(LS)and the Minimum Mean Square Error(MMSE).The simulation results show that the MMSE algorithm gives better BER performance than the LS algorithm.展开更多
An appropriate coding method that can reduce the error rate of communication system is especially important to the free space optical communication. STBC (space-time block code) is an orthogonal encoding method inte...An appropriate coding method that can reduce the error rate of communication system is especially important to the free space optical communication. STBC (space-time block code) is an orthogonal encoding method integrating space domain and time domain. The technology can combat fading effectively and improve error rate performance. In this paper, first, an STBC fit for optical communication with intensity modulation and direct detection (IM/DD) is proposed by combining the orthogonality of the Alamouti space-time code and the QPPM modulation. Then, the error rate performance of the system is analyzed under four cases: with or without channel fading, with or without background radiation. At last, this scheme is confirmed by Monte Carlo approach. It is shown that this method not only realizes the full speed rate transmission, and can improve the error rate performance of the system effectively, but also overcomes the scintillation effect exerted by atmosphere turbulence. When the symbol error probability (SEP) is 2×10^-3, according to the 1× 1 system, the sending power of the 2×1 system is nearly reduced by 3.5 dBJ, and the 2×2 system is nearly reduced by 9 dBJ.展开更多
文摘随着当前低轨卫星组网星座计划的日益增加,对卫星间高精度校时、测距需求也越来越迫切。提出基于直调直检IM/DD(Intensity Modulation with Direct Detection)的测距技术的实现方法,使其能同时兼顾测距精度及系统成本。基于IM/DD的测距是利用高精度的秒脉冲到达时间来测量距离。使用IM/DD光通信的数据传输方式,在正常的数据帧传输中插入少量的测距信息,无需中断正常的通信模式,也无需网络时钟频率同步,数据帧的发送周期也无需与秒脉冲保持同步关系,即可使用双向单程测距方法进行测距。使用秒脉冲对本地时钟进行频率测量,对测距过程参数进行修正,只需要采用普通晶体振荡器作为本地时钟源,不需要使用高精度测距通常所需的全网络同步时钟信号或者高稳定度时钟源,便可以达到IM/DD通信码元时间量级的测距准确度和精确度,同时降低了时频同步系统的复杂度、对元器件的要求以及整个通信测距系统的成本,解决了现有技术中测距精度及系统成本不易同时兼顾的问题。
基金supported in part by National Natural Science Foundation of China under Grant Nos.61427813 and 61331010in part by ZTE Industry-Academia-Research Cooperation Funds
文摘We propose a layered asymmetrically clipped optical fast orthogonal frequency division multiplexing(ACO-FOFDM)scheme for intensitymodulated and directdetected(IM/DD)systems. Layered ACO-FOFDM can compensate the weaknessof conventional ACO-FOFDM in low spectral efficiency. For FOFDM system, the utilization of discrete cosine transform(DCT) instead of fast Fourier transform(FFT) can reduce thecomputational complexity without any influence on bit errorrate(BER) performance. At transmitter, the superposition ofmultiple layers is performed in frequency domain, and the iterative receiver is used to recover transmitted signals by subtracting the clipping noise of each layer. We compare theBER performance of the proposed layered ACO-FOFDM system and DC-offset FOFDM(DCO-FOFDM) system with optimal DCbias at the same spectral efficiency. Simulation results show that in terms of optical bit energy to noise powerratio, the layered ACO-OFDM system has 1.23 dB, 2.77 dB,3.67 dB and 0.78 dB improvement at the forward error correction(FEC) limit compared with DCO-FOFDM system whenthe spectral efficiencies are 1 bit/s/Hz, 2 bits/s/Hz, 3 bits/s/Hz and 4 bits/s/Hz. The layered ACO-FOFDM system with zero DC-bias is more suitable for adaptive system, so this system also has potential for application in IM/DD systems.
基金support by the UK Engineering and Physical Sciences Research Council(EPSRC)under Grants EP/K008757/1 and EP/M506515/1
文摘Modulation techniques for light fidelity (Li-Fi) are reviewed in this paper. Li-Fi is the fully networked solution for nmltiple users that combines communication and illumination simultaneously. Light emitting diodes (LEDs) are used in Li-Fi as visible light transmitters, therefore, only intensity modulated direct detected modulation techniques can be achieved. Single carrier modulation techniques are straightforward to be used in Li-Fi, however, computationally complex equalization processes are required in fre- quency selective Li-Fi channels. On the other hand, multiearrier modulation techniques offer a viable solution for Li-Fi in terms of power, spectral and computational efficiency. In particular, orthogonal frequency division multiplexing (OFDM) based modulation techniques offer a practical solution for Li-Fi, especially when direct current (DC) wander, and adaptive bit and power loading techniques are considered. Li-Fi modulation techniques need to also satisfy illumination requirements. Flickering avoidance and dimming control are considered in the variant modulation techniques presented. This paper surveys the suitable modulation techniques for Li-Fi including those which explore time, frequency and colour domains.
文摘Optical Wireless Communication(OWC)is a new trend in communication systems to achieve large bandwidth,high bit rate,high security,fast deployment,and low cost.The basic idea of the OWC is to transmit data on unguided media with light.This system requires multi-carrier modulation such as Orthogonal Frequency Division Multiplexing(OFDM).This paper studies optical OFDM performance based on Intensity Modulation with Direct Detection(IM/DD)system.This system requires a non-negativity constraint.The paper presents a framework for wireless optical OFDM system that comprises(IM/DD)with different forms,Direct Current biased Optical OFDM(DCO-OFDM),Asymmetrically Clipped Optical OFDM(ACO-OFDM),Asymmetrically DC-biased Optical OFDM(ADO-OFDM),and Flip-OFDM.It also considers channel coding as a tool for error control,channel equalization for reducing deterioration due to channel effects,and investigation of the turbulence effects.The evaluation results of the proposed framework reveal enhancement of performance.The performance of the IM/DD-OFDM system is investigated over different channel models such as AWGN,log-normal turbulence channel model,and ceiling bounce channel model.The simulation results show that the BER performance of the IM/DD-OFDM communication system is enhanced while the fading strength is decreased.The results reveal also that Hamming codes,BCH codes,and convolutional codes achieve better BER performance.Also,two algorithms of channel estimation and equalization are considered and compared.These algorithms include the Least Squares(LS)and the Minimum Mean Square Error(MMSE).The simulation results show that the MMSE algorithm gives better BER performance than the LS algorithm.
基金Supported by the Defence Major Laboratory Fund (Grant No. 9140C3601010701)the Science Special Fund of the Education Department of Shaanxi Province (Grant No. 07JK332)+2 种基金the Natural Science Fund of Shaanxi Province (Grant No. 2007F12)the Science and Technology Project of the Communications of Guangdong Province (Grant No. 2007-26)and the Fund of Excellent Doctor Degree of Xi’an University of 9 Technology (Grant No. 602-210808)
文摘An appropriate coding method that can reduce the error rate of communication system is especially important to the free space optical communication. STBC (space-time block code) is an orthogonal encoding method integrating space domain and time domain. The technology can combat fading effectively and improve error rate performance. In this paper, first, an STBC fit for optical communication with intensity modulation and direct detection (IM/DD) is proposed by combining the orthogonality of the Alamouti space-time code and the QPPM modulation. Then, the error rate performance of the system is analyzed under four cases: with or without channel fading, with or without background radiation. At last, this scheme is confirmed by Monte Carlo approach. It is shown that this method not only realizes the full speed rate transmission, and can improve the error rate performance of the system effectively, but also overcomes the scintillation effect exerted by atmosphere turbulence. When the symbol error probability (SEP) is 2×10^-3, according to the 1× 1 system, the sending power of the 2×1 system is nearly reduced by 3.5 dBJ, and the 2×2 system is nearly reduced by 9 dBJ.