期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进的LeNet-5卷积神经网络交通标志的识别
被引量:
6
1
作者
张猛
钱育蓉
+1 位作者
杜娇
范迎迎
《东北师大学报(自然科学版)》
CAS
北大核心
2020年第1期92-97,共6页
针对目前现有交通标志识别算法耗时长、识别率低等问题,提出了一种改进的LeNet-5卷积神经网络模型(Improved LeNet-5 Convolutional Neural Network,ILN-CNN).首先,对原有的LeNet-5卷积神经网络模型构造2个相对独立的不同卷积核的子卷...
针对目前现有交通标志识别算法耗时长、识别率低等问题,提出了一种改进的LeNet-5卷积神经网络模型(Improved LeNet-5 Convolutional Neural Network,ILN-CNN).首先,对原有的LeNet-5卷积神经网络模型构造2个相对独立的不同卷积核的子卷积网络,用于加快特征提取;其次,增加子网络中卷积核的个数,以增强网络区分不同交通标志的能力;最后,添加激活函数ReLU,增加Dropout层,以达到加快函数收敛,避免CNN过度拟合,降低神经元间互适应的效果.实验结果表明:与传统的系统结构相比,ILN-CNN对交通标志的识别准确率达到93.558%;比BP神经网络模型、支持向量机分类算法分别提高了12.206%和4.018%,并且在识别时间上具有一定的优势.
展开更多
关键词
交通标志识别
特征提取
卷积神经网络
iln-cnn
LeNet-5
ReLU
在线阅读
下载PDF
职称材料
题名
基于改进的LeNet-5卷积神经网络交通标志的识别
被引量:
6
1
作者
张猛
钱育蓉
杜娇
范迎迎
机构
新疆大学软件学院
出处
《东北师大学报(自然科学版)》
CAS
北大核心
2020年第1期92-97,共6页
基金
国家自然科学基金资助项目(61562086,61462079,61363083,61262088).
文摘
针对目前现有交通标志识别算法耗时长、识别率低等问题,提出了一种改进的LeNet-5卷积神经网络模型(Improved LeNet-5 Convolutional Neural Network,ILN-CNN).首先,对原有的LeNet-5卷积神经网络模型构造2个相对独立的不同卷积核的子卷积网络,用于加快特征提取;其次,增加子网络中卷积核的个数,以增强网络区分不同交通标志的能力;最后,添加激活函数ReLU,增加Dropout层,以达到加快函数收敛,避免CNN过度拟合,降低神经元间互适应的效果.实验结果表明:与传统的系统结构相比,ILN-CNN对交通标志的识别准确率达到93.558%;比BP神经网络模型、支持向量机分类算法分别提高了12.206%和4.018%,并且在识别时间上具有一定的优势.
关键词
交通标志识别
特征提取
卷积神经网络
iln-cnn
LeNet-5
ReLU
Keywords
traffic sign recognition
feature extraction
convolution neural network
iln-cnn
LeNet-5
ReLU
分类号
TP399 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进的LeNet-5卷积神经网络交通标志的识别
张猛
钱育蓉
杜娇
范迎迎
《东北师大学报(自然科学版)》
CAS
北大核心
2020
6
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部