In this work, we explore and study the implication of having more than one output on a genetic programming (GP) graph-representation. This approach, called multiple interactive outputs in a single tree (MIOST), is...In this work, we explore and study the implication of having more than one output on a genetic programming (GP) graph-representation. This approach, called multiple interactive outputs in a single tree (MIOST), is based on two ideas. First, we defined an approach, called interactivity within an individual (IWI), which is based on a graph-GP representation. Second, we add to the individuals created with the IWI approach multiple outputs in their structures and as a result of this, we have MIOST. As a first step, we analyze the effects of IWI by using only mutations and analyze its implications (i.e., presence of neutrality). Then, we continue testing the effectiveness of IWI by allowing mutations and the standard GP crossover in the evolutionary process. Finally, we tested the effectiveness of MIOST by using mutations and crossover and conducted extensive empirical results on different evolvable problems of different complexity taken from the literature. The results reported in this paper indicate that the proposed approach has a better overall performance in terms of consistency reaching feasible solutions.展开更多
High energy sub-nuclear interactions are a good tool to dive deeply in the core of the particles to recognize their structures and the forces governed. The current article focuses on using one of the evolutionary comp...High energy sub-nuclear interactions are a good tool to dive deeply in the core of the particles to recognize their structures and the forces governed. The current article focuses on using one of the evolutionary computation techniques, the so-called genetic programming (GP), to model the hadron nucleus (h-A) interactions through discovering functions. In this article, GP is used to simulate the rapidity distribution of total charged, positive and negative pions for p<sup>-</sup>-Ar and p<sup>-</sup>-Xe interactions at 200 GeV/c and charged particles for p-pb collision at 5.02 TeV. We have done so many runs to select the best runs of the GP program and finally obtained the rapidity distribution as a function of the lab momentum , mass number (A) and the number of particles per unit solid angle (Y). In all cases studied, we compared our seven discovered functions produced by GP technique with the corresponding experimental data and the excellent matching was so clear.展开更多
基金This paper was supported by the Mexican Consejo Nacional de Ciencia y Tecnologia(CONACyT)for the postgraduate studies at University of Essex.
文摘In this work, we explore and study the implication of having more than one output on a genetic programming (GP) graph-representation. This approach, called multiple interactive outputs in a single tree (MIOST), is based on two ideas. First, we defined an approach, called interactivity within an individual (IWI), which is based on a graph-GP representation. Second, we add to the individuals created with the IWI approach multiple outputs in their structures and as a result of this, we have MIOST. As a first step, we analyze the effects of IWI by using only mutations and analyze its implications (i.e., presence of neutrality). Then, we continue testing the effectiveness of IWI by allowing mutations and the standard GP crossover in the evolutionary process. Finally, we tested the effectiveness of MIOST by using mutations and crossover and conducted extensive empirical results on different evolvable problems of different complexity taken from the literature. The results reported in this paper indicate that the proposed approach has a better overall performance in terms of consistency reaching feasible solutions.
文摘High energy sub-nuclear interactions are a good tool to dive deeply in the core of the particles to recognize their structures and the forces governed. The current article focuses on using one of the evolutionary computation techniques, the so-called genetic programming (GP), to model the hadron nucleus (h-A) interactions through discovering functions. In this article, GP is used to simulate the rapidity distribution of total charged, positive and negative pions for p<sup>-</sup>-Ar and p<sup>-</sup>-Xe interactions at 200 GeV/c and charged particles for p-pb collision at 5.02 TeV. We have done so many runs to select the best runs of the GP program and finally obtained the rapidity distribution as a function of the lab momentum , mass number (A) and the number of particles per unit solid angle (Y). In all cases studied, we compared our seven discovered functions produced by GP technique with the corresponding experimental data and the excellent matching was so clear.