为了弥补传统PCA方法在人脸识别时易受光照、表情和姿态影响的缺陷,提出了一种基于独立特征提取的MPCA方法(Modular PCA Based on Independent Feature,IFMPCA)。首先,选取人脸训练样本中具有相似光照、表情和姿态的图像进行分块,使各...为了弥补传统PCA方法在人脸识别时易受光照、表情和姿态影响的缺陷,提出了一种基于独立特征提取的MPCA方法(Modular PCA Based on Independent Feature,IFMPCA)。首先,选取人脸训练样本中具有相似光照、表情和姿态的图像进行分块,使各个子模块更接近高斯分布;然后,通过求出子模块图像的散布矩阵和最优投影矩阵得到最优独立特征矩阵;最后,利用最小距离分类器进行样本的分类。在Yale人脸数据库上的实验结果表明,IFMPCA算法在人脸正确识别率方面优于传统PCA算法。展开更多
为了弥补传统MPCA(Modular Principal Component Analysis)方法在人脸识别中忽略子图像之间差异的缺陷,本文提出了一种基于独立特征提取的MPCA方法(Modular PCA Based on Independent Feature,IFMPCA).首先选取人脸训练样本中具有相似...为了弥补传统MPCA(Modular Principal Component Analysis)方法在人脸识别中忽略子图像之间差异的缺陷,本文提出了一种基于独立特征提取的MPCA方法(Modular PCA Based on Independent Feature,IFMPCA).首先选取人脸训练样本中具有相似光照、表情和姿态的图像进行分块,然后将训练样本的子图像和测试样本的子图像进行最优投影,得到子特征矩阵.最后,求得样本间的距离,利用最小距离分类器进行样本的分类.在Yale人脸数据库上的实验结果表明:IFMPCA算法在人脸正确识别率方面优于传统PCA算法.展开更多
文摘为了弥补传统PCA方法在人脸识别时易受光照、表情和姿态影响的缺陷,提出了一种基于独立特征提取的MPCA方法(Modular PCA Based on Independent Feature,IFMPCA)。首先,选取人脸训练样本中具有相似光照、表情和姿态的图像进行分块,使各个子模块更接近高斯分布;然后,通过求出子模块图像的散布矩阵和最优投影矩阵得到最优独立特征矩阵;最后,利用最小距离分类器进行样本的分类。在Yale人脸数据库上的实验结果表明,IFMPCA算法在人脸正确识别率方面优于传统PCA算法。
文摘为了弥补传统MPCA(Modular Principal Component Analysis)方法在人脸识别中忽略子图像之间差异的缺陷,本文提出了一种基于独立特征提取的MPCA方法(Modular PCA Based on Independent Feature,IFMPCA).首先选取人脸训练样本中具有相似光照、表情和姿态的图像进行分块,然后将训练样本的子图像和测试样本的子图像进行最优投影,得到子特征矩阵.最后,求得样本间的距离,利用最小距离分类器进行样本的分类.在Yale人脸数据库上的实验结果表明:IFMPCA算法在人脸正确识别率方面优于传统PCA算法.