Instead of normally tackling electric circuits by virtue oI the Klrctllaott's theorem wnose aim is to uerlvc voxt^gc, electric current, and electric impedence, our aim in this paper is to derive the characteristic fr...Instead of normally tackling electric circuits by virtue oI the Klrctllaott's theorem wnose aim is to uerlvc voxt^gc, electric current, and electric impedence, our aim in this paper is to derive the characteristic frequency of a three-loop mesoscopic LC circuit with three mutual inductances, e.g., for the radiating frequency of the three-loop LC oscillator, we adopt the invariant eigen-operator (lEO) method to realize our aim.展开更多
We employ the invariant eigen-operator (lEO) method to find the invariant eigen-operators of N-body singular oscillators' Hamiltonians and then derive their energy gaps. The Hamiltonians of parametric amplifiers wi...We employ the invariant eigen-operator (lEO) method to find the invariant eigen-operators of N-body singular oscillators' Hamiltonians and then derive their energy gaps. The Hamiltonians of parametric amplifiers with singular potential are also discussed in this way.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11775208)
文摘Instead of normally tackling electric circuits by virtue oI the Klrctllaott's theorem wnose aim is to uerlvc voxt^gc, electric current, and electric impedence, our aim in this paper is to derive the characteristic frequency of a three-loop mesoscopic LC circuit with three mutual inductances, e.g., for the radiating frequency of the three-loop LC oscillator, we adopt the invariant eigen-operator (lEO) method to realize our aim.
基金The project supported by the Specialized Research Fund for the Doctorial Program of Higher Education of China
文摘We employ the invariant eigen-operator (lEO) method to find the invariant eigen-operators of N-body singular oscillators' Hamiltonians and then derive their energy gaps. The Hamiltonians of parametric amplifiers with singular potential are also discussed in this way.