Protecting Supervisory Control and Data Acquisition-Industrial Internet of Things(SCADA-IIoT)systems against intruders has become essential since industrial control systems now oversee critical infrastructure,and cybe...Protecting Supervisory Control and Data Acquisition-Industrial Internet of Things(SCADA-IIoT)systems against intruders has become essential since industrial control systems now oversee critical infrastructure,and cyber attackers more frequently target these systems.Due to their connection of physical assets with digital networks,SCADA-IIoT systems face substantial risks from multiple attack types,including Distributed Denial of Service(DDoS),spoofing,and more advanced intrusion methods.Previous research in this field faces challenges due to insufficient solutions,as current intrusion detection systems lack the necessary accuracy,scalability,and adaptability needed for IIoT environments.This paper introduces CyberFortis,a novel cybersecurity framework aimed at detecting and preventing cyber threats in SCADA-IIoT systems.CyberFortis presents two key innovations:Firstly,Siamese Double Deep Q-Network with Autoencoders(Siamdqn-AE)FusionNet,which enhances intrusion detection by combining deep Q-Networks with autoencoders for improved attack detection and feature extraction;and secondly,the PopHydra Optimiser,an innovative solution to compute reinforcement learning discount factors for better model performance and convergence.This method combines Siamese deep Q-Networks with autoencoders to create a system that can detect different types of attacks more effectively and adapt to new challenges.CyberFortis is better than current top attack detection systems,showing higher scores in important areas like accuracy,precision,recall,and F1-score,based on data from CICIoT 2023,UNSW-NB 15,and WUSTL-IIoT datasets.Results from the proposed framework show a 97.5%accuracy rate,indicating its potential as an effective solution for SCADA-IIoT cybersecurity against emerging threats.The research confirms that the proposed security and resilience methods are successful in protecting vital industrial control systems within their operational environments.展开更多
The integrated linkage control problem based on attack detection is solved with the analyses of the security model including firewall, intrusion detection system (IDS) and vulnerability scan by game theory. The Nash...The integrated linkage control problem based on attack detection is solved with the analyses of the security model including firewall, intrusion detection system (IDS) and vulnerability scan by game theory. The Nash equilibrium for two portfolios of only deploying IDS and vulnerability scan and deploying all the technologies is investigated by backward induction. The results show that when the detection rates of IDS and vulnerability scan are low, the firm will not only inspect every user who raises an alarm, but also a fraction of users that do not raise an alarm; when the detection rates of IDS and vulnerability scan are sufficiently high, the firm will not inspect any user who does not raise an alarm, but only inspect a fraction of users that raise an alarm. Adding firewall into the information system impacts on the benefits of firms and hackers, but does not change the optimal strategies of hackers, and the optimal investigation strategies of IDS are only changed in certain cases. Moreover, the interactions between IDS & vulnerability scan and firewall & IDS are discussed in detail.展开更多
基金financially supported by the Ongoing Research Funding Program(ORF-2025-846),King Saud University,Riyadh,Saudi Arabia.
文摘Protecting Supervisory Control and Data Acquisition-Industrial Internet of Things(SCADA-IIoT)systems against intruders has become essential since industrial control systems now oversee critical infrastructure,and cyber attackers more frequently target these systems.Due to their connection of physical assets with digital networks,SCADA-IIoT systems face substantial risks from multiple attack types,including Distributed Denial of Service(DDoS),spoofing,and more advanced intrusion methods.Previous research in this field faces challenges due to insufficient solutions,as current intrusion detection systems lack the necessary accuracy,scalability,and adaptability needed for IIoT environments.This paper introduces CyberFortis,a novel cybersecurity framework aimed at detecting and preventing cyber threats in SCADA-IIoT systems.CyberFortis presents two key innovations:Firstly,Siamese Double Deep Q-Network with Autoencoders(Siamdqn-AE)FusionNet,which enhances intrusion detection by combining deep Q-Networks with autoencoders for improved attack detection and feature extraction;and secondly,the PopHydra Optimiser,an innovative solution to compute reinforcement learning discount factors for better model performance and convergence.This method combines Siamese deep Q-Networks with autoencoders to create a system that can detect different types of attacks more effectively and adapt to new challenges.CyberFortis is better than current top attack detection systems,showing higher scores in important areas like accuracy,precision,recall,and F1-score,based on data from CICIoT 2023,UNSW-NB 15,and WUSTL-IIoT datasets.Results from the proposed framework show a 97.5%accuracy rate,indicating its potential as an effective solution for SCADA-IIoT cybersecurity against emerging threats.The research confirms that the proposed security and resilience methods are successful in protecting vital industrial control systems within their operational environments.
基金The National Natural Science Foundation of China(No.71071033)the Innovation Project of Jiangsu Postgraduate Education(No.CX10B_058Z)
文摘The integrated linkage control problem based on attack detection is solved with the analyses of the security model including firewall, intrusion detection system (IDS) and vulnerability scan by game theory. The Nash equilibrium for two portfolios of only deploying IDS and vulnerability scan and deploying all the technologies is investigated by backward induction. The results show that when the detection rates of IDS and vulnerability scan are low, the firm will not only inspect every user who raises an alarm, but also a fraction of users that do not raise an alarm; when the detection rates of IDS and vulnerability scan are sufficiently high, the firm will not inspect any user who does not raise an alarm, but only inspect a fraction of users that raise an alarm. Adding firewall into the information system impacts on the benefits of firms and hackers, but does not change the optimal strategies of hackers, and the optimal investigation strategies of IDS are only changed in certain cases. Moreover, the interactions between IDS & vulnerability scan and firewall & IDS are discussed in detail.