In this paper our studies about the sequential testing program for predicting and identificating carcinogens, sequential discriminant method and cost- effectiveness analysis are summarized. The analysis of our databas...In this paper our studies about the sequential testing program for predicting and identificating carcinogens, sequential discriminant method and cost- effectiveness analysis are summarized. The analysis of our database of carcinogeniclty and genotoxicity of chemicals demonstrates the uncertainty . of short- term tests ( STTs ) to predict carcinogens and the results of most routine STTs are statistically dependent. We recommend the sequential testing program combining STTs and carclnogenicity assay, the optimal STT batteries, the rules of the sequential discrimination and the preferal choices of STTs tor specific chemical class. For illustrative pmposes the carclnogenicity prediction of several sample chamicals is presented. The results of cost-effectiveness analysis suggest that this program has vast social-economic effectiveness.展开更多
Ischemic stroke is a secondary cause of mortality worldwide,imposing considerable medical and economic burdens on society.Extracellular vesicles,serving as natural nanocarriers for drug delivery,exhibit excellent bioc...Ischemic stroke is a secondary cause of mortality worldwide,imposing considerable medical and economic burdens on society.Extracellular vesicles,serving as natural nanocarriers for drug delivery,exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke.However,the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency.By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles,their delivery efficacy may be greatly improved.Furthermore,previous studies have indicated that microvesicles,a subset of large-sized extracellular vesicles,can transport mitochondria to neighboring cells,thereby aiding in the restoration of mitochondrial function post-ischemic stroke.Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components,such as proteins or deoxyribonucleic acid,or their sub-components,for extracellular vesicle-based ischemic stroke therapy.In this review,we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies.Given the complex facets of treating ischemic stroke,we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process.Moreover,given the burgeoning interest in mitochondrial delivery,we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.展开更多
Natural products(NPs)have historically been a fundamental source for drug discovery.Yet the complex nature of NPs presents substantial challenges in pinpointing bioactive constituents,and corresponding targets.In the ...Natural products(NPs)have historically been a fundamental source for drug discovery.Yet the complex nature of NPs presents substantial challenges in pinpointing bioactive constituents,and corresponding targets.In the present study,an innovative natural product virtual screening-interaction-phenotype(NP-VIP)strategy that integrates virtual screening,chemical proteomics,and metabolomics to identify and validate the bioactive targets of NPs.This approach reduces false positive results and enhances the efficiency of target identification.Salvia miltiorrhiza(SM),a herb with recognized therapeutic potential against ischemic stroke(IS),was used to illustrate the workflow.Utilizing virtual screening,chemical proteomics,and metabolomics,potential therapeutic targets for SM in the IS treatment were identified,totaling 29,100,and 78,respectively.Further analysis via the NP-VIP strategy highlighted five high-confidence targets,including poly[ADP-ribose]polymerase 1(PARP1),signal transducer and activator of transcription 3(STAT3),amyloid precursor protein(APP),glutamate-ammonia ligase(GLUL),and glutamate decarboxylase 67(GAD67).These targets were subsequently validated and found to play critical roles in the neuroprotective effects of SM.The study not only underscores the importance of SM in treating IS but also sets a precedent for NP research,proposing a comprehensive approach that could be adapted for broader pharmacological explorations.展开更多
To better understand the migration behavior of plastic fragments in the environment,development of rapid non-destructive methods for in-situ identification and characterization of plastic fragments is necessary.Howeve...To better understand the migration behavior of plastic fragments in the environment,development of rapid non-destructive methods for in-situ identification and characterization of plastic fragments is necessary.However,most of the studies had focused only on colored plastic fragments,ignoring colorless plastic fragments and the effects of different environmental media(backgrounds),thus underestimating their abundance.To address this issue,the present study used near-infrared spectroscopy to compare the identification of colored and colorless plastic fragments based on partial least squares-discriminant analysis(PLS-DA),extreme gradient boost,support vector machine and random forest classifier.The effects of polymer color,type,thickness,and background on the plastic fragments classification were evaluated.PLS-DA presented the best and most stable outcome,with higher robustness and lower misclassification rate.All models frequently misinterpreted colorless plastic fragments and its background when the fragment thickness was less than 0.1mm.A two-stage modeling method,which first distinguishes the plastic types and then identifies colorless plastic fragments that had been misclassified as background,was proposed.The method presented an accuracy higher than 99%in different backgrounds.In summary,this study developed a novel method for rapid and synchronous identification of colored and colorless plastic fragments under complex environmental backgrounds.展开更多
As artificial intelligence(AI)technology has continued to develop,its efficient data processing and pattern recognition capabilities have significantly improved the precision and speed of decision-making processes,and...As artificial intelligence(AI)technology has continued to develop,its efficient data processing and pattern recognition capabilities have significantly improved the precision and speed of decision-making processes,and it has been widely applied across various fields.In the field of astronomy,AI techniques have demonstrated unique advantages,particularly in the identification of pulsars and their candidates.AI is able to address the challenges of pulsar celestial body identification and classification because of its accuracy and efficiency.This paper systematically surveys commonly used AI models for pulsar candidate identification,analyzing and discussing the typical applications of machine learning,artificial neural networks,convolutional neural networks,and generative adversarial networks in candidate identification.Furthermore,it explores how th.e introduction of AI techniques not only enhances the efficiency and accuracy of pulsar identification but also provides new perspectives and tools for pulsar survey data processing,thus playing a significant role in advancing pulsar research and the field of astronomy.展开更多
Actuator faults can be critical in turbofan engines as they can lead to stall,surge,loss of thrust and failure of speed control.Thus,fault diagnosis of gas turbine actuators has attracted considerable attention,from b...Actuator faults can be critical in turbofan engines as they can lead to stall,surge,loss of thrust and failure of speed control.Thus,fault diagnosis of gas turbine actuators has attracted considerable attention,from both academia and industry.However,the extensive literature that exists on this topic does not address identifying the severity of actuator faults and focuses mainly on actuator fault detection and isolation.In addition,previous studies of actuator fault identification have not dealt with multiple concurrent faults in real time,especially when these are accompanied by sudden failures under dynamic conditions.This study develops component-level models for fault identification in four typical actuators used in high-bypass ratio turbofan engines under both dynamic and steady-state conditions and these are then integrated with the engine performance model developed by the authors.The research results reported here present a novel method of quantifying actuator faults using dynamic effect compensation.The maximum error for each actuator is less than0.06%and 0.07%,with average computational time of less than 0.0058 s and 0.0086 s for steady-state and transient cases,respectively.These results confirm that the proposed method can accurately and efficiently identify concurrent actuator fault for an engine operating under either transient or steady-state conditions,even in the case of a sudden malfunction.The research results emonstrate the potential benefit to emergency response capabilities by introducing this method of monitoring the health of aero engines.展开更多
Bayesian-optimized lithology identification has important basic geological research significance and engineering application value,and this paper proposes a Bayesian-optimized lithology identification method based on ...Bayesian-optimized lithology identification has important basic geological research significance and engineering application value,and this paper proposes a Bayesian-optimized lithology identification method based on machine learning of rock visible and near-infrared spectral data.First,the rock spectral data are preprocessed using Savitzky-Golay(SG)smoothing to remove the noise of the spectral data;then,the preprocessed rock spectral data are downscaled using Principal Component Analysis(PCA)to reduce the redundancy of the data,optimize the effective discriminative information,and obtain the rock spectral features;finally,a Bayesian-optimized lithology identification model is established based on rock spectral features,optimize the model hyperparameters using Bayesian optimization(BO)algorithm to avoid the combination of hyperparameters falling into the local optimal solution,and output the predicted type of rock,so as to realize the Bayesian-optimized lithology identification.In addition,this paper conducts comparative analysis on models based on Artificial Neural Network(ANN)/Random Forest(RF),dimensionality reduction/full band,and optimization algorithms.It uses the confusion matrix,accuracy,Precison(P),Recall(R)and F_(1)values(F_(1))as the evaluation indexes of model accuracy.The results indicate that the lithology identification model optimized by the BO-ANN after dimensionality reduction achieves an accuracy of up to 99.80%,up to 99.79%and up to 99.79%.Compared with the BO-RF model,it has higher identification accuracy and better stability for each type of rock identification.The experiments and reliability analysis show that the Bayesian-optimized lithology identification method proposed in this paper has good robustness and generalization performance,which is of great significance for realizing fast,accurate and Bayesian-optimized lithology identification in tunnel site.展开更多
It is of great significance to accurately and rapidly identify shale lithofacies in relation to the evaluation and prediction of sweet spots for shale oil and gas reservoirs.To address the problem of low resolution in...It is of great significance to accurately and rapidly identify shale lithofacies in relation to the evaluation and prediction of sweet spots for shale oil and gas reservoirs.To address the problem of low resolution in logging curves,this study establishes a grayscale-phase model based on high-resolution grayscale curves using clustering analysis algorithms for shale lithofacies identification,working with the Shahejie For-mation,Bohai Bay Basin,China.The grayscale phase is defined as the sum of absolute grayscale and relative amplitude as well as their features.The absolute grayscale is the absolute magnitude of the gray values and is utilized for evaluating the material composition(mineral composition+total organic carbon)of shale,while the relative amplitude is the difference between adjacent gray values and is used to identify the shale structure type.The research results show that the grayscale phase model can identify shale lithofacies well,and the accuracy and applicability of this model were verified by the fitting relationship between absolute grayscale and shale mineral composition,as well as corresponding re-lationships between relative amplitudes and laminae development in shales.Four lithofacies are iden-tified in the target layer of the study area:massive mixed shale,laminated mixed shale,massive calcareous shale and laminated calcareous shale.This method can not only effectively characterize the material composition of shale,but also numerically characterize the development degree of shale laminae,and solve the problem that difficult to identify millimeter-scale laminae based on logging curves,which can provide technical support for shale lithofacies identification,sweet spot evaluation and prediction of complex continental lacustrine basins.展开更多
In scenarios such as vehicle radiation monitoring and unmanned aerial vehicle radiation detection,rapid measurements using a NaI(Tl)detector often result in low photon counts,weak characteristic peaks,and significant ...In scenarios such as vehicle radiation monitoring and unmanned aerial vehicle radiation detection,rapid measurements using a NaI(Tl)detector often result in low photon counts,weak characteristic peaks,and significant statistical fluctuations.These issues can lead to potential failures in peak-searching-based identification methods.To address the low precision associated with short-duration measurements of radionuclides,this paper proposes an identification algorithm that leverages heterogeneous spectral transfer to develop a low-count energy spectral identification model.Comparative experiments demonstrated that transferring samples from 26 classes of simulated heterogeneous gamma spectra aids in creating a reliable model for measured gamma spectra.With only 10%of target domain samples used for training,the accuracy on real low-count spectral samples was 95.56%.This performance shows a significant improvement over widely employed full-spectrum analysis methods trained on target domain samples.The proposed method also exhibits strong generalization capabilities,effectively mitigating overfitting issues in low-count energy spectral classification under short-duration measurements.展开更多
Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.Howev...Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage.展开更多
Fifty agricultural soil samples collected from Fuzhou,southeast China,were first investigated for the occurrence,distribution,and potential risks of twelve organophosphate esters(OPEs).The total concentration of OPEs(...Fifty agricultural soil samples collected from Fuzhou,southeast China,were first investigated for the occurrence,distribution,and potential risks of twelve organophosphate esters(OPEs).The total concentration of OPEs(ΣOPEs)in soil ranged from 1.33 to 96.5 ng/g dry weight(dw),with an average value of 17.1 ng/g dw.Especially,halogenated-OPEs were the predominant group with amean level of 9.75 ng/g dw,and tris(1-chloro-2-propyl)phosphate(TCIPP)was the most abundant OPEs,accounting for 51.1%ofΣOPEs.The concentrations of TCIPP andΣOPEs were found to be significantly higher(P<0.05)in soils of urban areas than those in suburban areas.In addition,the use of agricultural plastic films and total organic carbon had a positive effect on the occurrence of OPE in this study.The positive matrix factorization model suggested complex sources of OPEs in agricultural soils from Fuzhou.The ecological risk assessment demonstrated that tricresyl phosphate presented a medium risk to land-based organisms(0.1≤risk quotient<1.0).Nevertheless,the carcinogenic and noncarcinogenic risks for human exposure to OPEs through soil ingestion and dermal absorption were negligible.These findings would facilitate further investigations into the pollution management and risk control of OPEs.展开更多
In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology bas...In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology based on the principle of high-throughput sequencing,and established a multi-locus 10 animalderived components identification method of cattle,goat,sheep,donkey,horse,chicken,duck,goose,pigeon,quail in meat and meat products.The specific loci of each species could be detected and the species could be accurately identified,including 5 loci for cattle and duck,3 loci for sheep,9 loci for chicken and horse,10 loci for goose and pigeon,6 loci for quail and 1 locus for donkey and goat,and an adulteration model was established to simulate commercially available samples.The results showed that the method established in this study had high throughput,good repeatability and accuracy,and was able to identify 10 animalderived components simultaneously with 100%repeatability accuracy.The detection limit was 0.1%(m/m)in simulated samples of chicken,duck and horse.Using the method established in this study to test commercially available samples,4 samples from 14 commercially available samples were detected to be inconsistent with the labels,of which 2 did not contain the target ingredient and 2 were adulterated with small amounts of other ingredients.展开更多
Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stre...Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.展开更多
In a recent case report in the World Journal of Clinical Cases,emphasized the crucial role of rapidly and accurately identifying pathogens to optimize patient treatment outcomes.Laboratory-on-a-chip(LOC)technology has...In a recent case report in the World Journal of Clinical Cases,emphasized the crucial role of rapidly and accurately identifying pathogens to optimize patient treatment outcomes.Laboratory-on-a-chip(LOC)technology has emerged as a transformative tool in health care,offering rapid,sensitive,and specific identification of microorganisms.This editorial provides a comprehensive overview of LOC technology,highlighting its principles,advantages,applications,challenges,and future directions.Success studies from the field have demonstrated the practical benefits of LOC devices in clinical diagnostics,epidemiology,and food safety.Comparative studies have underscored the superiority of LOC technology over traditional methods,showcasing improvements in speed,accuracy,and portability.The future integration of LOC with biosensors,artificial intelligence,and data analytics promises further innovation and expansion.This call to action emphasizes the importance of continued research,investment,and adoption to realize the full potential of LOC technology in improving healthcare outcomes worldwide.展开更多
In complex systems,there is a kind of parameters having only a minor impact on the outputs in most cases,but their accurate values are still critical for the operation of systems.In this paper,the authors focus on the...In complex systems,there is a kind of parameters having only a minor impact on the outputs in most cases,but their accurate values are still critical for the operation of systems.In this paper,the authors focus on the identification of these weak influence parameters in the complex systems and propose a identification model based on the parameter recursion.As an application,three parameters of the steam generator are identified,that is,the valve opening,the valve CV value,and the reference water level,in which the valve opening and the reference water level are weak influence parameters under most operating conditions.Numerical simulation results show that,in comparison with the multi-layer perceptron(MLP),the identification error rate is decreased.Actually,the average identification error rate for the valve opening decreases by 0.96%,for the valve CV decreases by 0.002%,and for the reference water level decreases by 12%after one recursion.After two recursions,the average identification error rate for the valve opening decreases by 11.07%,for the valve CV decreases by 2.601%,and for the reference water level decreases by 95.79%.This method can help to improve the control of the steam generator.展开更多
As climate change,international trade,and human activities increasingly disrupt traditional geographic barriers in the oceans,non-indigenous species(NIS)have successfully established themselves outside their native ra...As climate change,international trade,and human activities increasingly disrupt traditional geographic barriers in the oceans,non-indigenous species(NIS)have successfully established themselves outside their native ranges.Outbreaks of NIS can pose significant threats to local ecosystems and economies,making them a critical issue for marine biodiversity and biosecurity.Biological invasions in marine habitats differ significantly from those on land or in freshwater.Detection and identification of NIS in marine habitats is particularly challenging due to difficulties in sampling,morphological identification,and visualization in the early stages of outbreaks.Environmental DNA(eDNA)approaches have emerged as reliable and cost-effective methods for both qualitative and quantitative detection of marine NIS,particularly in the introductory phase.In this review,we summarize recent applications and advances in eDNA-based detection of marine NIS.We emphasize that innovations in eDNA sampling equipment,improvements in detection methods,and further refinement of the reference genomic database for marine species are crucial for the future development of this field.展开更多
In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis...In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system.展开更多
Accurate identification of natural gas origin is fundamental to the theoretical research on natural gas geosciences and the exploration deployment and resource potential assessment of oil and gas.Since the 1970s,Acade...Accurate identification of natural gas origin is fundamental to the theoretical research on natural gas geosciences and the exploration deployment and resource potential assessment of oil and gas.Since the 1970s,Academician Dai Jinxing has developed a comprehensive system for natural gas origin determination,grounded in geochemical theory and practice,and based on the integrated analysis of stable isotopic compositions,molecular composition,light hydrocarbon fingerprints,and geological context.This paper systematically reviews the core framework established by him and his team according to related references and application results,focusing on the conceptual design and technical pathways of key diagnostic diagrams such asδ^(13)C_(1)-C_(1)/(C_(2)+C_(3)),δ^(13)C_(1)-δ^(13)C_(2)-δ^(13)C_(3),δ^(13)CCO_(2)versus CO_(2)content,and the C7light hydrocarbon ternary plot.We evaluate the applicability and innovation of these tools in distinguishing between oil-type gas,coal-derived gas,microbial gas,and abiogenic gas,as well as in identifying mixed-source gases and multi-stage charging systems.The findings suggest that this identification system has significantly advanced natural gas geochemical interpretation in China,shifting from single-indicator analyses to multi-parameter integration and from qualitative assessments to systematic graphical identification,and has also exerted considerable influence on international research in natural gas geochemistry.The structured overview of the development trajectory of natural gas origin discrimination methodologies provides a technical support for natural gas geological theory and practice and offers a scientific foundation for the academic evaluation and application of related achievements.展开更多
Cancer is a major threat to human health worldwide.Colorectal cancer(CRC),a highly prevalent malignant tumor,poses a significant public health challenge.Therefore,the identification of effective biomarkers is of great...Cancer is a major threat to human health worldwide.Colorectal cancer(CRC),a highly prevalent malignant tumor,poses a significant public health challenge.Therefore,the identification of effective biomarkers is of great significance[1].The NFKBIE gene encodes an inhibitor of nuclear factorκBε(IkBε).IκBε,a key regulator of the NF-κB signaling pathway,is closely associated with tumorigenesis.However,their roles in CRC remain unclear[2].Pan-cancer research is crucial for accelerating the identification of biomarkers and translational medical research,as it can reveal molecular commonalities and differences among different tumor types[3].展开更多
[Objectives]To systematically investigate the microbial community composition of rhizosphere soil and endophytes associated with Pogostemon cablin,and to explore the relationships between endophytes and rhizosphere mi...[Objectives]To systematically investigate the microbial community composition of rhizosphere soil and endophytes associated with Pogostemon cablin,and to explore the relationships between endophytes and rhizosphere microorganisms as well as their potential applications.[Methods]Microbial isolates were obtained from rhizosphere soil,root tissues,and stem tissues using the serial dilution and spread plate method.These isolates were identified through morphological characterization,physiological and biochemical assays,and molecular biological techniques.[Results]A total of 18 microbial strains were isolated,including 7 bacterial and 11 fungal strains.Among the bacterial isolates,Pseudomonas spp.and Bacillus spp.were predominant,while the fungal isolates were mainly represented by Aspergillus spp.Certain bacterial strains,notably Pseudomonas spp.,exhibited potential abilities for indole-3-acetic acid(IAA)production,nitrogen fixation,and antagonistic activity against pathogenic microorganisms,suggesting their potential utility as biocontrol agents and promoters of plant growth.[Conclusions]This study establishes a foundational understanding of the microbial community characteristics in the rhizosphere and tissues of P.cablin,as well as their roles in plant growth and development.展开更多
文摘In this paper our studies about the sequential testing program for predicting and identificating carcinogens, sequential discriminant method and cost- effectiveness analysis are summarized. The analysis of our database of carcinogeniclty and genotoxicity of chemicals demonstrates the uncertainty . of short- term tests ( STTs ) to predict carcinogens and the results of most routine STTs are statistically dependent. We recommend the sequential testing program combining STTs and carclnogenicity assay, the optimal STT batteries, the rules of the sequential discrimination and the preferal choices of STTs tor specific chemical class. For illustrative pmposes the carclnogenicity prediction of several sample chamicals is presented. The results of cost-effectiveness analysis suggest that this program has vast social-economic effectiveness.
基金supported by the grants from University of Macao,China,Nos.MYRG2022-00221-ICMS(to YZ)and MYRG-CRG2022-00011-ICMS(to RW)the Natural Science Foundation of Guangdong Province,No.2023A1515010034(to YZ)。
文摘Ischemic stroke is a secondary cause of mortality worldwide,imposing considerable medical and economic burdens on society.Extracellular vesicles,serving as natural nanocarriers for drug delivery,exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke.However,the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency.By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles,their delivery efficacy may be greatly improved.Furthermore,previous studies have indicated that microvesicles,a subset of large-sized extracellular vesicles,can transport mitochondria to neighboring cells,thereby aiding in the restoration of mitochondrial function post-ischemic stroke.Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components,such as proteins or deoxyribonucleic acid,or their sub-components,for extracellular vesicle-based ischemic stroke therapy.In this review,we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies.Given the complex facets of treating ischemic stroke,we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process.Moreover,given the burgeoning interest in mitochondrial delivery,we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.
基金supported by the National Natural Science Foundations of China(Grant No.:82204584)Liaoning Provincial Science and Technology Projects,China(Project No.:2021JH1/10400055).
文摘Natural products(NPs)have historically been a fundamental source for drug discovery.Yet the complex nature of NPs presents substantial challenges in pinpointing bioactive constituents,and corresponding targets.In the present study,an innovative natural product virtual screening-interaction-phenotype(NP-VIP)strategy that integrates virtual screening,chemical proteomics,and metabolomics to identify and validate the bioactive targets of NPs.This approach reduces false positive results and enhances the efficiency of target identification.Salvia miltiorrhiza(SM),a herb with recognized therapeutic potential against ischemic stroke(IS),was used to illustrate the workflow.Utilizing virtual screening,chemical proteomics,and metabolomics,potential therapeutic targets for SM in the IS treatment were identified,totaling 29,100,and 78,respectively.Further analysis via the NP-VIP strategy highlighted five high-confidence targets,including poly[ADP-ribose]polymerase 1(PARP1),signal transducer and activator of transcription 3(STAT3),amyloid precursor protein(APP),glutamate-ammonia ligase(GLUL),and glutamate decarboxylase 67(GAD67).These targets were subsequently validated and found to play critical roles in the neuroprotective effects of SM.The study not only underscores the importance of SM in treating IS but also sets a precedent for NP research,proposing a comprehensive approach that could be adapted for broader pharmacological explorations.
基金supported by the National Natural Science Foundation of China(No.22276139)the Shanghai’s Municipal State-owned Assets Supervision and Administration Commission(No.2022028).
文摘To better understand the migration behavior of plastic fragments in the environment,development of rapid non-destructive methods for in-situ identification and characterization of plastic fragments is necessary.However,most of the studies had focused only on colored plastic fragments,ignoring colorless plastic fragments and the effects of different environmental media(backgrounds),thus underestimating their abundance.To address this issue,the present study used near-infrared spectroscopy to compare the identification of colored and colorless plastic fragments based on partial least squares-discriminant analysis(PLS-DA),extreme gradient boost,support vector machine and random forest classifier.The effects of polymer color,type,thickness,and background on the plastic fragments classification were evaluated.PLS-DA presented the best and most stable outcome,with higher robustness and lower misclassification rate.All models frequently misinterpreted colorless plastic fragments and its background when the fragment thickness was less than 0.1mm.A two-stage modeling method,which first distinguishes the plastic types and then identifies colorless plastic fragments that had been misclassified as background,was proposed.The method presented an accuracy higher than 99%in different backgrounds.In summary,this study developed a novel method for rapid and synchronous identification of colored and colorless plastic fragments under complex environmental backgrounds.
基金supported by the National Key R&D Program of China(2021YFC2203502 and 2022YFF0711502)the National Natural Science Foundation of China(NSFC)(12173077)+4 种基金the Tianshan Talent Project of Xinjiang Uygur Autonomous Region(2022TSYCCX0095 and 2023TSYCCX0112)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(PTYQ2022YZZD01)China National Astronomical Data Center(NADC)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China(MOF)and administrated by the Chinese Academy of Sciences(CAS)Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01A360)。
文摘As artificial intelligence(AI)technology has continued to develop,its efficient data processing and pattern recognition capabilities have significantly improved the precision and speed of decision-making processes,and it has been widely applied across various fields.In the field of astronomy,AI techniques have demonstrated unique advantages,particularly in the identification of pulsars and their candidates.AI is able to address the challenges of pulsar celestial body identification and classification because of its accuracy and efficiency.This paper systematically surveys commonly used AI models for pulsar candidate identification,analyzing and discussing the typical applications of machine learning,artificial neural networks,convolutional neural networks,and generative adversarial networks in candidate identification.Furthermore,it explores how th.e introduction of AI techniques not only enhances the efficiency and accuracy of pulsar identification but also provides new perspectives and tools for pulsar survey data processing,thus playing a significant role in advancing pulsar research and the field of astronomy.
基金support by the National Natural Science Foundation of China(Grant No.52402520)。
文摘Actuator faults can be critical in turbofan engines as they can lead to stall,surge,loss of thrust and failure of speed control.Thus,fault diagnosis of gas turbine actuators has attracted considerable attention,from both academia and industry.However,the extensive literature that exists on this topic does not address identifying the severity of actuator faults and focuses mainly on actuator fault detection and isolation.In addition,previous studies of actuator fault identification have not dealt with multiple concurrent faults in real time,especially when these are accompanied by sudden failures under dynamic conditions.This study develops component-level models for fault identification in four typical actuators used in high-bypass ratio turbofan engines under both dynamic and steady-state conditions and these are then integrated with the engine performance model developed by the authors.The research results reported here present a novel method of quantifying actuator faults using dynamic effect compensation.The maximum error for each actuator is less than0.06%and 0.07%,with average computational time of less than 0.0058 s and 0.0086 s for steady-state and transient cases,respectively.These results confirm that the proposed method can accurately and efficiently identify concurrent actuator fault for an engine operating under either transient or steady-state conditions,even in the case of a sudden malfunction.The research results emonstrate the potential benefit to emergency response capabilities by introducing this method of monitoring the health of aero engines.
基金support from the National Natural Science Foundation of China(Grant Nos:52379103 and 52279103)the Natural Science Foundation of Shandong Province(Grant No:ZR2023YQ049).
文摘Bayesian-optimized lithology identification has important basic geological research significance and engineering application value,and this paper proposes a Bayesian-optimized lithology identification method based on machine learning of rock visible and near-infrared spectral data.First,the rock spectral data are preprocessed using Savitzky-Golay(SG)smoothing to remove the noise of the spectral data;then,the preprocessed rock spectral data are downscaled using Principal Component Analysis(PCA)to reduce the redundancy of the data,optimize the effective discriminative information,and obtain the rock spectral features;finally,a Bayesian-optimized lithology identification model is established based on rock spectral features,optimize the model hyperparameters using Bayesian optimization(BO)algorithm to avoid the combination of hyperparameters falling into the local optimal solution,and output the predicted type of rock,so as to realize the Bayesian-optimized lithology identification.In addition,this paper conducts comparative analysis on models based on Artificial Neural Network(ANN)/Random Forest(RF),dimensionality reduction/full band,and optimization algorithms.It uses the confusion matrix,accuracy,Precison(P),Recall(R)and F_(1)values(F_(1))as the evaluation indexes of model accuracy.The results indicate that the lithology identification model optimized by the BO-ANN after dimensionality reduction achieves an accuracy of up to 99.80%,up to 99.79%and up to 99.79%.Compared with the BO-RF model,it has higher identification accuracy and better stability for each type of rock identification.The experiments and reliability analysis show that the Bayesian-optimized lithology identification method proposed in this paper has good robustness and generalization performance,which is of great significance for realizing fast,accurate and Bayesian-optimized lithology identification in tunnel site.
基金supported by the National Natural Science Foundation of China(42122017,41821002)the Independent Innovation Research Program of China University of Petroleum(East China)(21CX06001A).
文摘It is of great significance to accurately and rapidly identify shale lithofacies in relation to the evaluation and prediction of sweet spots for shale oil and gas reservoirs.To address the problem of low resolution in logging curves,this study establishes a grayscale-phase model based on high-resolution grayscale curves using clustering analysis algorithms for shale lithofacies identification,working with the Shahejie For-mation,Bohai Bay Basin,China.The grayscale phase is defined as the sum of absolute grayscale and relative amplitude as well as their features.The absolute grayscale is the absolute magnitude of the gray values and is utilized for evaluating the material composition(mineral composition+total organic carbon)of shale,while the relative amplitude is the difference between adjacent gray values and is used to identify the shale structure type.The research results show that the grayscale phase model can identify shale lithofacies well,and the accuracy and applicability of this model were verified by the fitting relationship between absolute grayscale and shale mineral composition,as well as corresponding re-lationships between relative amplitudes and laminae development in shales.Four lithofacies are iden-tified in the target layer of the study area:massive mixed shale,laminated mixed shale,massive calcareous shale and laminated calcareous shale.This method can not only effectively characterize the material composition of shale,but also numerically characterize the development degree of shale laminae,and solve the problem that difficult to identify millimeter-scale laminae based on logging curves,which can provide technical support for shale lithofacies identification,sweet spot evaluation and prediction of complex continental lacustrine basins.
基金supported by the National Defense Fundamental Research Project(No.JCKY2022404C005)the Nuclear Energy Development Project(No.23ZG6106)+1 种基金the Sichuan Scientific and Technological Achievements Transfer and Transformation Demonstration Project(No.2023ZHCG0026)the Mianyang Applied Technology Research and Development Project(No.2021ZYZF1005)。
文摘In scenarios such as vehicle radiation monitoring and unmanned aerial vehicle radiation detection,rapid measurements using a NaI(Tl)detector often result in low photon counts,weak characteristic peaks,and significant statistical fluctuations.These issues can lead to potential failures in peak-searching-based identification methods.To address the low precision associated with short-duration measurements of radionuclides,this paper proposes an identification algorithm that leverages heterogeneous spectral transfer to develop a low-count energy spectral identification model.Comparative experiments demonstrated that transferring samples from 26 classes of simulated heterogeneous gamma spectra aids in creating a reliable model for measured gamma spectra.With only 10%of target domain samples used for training,the accuracy on real low-count spectral samples was 95.56%.This performance shows a significant improvement over widely employed full-spectrum analysis methods trained on target domain samples.The proposed method also exhibits strong generalization capabilities,effectively mitigating overfitting issues in low-count energy spectral classification under short-duration measurements.
基金Supported by the National Natural Science Foundation of China(Nos.52222904 and 52309117)China Postdoctoral Science Foundation(Nos.2022TQ0168 and 2023M731895).
文摘Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage.
基金supported by the Open Fund of the Laboratory for Earth Surface Processes,Ministry of Education,Peking University,Beijing,China,and the Cultivation Fund Program for Excellent Dissertation in Fujian Normal University,China(No.LWPYS202315)the Research Start-up Fund of Fujian Normal University,China(No.Y0720304X13).
文摘Fifty agricultural soil samples collected from Fuzhou,southeast China,were first investigated for the occurrence,distribution,and potential risks of twelve organophosphate esters(OPEs).The total concentration of OPEs(ΣOPEs)in soil ranged from 1.33 to 96.5 ng/g dry weight(dw),with an average value of 17.1 ng/g dw.Especially,halogenated-OPEs were the predominant group with amean level of 9.75 ng/g dw,and tris(1-chloro-2-propyl)phosphate(TCIPP)was the most abundant OPEs,accounting for 51.1%ofΣOPEs.The concentrations of TCIPP andΣOPEs were found to be significantly higher(P<0.05)in soils of urban areas than those in suburban areas.In addition,the use of agricultural plastic films and total organic carbon had a positive effect on the occurrence of OPE in this study.The positive matrix factorization model suggested complex sources of OPEs in agricultural soils from Fuzhou.The ecological risk assessment demonstrated that tricresyl phosphate presented a medium risk to land-based organisms(0.1≤risk quotient<1.0).Nevertheless,the carcinogenic and noncarcinogenic risks for human exposure to OPEs through soil ingestion and dermal absorption were negligible.These findings would facilitate further investigations into the pollution management and risk control of OPEs.
基金financially supported by National Key R&D Program(2021YFF0701905)。
文摘In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology based on the principle of high-throughput sequencing,and established a multi-locus 10 animalderived components identification method of cattle,goat,sheep,donkey,horse,chicken,duck,goose,pigeon,quail in meat and meat products.The specific loci of each species could be detected and the species could be accurately identified,including 5 loci for cattle and duck,3 loci for sheep,9 loci for chicken and horse,10 loci for goose and pigeon,6 loci for quail and 1 locus for donkey and goat,and an adulteration model was established to simulate commercially available samples.The results showed that the method established in this study had high throughput,good repeatability and accuracy,and was able to identify 10 animalderived components simultaneously with 100%repeatability accuracy.The detection limit was 0.1%(m/m)in simulated samples of chicken,duck and horse.Using the method established in this study to test commercially available samples,4 samples from 14 commercially available samples were detected to be inconsistent with the labels,of which 2 did not contain the target ingredient and 2 were adulterated with small amounts of other ingredients.
基金financially supported by the National Natural Science Foundation of China(No.52204084)the Open Research Fund of the State Key Laboratory of Coal Resources and safe Mining,CUMT,China(No.SKLCRSM 23KF004)+3 种基金the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China(No.FRF-IDRY-GD22-002)the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,China(No.QNXM20220009)the National Key R&D Program of China(Nos.2022YFC2905600 and 2022 YFC3004601)the Science,Technology&Innovation Project of Xiongan New Area,China(No.2023XAGG0061)。
文摘Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.
文摘In a recent case report in the World Journal of Clinical Cases,emphasized the crucial role of rapidly and accurately identifying pathogens to optimize patient treatment outcomes.Laboratory-on-a-chip(LOC)technology has emerged as a transformative tool in health care,offering rapid,sensitive,and specific identification of microorganisms.This editorial provides a comprehensive overview of LOC technology,highlighting its principles,advantages,applications,challenges,and future directions.Success studies from the field have demonstrated the practical benefits of LOC devices in clinical diagnostics,epidemiology,and food safety.Comparative studies have underscored the superiority of LOC technology over traditional methods,showcasing improvements in speed,accuracy,and portability.The future integration of LOC with biosensors,artificial intelligence,and data analytics promises further innovation and expansion.This call to action emphasizes the importance of continued research,investment,and adoption to realize the full potential of LOC technology in improving healthcare outcomes worldwide.
文摘In complex systems,there is a kind of parameters having only a minor impact on the outputs in most cases,but their accurate values are still critical for the operation of systems.In this paper,the authors focus on the identification of these weak influence parameters in the complex systems and propose a identification model based on the parameter recursion.As an application,three parameters of the steam generator are identified,that is,the valve opening,the valve CV value,and the reference water level,in which the valve opening and the reference water level are weak influence parameters under most operating conditions.Numerical simulation results show that,in comparison with the multi-layer perceptron(MLP),the identification error rate is decreased.Actually,the average identification error rate for the valve opening decreases by 0.96%,for the valve CV decreases by 0.002%,and for the reference water level decreases by 12%after one recursion.After two recursions,the average identification error rate for the valve opening decreases by 11.07%,for the valve CV decreases by 2.601%,and for the reference water level decreases by 95.79%.This method can help to improve the control of the steam generator.
文摘As climate change,international trade,and human activities increasingly disrupt traditional geographic barriers in the oceans,non-indigenous species(NIS)have successfully established themselves outside their native ranges.Outbreaks of NIS can pose significant threats to local ecosystems and economies,making them a critical issue for marine biodiversity and biosecurity.Biological invasions in marine habitats differ significantly from those on land or in freshwater.Detection and identification of NIS in marine habitats is particularly challenging due to difficulties in sampling,morphological identification,and visualization in the early stages of outbreaks.Environmental DNA(eDNA)approaches have emerged as reliable and cost-effective methods for both qualitative and quantitative detection of marine NIS,particularly in the introductory phase.In this review,we summarize recent applications and advances in eDNA-based detection of marine NIS.We emphasize that innovations in eDNA sampling equipment,improvements in detection methods,and further refinement of the reference genomic database for marine species are crucial for the future development of this field.
文摘In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system.
基金Supported by the“14th Five-Year Plan”Prospective and Basic Research Project of CNP)(2021DJ0502)Open Project of Key Laboratory of Shale Gas Resource Exploration(Chongqing Institute of Geology and Mineral Resources),Ministry of Natural Resources(KLSGE-2023)National Natural Science Foundation of China(42172149,U2244209)。
文摘Accurate identification of natural gas origin is fundamental to the theoretical research on natural gas geosciences and the exploration deployment and resource potential assessment of oil and gas.Since the 1970s,Academician Dai Jinxing has developed a comprehensive system for natural gas origin determination,grounded in geochemical theory and practice,and based on the integrated analysis of stable isotopic compositions,molecular composition,light hydrocarbon fingerprints,and geological context.This paper systematically reviews the core framework established by him and his team according to related references and application results,focusing on the conceptual design and technical pathways of key diagnostic diagrams such asδ^(13)C_(1)-C_(1)/(C_(2)+C_(3)),δ^(13)C_(1)-δ^(13)C_(2)-δ^(13)C_(3),δ^(13)CCO_(2)versus CO_(2)content,and the C7light hydrocarbon ternary plot.We evaluate the applicability and innovation of these tools in distinguishing between oil-type gas,coal-derived gas,microbial gas,and abiogenic gas,as well as in identifying mixed-source gases and multi-stage charging systems.The findings suggest that this identification system has significantly advanced natural gas geochemical interpretation in China,shifting from single-indicator analyses to multi-parameter integration and from qualitative assessments to systematic graphical identification,and has also exerted considerable influence on international research in natural gas geochemistry.The structured overview of the development trajectory of natural gas origin discrimination methodologies provides a technical support for natural gas geological theory and practice and offers a scientific foundation for the academic evaluation and application of related achievements.
基金supported by the Basic Research and Talent Cultivation Program of Zhangjiakou City(No.2511028A).
文摘Cancer is a major threat to human health worldwide.Colorectal cancer(CRC),a highly prevalent malignant tumor,poses a significant public health challenge.Therefore,the identification of effective biomarkers is of great significance[1].The NFKBIE gene encodes an inhibitor of nuclear factorκBε(IkBε).IκBε,a key regulator of the NF-κB signaling pathway,is closely associated with tumorigenesis.However,their roles in CRC remain unclear[2].Pan-cancer research is crucial for accelerating the identification of biomarkers and translational medical research,as it can reveal molecular commonalities and differences among different tumor types[3].
基金Supported by Rural Science and Technology Commissioner Project of Guangdong Province(KTP20240806).
文摘[Objectives]To systematically investigate the microbial community composition of rhizosphere soil and endophytes associated with Pogostemon cablin,and to explore the relationships between endophytes and rhizosphere microorganisms as well as their potential applications.[Methods]Microbial isolates were obtained from rhizosphere soil,root tissues,and stem tissues using the serial dilution and spread plate method.These isolates were identified through morphological characterization,physiological and biochemical assays,and molecular biological techniques.[Results]A total of 18 microbial strains were isolated,including 7 bacterial and 11 fungal strains.Among the bacterial isolates,Pseudomonas spp.and Bacillus spp.were predominant,while the fungal isolates were mainly represented by Aspergillus spp.Certain bacterial strains,notably Pseudomonas spp.,exhibited potential abilities for indole-3-acetic acid(IAA)production,nitrogen fixation,and antagonistic activity against pathogenic microorganisms,suggesting their potential utility as biocontrol agents and promoters of plant growth.[Conclusions]This study establishes a foundational understanding of the microbial community characteristics in the rhizosphere and tissues of P.cablin,as well as their roles in plant growth and development.