The rise of large-scale artificial intelligence(AI)models,such as ChatGPT,Deep-Seek,and autonomous vehicle systems,has significantly advanced the boundaries of AI,enabling highly complex tasks in natural language proc...The rise of large-scale artificial intelligence(AI)models,such as ChatGPT,Deep-Seek,and autonomous vehicle systems,has significantly advanced the boundaries of AI,enabling highly complex tasks in natural language processing,image recognition,and real-time decisionmaking.However,these models demand immense computational power and are often centralized,relying on cloud-based architectures with inherent limitations in latency,privacy,and energy efficiency.To address these challenges and bring AI closer to real-world applications,such as wearable health monitoring,robotics,and immersive virtual environments,innovative hardware solutions are urgently needed.This work introduces a near-sensor edge computing(NSEC)system,built on a bilayer AlN/Si waveguide platform,to provide real-time,energy-efficient AI capabilities at the edge.Leveraging the electro-optic properties of AlN microring resonators for photonic feature extraction,coupled with Si-based thermo-optic Mach-Zehnder interferometers for neural network computations,the system represents a transformative approach to AI hardware design.Demonstrated through multimodal gesture and gait analysis,the NSEC system achieves high classification accuracies of 96.77%for gestures and 98.31%for gaits,ultra-low latency(<10 ns),and minimal energy consumption(<0.34 pJ).This groundbreaking system bridges the gap between AI models and real-world applications,enabling efficient,privacy-preserving AI solutions for healthcare,robotics,and next-generation human-machine interfaces,marking a pivotal advancement in edge computing and AI deployment.展开更多
In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy sys...In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy system(IIES).The upper level represents the integrated energy operator,and the lower level is the electricity-heatgas load aggregator.Owing to the benefit conflict between the upper and lower levels of the IIES,a dynamic pricing mechanism for coordinating the interests of the upper and lower levels is proposed,combined with factors such as the carbon emissions of the IIES,as well as the lower load interruption power.The price of selling energy can be dynamically adjusted to the lower LA in the mechanism,according to the information on carbon emissions and load interruption power.Mutual benefits and win-win situations are achieved between the upper and lower multistakeholders.Finally,CPLEX is used to iteratively solve the bilevel optimization model.The optimal solution is selected according to the joint optimal discrimination mechanism.Thesimulation results indicate that the sourceload coordinate operation can reduce the upper and lower operation costs.Using the proposed pricingmechanism,the carbon emissions and load interruption power of IEO-LA are reduced by 9.78%and 70.19%,respectively,and the capture power of the carbon capture equipment is improved by 36.24%.The validity of the proposed model and method is verified.展开更多
Integrated-energy systems(IESs)are key to advancing renewable-energy utilization and addressing environmental challenges.Key components of IESs include low-carbon,economic dispatch and demand response,for maximizing r...Integrated-energy systems(IESs)are key to advancing renewable-energy utilization and addressing environmental challenges.Key components of IESs include low-carbon,economic dispatch and demand response,for maximizing renewable-energy consumption and supporting sustainable-energy systems.User participation is central to demand response;however,many users are not inclined to engage actively;therefore,the full potential of demand response remains unrealized.User satisfaction must be prioritized in demand-response assessments.This study proposed a two-stage,capacity-optimization configuration method for user-level energy systems con-sidering thermal inertia and user satisfaction.This method addresses load coordination and complementary issues within the IES and seeks to minimize the annual,total cost for determining equipment capacity configurations while introducing models for system thermal inertia and user satisfaction.Indoor heating is adjusted,for optimizing device output and load profiles,with a focus on typical,daily,economic,and environmental objectives.The studyfindings indicate that the system thermal inertia optimizes energy-system scheduling considering user satisfaction.This optimization mitigates environmental concerns and enhances clean-energy integration.展开更多
For the past few years,the prevalence of cardiovascular disease has been showing a year-on-year increase,with a death rate of 2/5.Coronary heart disease(CHD)rates have increased 41%since 1990,which is the number one d...For the past few years,the prevalence of cardiovascular disease has been showing a year-on-year increase,with a death rate of 2/5.Coronary heart disease(CHD)rates have increased 41%since 1990,which is the number one disease endangering human health in the world today.The risk indicators of CHD are complicated,so selecting effective methods to screen the risk characteristics can make the risk predictionmore efficient.In this paper,we present a comprehensive analysis ofCHDrisk indicators fromboth data and algorithmic levels,propose a method for CHDrisk indicator identification based on multi-angle integrated measurements and Sequential Backward Selection(SBS),and then build a risk prediction model.In the multi-angle integrated measurements stage,mRMR(Maximum Relevance Minimum Redundancy)is selected from the angle of feature correlation and redundancy of the dataset itself,SHAPRF(SHapley Additive exPlanations-Random Forest)is selected from the angle of interpretation of each feature to the results,and ARFS-RF(Algorithmic Randomness Feature Selection Random Forest)is selected from the angle of statistical interpretation of classification algorithm to measure the degree of feature importance.In the SBS stage,the features with low scores are deleted successively,and the accuracy of LightGBM(Light Gradient Boosting Machine)model is used as the evaluation index to select the final feature subset.This new risk assessment method is used to identify important factors affecting CHD,and the CHD dataset from the Kaggle website is used as the study subject.Finally,11 features are retained to construct a risk assessment indicator system for CHD.Using the LightGBM classifier as the core evaluationmetric,ourmethod achieved an accuracy of 0.8656 on the Kaggle CHD dataset(4238 samples,16 initial features),outperforming individual feature selection methods(mRMR,SHAP-RF,ARFS-RF)in both accuracy and feature reduction.This demonstrates the novelty and effectiveness of our multi-angle integrated measurement approach combined with SBS in building a concise yet highly predictive CHD risk model.展开更多
Recently,unmanned aerial vehicle(UAV)-aided free-space optical(FSO)communication has attracted widespread attentions.However,most of the existing research focuses on communication performance only.The authors investig...Recently,unmanned aerial vehicle(UAV)-aided free-space optical(FSO)communication has attracted widespread attentions.However,most of the existing research focuses on communication performance only.The authors investigate the integrated scheduling of communication,sensing,and control for UAV-aided FSO communication systems.Initially,a sensing-control model is established via the control theory.Moreover,an FSO communication channel model is established by considering the effects of atmospheric loss,atmospheric turbulence,geometrical loss,and angle-of-arrival fluctuation.Then,the relationship between the motion control of the UAV and radial displacement is obtained to link the control aspect and communication aspect.Assuming that the base station has instantaneous channel state information(CSI)or statistical CSI,the thresholds of the sensing-control pattern activation are designed,respectively.Finally,an integrated scheduling scheme for performing communication,sensing,and control is proposed.Numerical results indicate that,compared with conventional time-triggered scheme,the proposed integrated scheduling scheme obtains comparable communication and control performance,but reduces the sensing consumed power by 52.46%.展开更多
In order to promote the utilization level of new energy resources for local and efficient consumption,this paper introduces the biogas(BG)fermentation technology into the integrated energy system(IES).This initiative ...In order to promote the utilization level of new energy resources for local and efficient consumption,this paper introduces the biogas(BG)fermentation technology into the integrated energy system(IES).This initiative is to study the collaborative and optimal scheduling of IES with wind power(WP),photovoltaic(PV),and BG,while integrating carbon capture system(CCS)and power-to-gas(P2G)system.Firstly,the framework of collaborative operation of IES for BG-CCS-P2G is constructed.Secondly,the flexible scheduling resources of the source and load sides are fully exploited,and the collaborative operation mode of CCS-P2G is proposed to establish a model of IES with WP,PV,and BG multi-energy flow coupling.Then,with the objective of minimizing the intra-day operating cost and the constraints of system energy balance and equipment operating limits,the IES withWP,PV,and BG collaborative optimal scheduling model is established.Finally,taking into account the uncertainty of the output of WP and PV generation,the proposed optimal scheduling model is solved by CPLEX,and its validity is verified by setting several scenarios.The results show that the proposed collaborative operation mode and optimal scheduling model can realize the efficient,low-carbon,and economic operation of the IES with WP,PV,and BG and significantly enhance the utilization of new energy for local consumption.展开更多
Novel thin films consisting of optical materials such as lithium niobate and barium titanate enable various high-performance integrated photonic devices.However,the nanofabrication of these devices requires high-quali...Novel thin films consisting of optical materials such as lithium niobate and barium titanate enable various high-performance integrated photonic devices.However,the nanofabrication of these devices requires high-quality etching of these thin films,necessitating the long-term development of the fabrication recipe and specialized equipment.Here we present a strong-confinement low-index-rib-loaded waveguide structure as the building block of various passive and active integrated photonic devices based on novel thin films.By optimizing this low-index-rib-loaded waveguide structure without etching the novel thin film,we can simultaneously realize strong optical power confinement in the thin film,low optical propagation loss,and strong electro-optic coupling for the fundamental transverse electric mode.Based on our low-index-rib-loaded waveguide structure,we designed and fabricated a thin film lithium niobate(TFLN)modulator,featuring a 3-dB modulation bandwidth over 110 GHz and a voltage-length product as low as 2.26 V·cm,which is comparable to those of the state-of-the-art etched TFLN modulators.By alleviating the etching of novel thin films,the proposed structure opens up new ways of fast proof-of-concept demonstration and even mass production of high-performance integrated electro-optic and nonlinear devices based on novel thin films.展开更多
Under the“dual carbon”goals,this paper constructs an optimization model of the comprehensive energy system in the park.A stepwise carbon excess rate mechanism and an electric vehicle coupling strategy are proposed:A...Under the“dual carbon”goals,this paper constructs an optimization model of the comprehensive energy system in the park.A stepwise carbon excess rate mechanism and an electric vehicle coupling strategy are proposed:A carbon quota trading system is established based on the baseline method,and the stepwise function is adopted to quantify the cost of excess carbon emissions;Introduce the price demand response and the two-way interaction mechanism of electric Vehicle vehicle-to-grid(V2G)to enhance the flexible regulation ability.Aiming at the uncertainty of wind and solar output,a typical scene set is generated by combining Latin hypercube sampling with the scene reduction method.The goal is to minimize the operating cost and maximize the consumption of renewable energy,and it is solved through the CPLEX solver in the MATLAB platform.Through simulation verification of the proposed models and methods in various scenarios,the simulation results show that under the coupling of the carbon excess rate trading mechanism,the demand response mechanism,and the vehicle-to-grid interaction of electric vehicles,the total daily operating cost of the system decreases by 25.3%,reduce the dual pressure of energy consumption costs and the economic environment,and achieve the coordinated optimization of economic and ecological benefits.展开更多
Optical polarizers,which allow the transmission of specific polarization states,are essential components in modern optical systems.Here,we experimentally demonstrate integrated photonic polarizers incorporating reduce...Optical polarizers,which allow the transmission of specific polarization states,are essential components in modern optical systems.Here,we experimentally demonstrate integrated photonic polarizers incorporating reduced graphene oxide(rGO)films.2D graphene oxide(GO)films are integrated onto silicon waveguides and microring resonators(MRRs)with precise control over their thicknesses and sizes,followed by GO reduction via two different methods including uniform thermal reduction and localized photothermal reduction.We measure devices with various lengths,thicknesses,and reduction degrees of GO films.The results show that the devices with rGO exhibit better performance than those with GO,achieving a polarization-dependent loss of~47 dB and a polarization extinction ratio of~16 dB for the hybrid waveguides and MRRs with rGO,respectively.By fitting the experimental results with theory,it is found that rGO exhibits more significant anisotropy in loss,with an anisotropy ratio over 4 times that of GO.In addition,rGO shows higher thermal stability and greater robustness to photothermal reduction than GO.These results highlight the strong potential of rGO films for implementing high-performance polarization selective devices in integrated photonic platforms.展开更多
Against the backdrop of China’s“dual-carbon”target,clean energy generation currently accounts for about 3.8 trillion kilowatt-hours,or 39.7 percent of total power generation,establishing a reasonable market trading...Against the backdrop of China’s“dual-carbon”target,clean energy generation currently accounts for about 3.8 trillion kilowatt-hours,or 39.7 percent of total power generation,establishing a reasonable market trading mechanism while enhancing the low-carbon economic benefits of the integrated energy system(IES)and optimizing the interests of various entities within the distribution system has become a significant challenge.Consequently,this paper proposes an optimization strategy for a low-carbon economy within a multi-agent IES that considers carbon capture systems(CCS)and power-to-gas(P2G).In this framework,the integrated energy system operator(IESO)acts as the primary leader,while energy suppliers(ES),energy storage operators(ESO),and load aggregators(LA)follow.At the level of low-carbon technology,a coupling model of P2G and CCS is developed,leading to the establishment of an IES that incorporates energy conversion and storage equipment.Economically,effective control of system carbon emissions in market trading is progressively established.Lastly,the trading decision model of the system is integrated within a master-slave game framework,utilizing an improved differential evolution algorithm in conjunction with the distributed equilibrium method of quadratic programming for solution.The calculation example demonstrates that the strategy safeguards the benefits for both parties in the game and achieves energy savings and carbon reduction for the system.展开更多
This empirical study examines the integration of medical and elderly care services in Guangyuan City through stratified random sampling,targeting 283 eligible residents aged 60+from three representative integrated ins...This empirical study examines the integration of medical and elderly care services in Guangyuan City through stratified random sampling,targeting 283 eligible residents aged 60+from three representative integrated institutions.The research employed a self-designed questionnaire titled“Humanistic Care Experience and Demand Influencing Factors”to collect subjective perceptions regarding basic care,psychological support,health education,and social interaction using a Likert five-point scale.Descriptive statistics,one-way ANOVA,and multiple regression modeling were conducted with SPSS 25.0 software.Results indicated that overall humanistic care experience scores were moderately high,with the“caregiving”dimension scoring highest and“psychological/social support”the lowest.Analysis revealed significant correlations between educational attainment,income,self-reported health status,and family support frequency(P<0.001),particularly among seniors with higher education,better health,and stronger family support.While integrated care facilities provide relatively comprehensive basic care,they should focus on addressing gaps in humanistic services,especially providing targeted support for groups with“low education,low income,poor health,and lack of family support.”展开更多
For the longitudinal midcourse guidance problem of a cruise-glide integrated hypersonic vehicle(CGHV),an analytical method based on optimal control theory is proposed.This method constructs a guidance dynamics model f...For the longitudinal midcourse guidance problem of a cruise-glide integrated hypersonic vehicle(CGHV),an analytical method based on optimal control theory is proposed.This method constructs a guidance dynamics model for such vehicles,using aerodynamic load as the control variable,and introduces a framework for solving the guidance laws.This framework unifies the design process of guidance laws for both the glide and cruise phases.By decomposing the longitudinal guidance task into position control and velocity control,and minimizing energy consumption as the objective function,the method provides an analytical solution for velocity control load through the calculation of costate variables.This approach requires only the current state and terminal state parameters to determine the guidance law solution.Furthermore,by transforming path constraints into aerodynamic load constraints and solving backwards to obtain the angle of attack,bank angle,and throttle setting,this method ensures a smooth transition from the glide phase to the cruise phase,guaranteeing the successful completion of the guidance task.Finally,the effectiveness and practicality of the proposed method are validated through case simulations and analysis.展开更多
Compact antenna designs have become a critical component in the recent advancements of wireless communication technologies over the past few decades. This paper presents a self-multiplexing antenna based on diplexing ...Compact antenna designs have become a critical component in the recent advancements of wireless communication technologies over the past few decades. This paper presents a self-multiplexing antenna based on diplexing and quadruplexing Substrate-Integrated Waveguide (SIW) cavities. The diplexing structure incorporates two V-shaped slots, while the quadruplexing structure advances this concept by combining the slots to form a cross-shaped configuration within the cavity. The widths and lengths of the slots are carefully tuned to achieve variations in the respective operating frequencies without affecting the others. The proposed diplexing antenna resonates at 8.48 and 9.2 GHz, with a frequency ratio of 1.08, while the quadruplexing antenna operates at 6.9, 7.1, 7.48, and 8.2GHz. Both designs exhibit isolation levels well below –20dB and achieve a simulated peak gain of 5.6 dBi at the highest frequency, with a compact cavity area of 0.56 λg^(2). The proposed antennas operate within the NR bands (n12, n18, n26), making them suitable for modern high-speed wireless communication systems. Moreover, the properties like multiband operation, compactness, high isolation, low loss, and low interference make the antenna favorable for the high-speed railway communication systems.展开更多
The educational philosophies of curriculum-based ideological and political education and professional innovation-integrated education,both serving as guiding ideologies aligned with contemporary educational developmen...The educational philosophies of curriculum-based ideological and political education and professional innovation-integrated education,both serving as guiding ideologies aligned with contemporary educational development,have been persistently deepened in the pedagogical practices of higher education institutions in recent years,significantly propelling the advancement of China's higher education.However,research remains scarce regarding how these two approaches can mutually complement each other to jointly advance the education of the Acupuncture and Tuina Discipline.Consequently,this study explores pathways for innovation-integrated education in the Acupuncture and Tuina Discipline from the perspective of curriculum-based ideological and political education.Through educational research and practical implementation,it aims to provide innovative ideas and methods for enhancing the quality of talent cultivation in the Acupuncture and Tuina Discipline.展开更多
Integrated energy systems(IES)are widely regarded as a key enabler of carbon neutrality,enabling the coordinated use of electricity,heat,and gas to support large-scale renewable integration.Yet their practical deploym...Integrated energy systems(IES)are widely regarded as a key enabler of carbon neutrality,enabling the coordinated use of electricity,heat,and gas to support large-scale renewable integration.Yet their practical deployment still faces major challenges,including rigid thermoelectric coupling,insufficient operational flexibility,and fragmented carbon and certificate market mechanisms.To address these issues,this study proposes a low-carbon economic dispatch model for integrated energy systems(IES)that reduces emissions and costs while improving renewable energy utilization.A coordinated framework integrating carbon capture,utilization,and storage,two-stage power-to-gas,combined heat and power,and ground-source heat pump technologies enhances multi-energy complementarity and overcomes the heat-led constraints of traditional combined heat and power systems.A unified carbon emission trading and green certificate trading mechanism is designed to balance economic and environmental goals through cross-market synergy.To address uncertainty,a distributionally robust chance-constrained model based on Kullback-Leibler divergence is introduced in Scenario 8.The model is solved using the GUROBI solver under multiple scenarios.Simulation results show a cost reduction from$56,166.66 to$25,840.32,carbon emission cuts from 801.38to 440.90 t,and wind/photovoltaic utilization rates reaching 98%,which fully demonstrates the effectiveness of the proposed framework in achieving cost-efficient low-carbon operation of IES.展开更多
Functional Dyspepsia(FD)is a common functional gastrointestinal disorder in internal medicine,characterized by a protracted course and high recurrence rate,significantly affecting patients’quality of life.Western med...Functional Dyspepsia(FD)is a common functional gastrointestinal disorder in internal medicine,characterized by a protracted course and high recurrence rate,significantly affecting patients’quality of life.Western medical treatment primarily focuses on symptomatic relief,with limitations such as limited long-term efficacy and a high likelihood of adverse reactions.Traditional Chinese Medicine(TCM)herbal treatment for FD,based on syndrome differentiation and treatment,offers advantages of holistic regulation and fewer side effects.With the development of integrated traditional Chinese and Western medicine,the application of herbal medicine in FD treatment has gradually shifted from a single syndrome-based approach to a synergistic model of“herbal medicine+conventional Western medical regimen”.This review summarizes the application of herbal medicine under the guidance of TCM theory,the practice of herbal medicine in integrated traditional Chinese and Western medical settings,and the grading and evaluation of evidence-based medicine.Through analysis,the aim is to further promote the standardized and evidence-based application of herbal medicine in the integrated treatment of FD.展开更多
Addressing climate change and facilitating the large-scale integration of renewable energy sources(RESs)have driven the development of hydrogen-coupled integrated energy systems(HIES),which enhance energy sustainabili...Addressing climate change and facilitating the large-scale integration of renewable energy sources(RESs)have driven the development of hydrogen-coupled integrated energy systems(HIES),which enhance energy sustainability through coordinated electricity,thermal,natural gas,and hydrogen utilization.This study proposes a two-stage distributionally robust optimization(DRO)-based scheduling method to improve the economic efficiency and reduce carbon emissions of HIES.The framework incorporates a ladder-type carbon trading mechanism to regulate emissions and implements a demand response(DR)program to adjustflexible multi-energy loads,thereby prioritizing RES consumption.Uncertainties from RES generation and load demand are addressed through an ambiguity set,enabling robust decision-making.The column-and-constraint generation(C&CG)algorithm efficiently solves the two-stage DRO model.Case studies demonstrate that the proposed method reduces operational costs by 3.56%,increases photovoltaic consumption rates by 5.44%,and significantly lowers carbon emissions compared to conventional approaches.Furthermore,the DRO framework achieves a superior balance between conservativeness and robustness over conventional stochastic and robust optimization methods,highlighting its potential to advance cost-effective,low-carbon energy systems while ensuring grid stability under uncertainty.展开更多
Research on ideological and political education in public basic courses of colleges and universities has been recognized as a crucial means of enhancing the quality of higher education and promoting the comprehensive ...Research on ideological and political education in public basic courses of colleges and universities has been recognized as a crucial means of enhancing the quality of higher education and promoting the comprehensive development of students.By constructing an implementation framework for ideological and political education based on the“integrated core and three wings”model,this study explores the multi-classroom integration approach under the“characteristic wing,”in which ideological and political education is embedded into public basic courses.The objective is to improve students’ideological and political qualities,fostering their development as socialist builders and successors with well-rounded growth in morality,intelligence,physique,aesthetics,and labor.The practical foundation of the research is first analyzed,followed by an elaboration on the implementation method of the“integrated core and three wings”approach in ideological and political education within public basic courses.Reflections on the implementation process of multi-classroom ideological and political education are provided,along with suggestions for improvement.展开更多
Flexible electronics face critical challenges in achieving monolithic three-dimensional(3D)integration,including material compatibility,structural stability,and scalable fabrication methods.Inspired by the tactile sen...Flexible electronics face critical challenges in achieving monolithic three-dimensional(3D)integration,including material compatibility,structural stability,and scalable fabrication methods.Inspired by the tactile sensing mechanism of the human skin,we have developed a flexible monolithic 3D-integrated tactile sensing system based on a holey MXene paste,where each vertical one-body unit simultaneously functions as a microsupercapacitor and pressure sensor.The in-plane mesopores of MXene significantly improve ion accessibility,mitigate the self-stacking of nanosheets,and allow the holey MXene to multifunctionally act as a sensing material,an active electrode,and a conductive interconnect,thus drastically reducing the interface mismatch and enhancing the mechanical robustness.Furthermore,we fabricate a large-scale device using a blade-coating and stamping method,which demonstrates excellent mechanical flexibility,low-power consumption,rapid response,and stable long-term operation.As a proof-of-concept application,we integrate our sensing array into a smart access control system,leveraging deep learning to accurately identify users based on their unique pressing behaviors.This study provides a promising approach for designing highly integrated,intelligent,and flexible electronic systems for advanced human-computer interactions and personalized electronics.展开更多
This editorial examines the emerging potential of traditional Chinese medicine(TCM)in enhancing postoperative recovery following gastroenteroscopy,highlighted by a 2025 randomized controlled trial by Hong et al.The st...This editorial examines the emerging potential of traditional Chinese medicine(TCM)in enhancing postoperative recovery following gastroenteroscopy,highlighted by a 2025 randomized controlled trial by Hong et al.The study,involving 120 patients,demonstrates that meridian flow injection(MFI)combined with transcutaneous electrical acupoint stimulation(TEAS)significantly improves gastrointestinal(GI)function,evidenced by a reduced time to first defecation(3.20±1.04 days vs 3.98±1.27 days,P<0.001),lowers stress biomarkers(e.g.,reduced cortisol and norepinephrine),and enhances clinical efficacy(93.33%vs 75.00%,P=0.006).Leveraging TCM’s five-element theory and Ziwu Liuzhu timing,the intervention targets key acupoints such as Zusanli(ST36)with a herbal paste comprising Qingpi,Houpu,and rhubarb,delivered transdermally to optimize bioavailability.This approach harmonizes ancient TCM principles with contemporary evidence-based practice,offering a holistic strategy to address postoperative nausea,delayed motility,and patient discomfort.Currently,integrative methods like MFI-TEAS are gaining traction,supported by recent meta-analyses that affirm TEAS’s efficacy in accelerating GI recovery across surgical contexts,including shortened times to first exhaust and defecation.This reflects a growing recognition of TCM’s role in perioperative care amidst rising global endoscopy demands.Looking forward,future research should prioritize multicenter,doubleblinded trials to enhance generalizability,adhere to standardized reporting frameworks such as CONSORT and STRICTA,and employ advanced tools like multiomics and functional magnetic resonance imaging to elucidate mechanistic pathways,including gut-brain axis modulation and microbiota-immune interactions.Such developments promise to refine these interventions,fostering a seamless integration of TCM with Western medicine and delivering tailored,patientcentered solutions to improve postoperative outcomes worldwide.展开更多
基金the National Research Foundation(NRF)Singapore mid-sized center grant(NRF-MSG-2023-0002)FrontierCRP grant(NRF-F-CRP-2024-0006)+2 种基金A*STAR Singapore MTC RIE2025 project(M24W1NS005)IAF-PP project(M23M5a0069)Ministry of Education(MOE)Singapore Tier 2 project(MOE-T2EP50220-0014).
文摘The rise of large-scale artificial intelligence(AI)models,such as ChatGPT,Deep-Seek,and autonomous vehicle systems,has significantly advanced the boundaries of AI,enabling highly complex tasks in natural language processing,image recognition,and real-time decisionmaking.However,these models demand immense computational power and are often centralized,relying on cloud-based architectures with inherent limitations in latency,privacy,and energy efficiency.To address these challenges and bring AI closer to real-world applications,such as wearable health monitoring,robotics,and immersive virtual environments,innovative hardware solutions are urgently needed.This work introduces a near-sensor edge computing(NSEC)system,built on a bilayer AlN/Si waveguide platform,to provide real-time,energy-efficient AI capabilities at the edge.Leveraging the electro-optic properties of AlN microring resonators for photonic feature extraction,coupled with Si-based thermo-optic Mach-Zehnder interferometers for neural network computations,the system represents a transformative approach to AI hardware design.Demonstrated through multimodal gesture and gait analysis,the NSEC system achieves high classification accuracies of 96.77%for gestures and 98.31%for gaits,ultra-low latency(<10 ns),and minimal energy consumption(<0.34 pJ).This groundbreaking system bridges the gap between AI models and real-world applications,enabling efficient,privacy-preserving AI solutions for healthcare,robotics,and next-generation human-machine interfaces,marking a pivotal advancement in edge computing and AI deployment.
基金supported by the Central Government Guides Local Science and Technology Development Fund Project(2023ZY0020)Key R&D and Achievement Transformation Project in InnerMongolia Autonomous Region(2022YFHH0019)+3 种基金the Fundamental Research Funds for Inner Mongolia University of Science&Technology(2022053)Natural Science Foundation of Inner Mongolia(2022LHQN05002)National Natural Science Foundation of China(52067018)Metallurgical Engineering First-Class Discipline Construction Project in Inner Mongolia University of Science and Technology,Control Science and Engineering Quality Improvement and Cultivation Discipline Project in Inner Mongolia University of Science and Technology。
文摘In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy system(IIES).The upper level represents the integrated energy operator,and the lower level is the electricity-heatgas load aggregator.Owing to the benefit conflict between the upper and lower levels of the IIES,a dynamic pricing mechanism for coordinating the interests of the upper and lower levels is proposed,combined with factors such as the carbon emissions of the IIES,as well as the lower load interruption power.The price of selling energy can be dynamically adjusted to the lower LA in the mechanism,according to the information on carbon emissions and load interruption power.Mutual benefits and win-win situations are achieved between the upper and lower multistakeholders.Finally,CPLEX is used to iteratively solve the bilevel optimization model.The optimal solution is selected according to the joint optimal discrimination mechanism.Thesimulation results indicate that the sourceload coordinate operation can reduce the upper and lower operation costs.Using the proposed pricingmechanism,the carbon emissions and load interruption power of IEO-LA are reduced by 9.78%and 70.19%,respectively,and the capture power of the carbon capture equipment is improved by 36.24%.The validity of the proposed model and method is verified.
基金supported by the science and technology foundation of Guizhou province[2022]general 013the science and technology foundation of Guizhou province[2022]general 014+1 种基金the science and technology foundation of Guizhou province GCC[2022]016-1the educational technology foundation of Guizhou province[2022]043.
文摘Integrated-energy systems(IESs)are key to advancing renewable-energy utilization and addressing environmental challenges.Key components of IESs include low-carbon,economic dispatch and demand response,for maximizing renewable-energy consumption and supporting sustainable-energy systems.User participation is central to demand response;however,many users are not inclined to engage actively;therefore,the full potential of demand response remains unrealized.User satisfaction must be prioritized in demand-response assessments.This study proposed a two-stage,capacity-optimization configuration method for user-level energy systems con-sidering thermal inertia and user satisfaction.This method addresses load coordination and complementary issues within the IES and seeks to minimize the annual,total cost for determining equipment capacity configurations while introducing models for system thermal inertia and user satisfaction.Indoor heating is adjusted,for optimizing device output and load profiles,with a focus on typical,daily,economic,and environmental objectives.The studyfindings indicate that the system thermal inertia optimizes energy-system scheduling considering user satisfaction.This optimization mitigates environmental concerns and enhances clean-energy integration.
基金supported by the National Natural Science Foundation of China(No.72071150)the Fujian Provincial Natural Science Foundation of China(Nos.2024J01903,2025J01393).
文摘For the past few years,the prevalence of cardiovascular disease has been showing a year-on-year increase,with a death rate of 2/5.Coronary heart disease(CHD)rates have increased 41%since 1990,which is the number one disease endangering human health in the world today.The risk indicators of CHD are complicated,so selecting effective methods to screen the risk characteristics can make the risk predictionmore efficient.In this paper,we present a comprehensive analysis ofCHDrisk indicators fromboth data and algorithmic levels,propose a method for CHDrisk indicator identification based on multi-angle integrated measurements and Sequential Backward Selection(SBS),and then build a risk prediction model.In the multi-angle integrated measurements stage,mRMR(Maximum Relevance Minimum Redundancy)is selected from the angle of feature correlation and redundancy of the dataset itself,SHAPRF(SHapley Additive exPlanations-Random Forest)is selected from the angle of interpretation of each feature to the results,and ARFS-RF(Algorithmic Randomness Feature Selection Random Forest)is selected from the angle of statistical interpretation of classification algorithm to measure the degree of feature importance.In the SBS stage,the features with low scores are deleted successively,and the accuracy of LightGBM(Light Gradient Boosting Machine)model is used as the evaluation index to select the final feature subset.This new risk assessment method is used to identify important factors affecting CHD,and the CHD dataset from the Kaggle website is used as the study subject.Finally,11 features are retained to construct a risk assessment indicator system for CHD.Using the LightGBM classifier as the core evaluationmetric,ourmethod achieved an accuracy of 0.8656 on the Kaggle CHD dataset(4238 samples,16 initial features),outperforming individual feature selection methods(mRMR,SHAP-RF,ARFS-RF)in both accuracy and feature reduction.This demonstrates the novelty and effectiveness of our multi-angle integrated measurement approach combined with SBS in building a concise yet highly predictive CHD risk model.
文摘Recently,unmanned aerial vehicle(UAV)-aided free-space optical(FSO)communication has attracted widespread attentions.However,most of the existing research focuses on communication performance only.The authors investigate the integrated scheduling of communication,sensing,and control for UAV-aided FSO communication systems.Initially,a sensing-control model is established via the control theory.Moreover,an FSO communication channel model is established by considering the effects of atmospheric loss,atmospheric turbulence,geometrical loss,and angle-of-arrival fluctuation.Then,the relationship between the motion control of the UAV and radial displacement is obtained to link the control aspect and communication aspect.Assuming that the base station has instantaneous channel state information(CSI)or statistical CSI,the thresholds of the sensing-control pattern activation are designed,respectively.Finally,an integrated scheduling scheme for performing communication,sensing,and control is proposed.Numerical results indicate that,compared with conventional time-triggered scheme,the proposed integrated scheduling scheme obtains comparable communication and control performance,but reduces the sensing consumed power by 52.46%.
文摘In order to promote the utilization level of new energy resources for local and efficient consumption,this paper introduces the biogas(BG)fermentation technology into the integrated energy system(IES).This initiative is to study the collaborative and optimal scheduling of IES with wind power(WP),photovoltaic(PV),and BG,while integrating carbon capture system(CCS)and power-to-gas(P2G)system.Firstly,the framework of collaborative operation of IES for BG-CCS-P2G is constructed.Secondly,the flexible scheduling resources of the source and load sides are fully exploited,and the collaborative operation mode of CCS-P2G is proposed to establish a model of IES with WP,PV,and BG multi-energy flow coupling.Then,with the objective of minimizing the intra-day operating cost and the constraints of system energy balance and equipment operating limits,the IES withWP,PV,and BG collaborative optimal scheduling model is established.Finally,taking into account the uncertainty of the output of WP and PV generation,the proposed optimal scheduling model is solved by CPLEX,and its validity is verified by setting several scenarios.The results show that the proposed collaborative operation mode and optimal scheduling model can realize the efficient,low-carbon,and economic operation of the IES with WP,PV,and BG and significantly enhance the utilization of new energy for local consumption.
基金financial supports from National Key Research and Development Program of China (2021YFA1401000)National Natural Science Foundation of China (62435009)+2 种基金Beijing Municipal Natural Science Foundation (Z220008)Zhuhai Industry University Research Collaboration Project (ZH-2201700121010)supported by the Center of High Performance Computing,Tsinghua University
文摘Novel thin films consisting of optical materials such as lithium niobate and barium titanate enable various high-performance integrated photonic devices.However,the nanofabrication of these devices requires high-quality etching of these thin films,necessitating the long-term development of the fabrication recipe and specialized equipment.Here we present a strong-confinement low-index-rib-loaded waveguide structure as the building block of various passive and active integrated photonic devices based on novel thin films.By optimizing this low-index-rib-loaded waveguide structure without etching the novel thin film,we can simultaneously realize strong optical power confinement in the thin film,low optical propagation loss,and strong electro-optic coupling for the fundamental transverse electric mode.Based on our low-index-rib-loaded waveguide structure,we designed and fabricated a thin film lithium niobate(TFLN)modulator,featuring a 3-dB modulation bandwidth over 110 GHz and a voltage-length product as low as 2.26 V·cm,which is comparable to those of the state-of-the-art etched TFLN modulators.By alleviating the etching of novel thin films,the proposed structure opens up new ways of fast proof-of-concept demonstration and even mass production of high-performance integrated electro-optic and nonlinear devices based on novel thin films.
基金sponsored by National Natural Science Foundation of China(52077137).
文摘Under the“dual carbon”goals,this paper constructs an optimization model of the comprehensive energy system in the park.A stepwise carbon excess rate mechanism and an electric vehicle coupling strategy are proposed:A carbon quota trading system is established based on the baseline method,and the stepwise function is adopted to quantify the cost of excess carbon emissions;Introduce the price demand response and the two-way interaction mechanism of electric Vehicle vehicle-to-grid(V2G)to enhance the flexible regulation ability.Aiming at the uncertainty of wind and solar output,a typical scene set is generated by combining Latin hypercube sampling with the scene reduction method.The goal is to minimize the operating cost and maximize the consumption of renewable energy,and it is solved through the CPLEX solver in the MATLAB platform.Through simulation verification of the proposed models and methods in various scenarios,the simulation results show that under the coupling of the carbon excess rate trading mechanism,the demand response mechanism,and the vehicle-to-grid interaction of electric vehicles,the total daily operating cost of the system decreases by 25.3%,reduce the dual pressure of energy consumption costs and the economic environment,and achieve the coordinated optimization of economic and ecological benefits.
基金supported by the Australian Research Council Centre of Excellence Project in Optical Microcombs for Breakthrough Science(No.CE230100006)the Australian Research Council Discovery Projects Programs(Nos.P190103186 and FT210100806)+4 种基金Linkage Program(Nos.LP210200345 and LP210100467)the Swinburne ECR-SUPRA program,the Industrial Transformation Training Centres scheme(No.IC180100005)the National Natural Science Foundation of China(No.12404375)the Beijing Natural Science Foundation(No.Z180007)the Innovation Program for Quantum Science and Technology(No.2021ZD0300703).
文摘Optical polarizers,which allow the transmission of specific polarization states,are essential components in modern optical systems.Here,we experimentally demonstrate integrated photonic polarizers incorporating reduced graphene oxide(rGO)films.2D graphene oxide(GO)films are integrated onto silicon waveguides and microring resonators(MRRs)with precise control over their thicknesses and sizes,followed by GO reduction via two different methods including uniform thermal reduction and localized photothermal reduction.We measure devices with various lengths,thicknesses,and reduction degrees of GO films.The results show that the devices with rGO exhibit better performance than those with GO,achieving a polarization-dependent loss of~47 dB and a polarization extinction ratio of~16 dB for the hybrid waveguides and MRRs with rGO,respectively.By fitting the experimental results with theory,it is found that rGO exhibits more significant anisotropy in loss,with an anisotropy ratio over 4 times that of GO.In addition,rGO shows higher thermal stability and greater robustness to photothermal reduction than GO.These results highlight the strong potential of rGO films for implementing high-performance polarization selective devices in integrated photonic platforms.
基金supported by the National Natural Science Foundation of China(No.52077137).
文摘Against the backdrop of China’s“dual-carbon”target,clean energy generation currently accounts for about 3.8 trillion kilowatt-hours,or 39.7 percent of total power generation,establishing a reasonable market trading mechanism while enhancing the low-carbon economic benefits of the integrated energy system(IES)and optimizing the interests of various entities within the distribution system has become a significant challenge.Consequently,this paper proposes an optimization strategy for a low-carbon economy within a multi-agent IES that considers carbon capture systems(CCS)and power-to-gas(P2G).In this framework,the integrated energy system operator(IESO)acts as the primary leader,while energy suppliers(ES),energy storage operators(ESO),and load aggregators(LA)follow.At the level of low-carbon technology,a coupling model of P2G and CCS is developed,leading to the establishment of an IES that incorporates energy conversion and storage equipment.Economically,effective control of system carbon emissions in market trading is progressively established.Lastly,the trading decision model of the system is integrated within a master-slave game framework,utilizing an improved differential evolution algorithm in conjunction with the distributed equilibrium method of quadratic programming for solution.The calculation example demonstrates that the strategy safeguards the benefits for both parties in the game and achieves energy savings and carbon reduction for the system.
基金Survey and Analysis on Humanistic Care Experience and Influencing Factors of Elderly Residents in 3 Integrated Medical and Nursing Institutions in Guangyuan City(Project No.:24SCLN055)。
文摘This empirical study examines the integration of medical and elderly care services in Guangyuan City through stratified random sampling,targeting 283 eligible residents aged 60+from three representative integrated institutions.The research employed a self-designed questionnaire titled“Humanistic Care Experience and Demand Influencing Factors”to collect subjective perceptions regarding basic care,psychological support,health education,and social interaction using a Likert five-point scale.Descriptive statistics,one-way ANOVA,and multiple regression modeling were conducted with SPSS 25.0 software.Results indicated that overall humanistic care experience scores were moderately high,with the“caregiving”dimension scoring highest and“psychological/social support”the lowest.Analysis revealed significant correlations between educational attainment,income,self-reported health status,and family support frequency(P<0.001),particularly among seniors with higher education,better health,and stronger family support.While integrated care facilities provide relatively comprehensive basic care,they should focus on addressing gaps in humanistic services,especially providing targeted support for groups with“low education,low income,poor health,and lack of family support.”
基金supported by the National Natural Science Foundation of China(Grant Nos.62473374,62403487 and U2441243).
文摘For the longitudinal midcourse guidance problem of a cruise-glide integrated hypersonic vehicle(CGHV),an analytical method based on optimal control theory is proposed.This method constructs a guidance dynamics model for such vehicles,using aerodynamic load as the control variable,and introduces a framework for solving the guidance laws.This framework unifies the design process of guidance laws for both the glide and cruise phases.By decomposing the longitudinal guidance task into position control and velocity control,and minimizing energy consumption as the objective function,the method provides an analytical solution for velocity control load through the calculation of costate variables.This approach requires only the current state and terminal state parameters to determine the guidance law solution.Furthermore,by transforming path constraints into aerodynamic load constraints and solving backwards to obtain the angle of attack,bank angle,and throttle setting,this method ensures a smooth transition from the glide phase to the cruise phase,guaranteeing the successful completion of the guidance task.Finally,the effectiveness and practicality of the proposed method are validated through case simulations and analysis.
文摘Compact antenna designs have become a critical component in the recent advancements of wireless communication technologies over the past few decades. This paper presents a self-multiplexing antenna based on diplexing and quadruplexing Substrate-Integrated Waveguide (SIW) cavities. The diplexing structure incorporates two V-shaped slots, while the quadruplexing structure advances this concept by combining the slots to form a cross-shaped configuration within the cavity. The widths and lengths of the slots are carefully tuned to achieve variations in the respective operating frequencies without affecting the others. The proposed diplexing antenna resonates at 8.48 and 9.2 GHz, with a frequency ratio of 1.08, while the quadruplexing antenna operates at 6.9, 7.1, 7.48, and 8.2GHz. Both designs exhibit isolation levels well below –20dB and achieve a simulated peak gain of 5.6 dBi at the highest frequency, with a compact cavity area of 0.56 λg^(2). The proposed antennas operate within the NR bands (n12, n18, n26), making them suitable for modern high-speed wireless communication systems. Moreover, the properties like multiband operation, compactness, high isolation, low loss, and low interference make the antenna favorable for the high-speed railway communication systems.
基金Supported by Research Project on Higher Education Research in Jilin Province(JGJX2023D200)Theme Case Project of the Development Center for Degree and Postgraduate Education of the Ministry of Education(ZT-231019913)Research Project on Teaching Reform of Postgraduate Education in Jilin Province(JJKH20230060YJG).
文摘The educational philosophies of curriculum-based ideological and political education and professional innovation-integrated education,both serving as guiding ideologies aligned with contemporary educational development,have been persistently deepened in the pedagogical practices of higher education institutions in recent years,significantly propelling the advancement of China's higher education.However,research remains scarce regarding how these two approaches can mutually complement each other to jointly advance the education of the Acupuncture and Tuina Discipline.Consequently,this study explores pathways for innovation-integrated education in the Acupuncture and Tuina Discipline from the perspective of curriculum-based ideological and political education.Through educational research and practical implementation,it aims to provide innovative ideas and methods for enhancing the quality of talent cultivation in the Acupuncture and Tuina Discipline.
文摘Integrated energy systems(IES)are widely regarded as a key enabler of carbon neutrality,enabling the coordinated use of electricity,heat,and gas to support large-scale renewable integration.Yet their practical deployment still faces major challenges,including rigid thermoelectric coupling,insufficient operational flexibility,and fragmented carbon and certificate market mechanisms.To address these issues,this study proposes a low-carbon economic dispatch model for integrated energy systems(IES)that reduces emissions and costs while improving renewable energy utilization.A coordinated framework integrating carbon capture,utilization,and storage,two-stage power-to-gas,combined heat and power,and ground-source heat pump technologies enhances multi-energy complementarity and overcomes the heat-led constraints of traditional combined heat and power systems.A unified carbon emission trading and green certificate trading mechanism is designed to balance economic and environmental goals through cross-market synergy.To address uncertainty,a distributionally robust chance-constrained model based on Kullback-Leibler divergence is introduced in Scenario 8.The model is solved using the GUROBI solver under multiple scenarios.Simulation results show a cost reduction from$56,166.66 to$25,840.32,carbon emission cuts from 801.38to 440.90 t,and wind/photovoltaic utilization rates reaching 98%,which fully demonstrates the effectiveness of the proposed framework in achieving cost-efficient low-carbon operation of IES.
文摘Functional Dyspepsia(FD)is a common functional gastrointestinal disorder in internal medicine,characterized by a protracted course and high recurrence rate,significantly affecting patients’quality of life.Western medical treatment primarily focuses on symptomatic relief,with limitations such as limited long-term efficacy and a high likelihood of adverse reactions.Traditional Chinese Medicine(TCM)herbal treatment for FD,based on syndrome differentiation and treatment,offers advantages of holistic regulation and fewer side effects.With the development of integrated traditional Chinese and Western medicine,the application of herbal medicine in FD treatment has gradually shifted from a single syndrome-based approach to a synergistic model of“herbal medicine+conventional Western medical regimen”.This review summarizes the application of herbal medicine under the guidance of TCM theory,the practice of herbal medicine in integrated traditional Chinese and Western medical settings,and the grading and evaluation of evidence-based medicine.Through analysis,the aim is to further promote the standardized and evidence-based application of herbal medicine in the integrated treatment of FD.
基金supported by National Key Research and Development Program(2024YFE0115600).
文摘Addressing climate change and facilitating the large-scale integration of renewable energy sources(RESs)have driven the development of hydrogen-coupled integrated energy systems(HIES),which enhance energy sustainability through coordinated electricity,thermal,natural gas,and hydrogen utilization.This study proposes a two-stage distributionally robust optimization(DRO)-based scheduling method to improve the economic efficiency and reduce carbon emissions of HIES.The framework incorporates a ladder-type carbon trading mechanism to regulate emissions and implements a demand response(DR)program to adjustflexible multi-energy loads,thereby prioritizing RES consumption.Uncertainties from RES generation and load demand are addressed through an ambiguity set,enabling robust decision-making.The column-and-constraint generation(C&CG)algorithm efficiently solves the two-stage DRO model.Case studies demonstrate that the proposed method reduces operational costs by 3.56%,increases photovoltaic consumption rates by 5.44%,and significantly lowers carbon emissions compared to conventional approaches.Furthermore,the DRO framework achieves a superior balance between conservativeness and robustness over conventional stochastic and robust optimization methods,highlighting its potential to advance cost-effective,low-carbon energy systems while ensuring grid stability under uncertainty.
基金2023 Development Research Project of Jiangsu University Jingjiang College“Research on the Implementation Paths of Ideological and Political Education in Physical Education Courses at Application-Oriented Undergraduate Universities”(2023JGYB006)。
文摘Research on ideological and political education in public basic courses of colleges and universities has been recognized as a crucial means of enhancing the quality of higher education and promoting the comprehensive development of students.By constructing an implementation framework for ideological and political education based on the“integrated core and three wings”model,this study explores the multi-classroom integration approach under the“characteristic wing,”in which ideological and political education is embedded into public basic courses.The objective is to improve students’ideological and political qualities,fostering their development as socialist builders and successors with well-rounded growth in morality,intelligence,physique,aesthetics,and labor.The practical foundation of the research is first analyzed,followed by an elaboration on the implementation method of the“integrated core and three wings”approach in ideological and political education within public basic courses.Reflections on the implementation process of multi-classroom ideological and political education are provided,along with suggestions for improvement.
基金supported by the National Natural Science Foundation of China(52272177,12204010)the Foundation for the Introduction of High-Level Talents of Anhui University(S020118002/097)+1 种基金the University Synergy Innovation Program of Anhui Province(GXXT-2023-066)the Scientific Research Project of Anhui Provincial Higher Education Institution(2023AH040008)。
文摘Flexible electronics face critical challenges in achieving monolithic three-dimensional(3D)integration,including material compatibility,structural stability,and scalable fabrication methods.Inspired by the tactile sensing mechanism of the human skin,we have developed a flexible monolithic 3D-integrated tactile sensing system based on a holey MXene paste,where each vertical one-body unit simultaneously functions as a microsupercapacitor and pressure sensor.The in-plane mesopores of MXene significantly improve ion accessibility,mitigate the self-stacking of nanosheets,and allow the holey MXene to multifunctionally act as a sensing material,an active electrode,and a conductive interconnect,thus drastically reducing the interface mismatch and enhancing the mechanical robustness.Furthermore,we fabricate a large-scale device using a blade-coating and stamping method,which demonstrates excellent mechanical flexibility,low-power consumption,rapid response,and stable long-term operation.As a proof-of-concept application,we integrate our sensing array into a smart access control system,leveraging deep learning to accurately identify users based on their unique pressing behaviors.This study provides a promising approach for designing highly integrated,intelligent,and flexible electronic systems for advanced human-computer interactions and personalized electronics.
文摘This editorial examines the emerging potential of traditional Chinese medicine(TCM)in enhancing postoperative recovery following gastroenteroscopy,highlighted by a 2025 randomized controlled trial by Hong et al.The study,involving 120 patients,demonstrates that meridian flow injection(MFI)combined with transcutaneous electrical acupoint stimulation(TEAS)significantly improves gastrointestinal(GI)function,evidenced by a reduced time to first defecation(3.20±1.04 days vs 3.98±1.27 days,P<0.001),lowers stress biomarkers(e.g.,reduced cortisol and norepinephrine),and enhances clinical efficacy(93.33%vs 75.00%,P=0.006).Leveraging TCM’s five-element theory and Ziwu Liuzhu timing,the intervention targets key acupoints such as Zusanli(ST36)with a herbal paste comprising Qingpi,Houpu,and rhubarb,delivered transdermally to optimize bioavailability.This approach harmonizes ancient TCM principles with contemporary evidence-based practice,offering a holistic strategy to address postoperative nausea,delayed motility,and patient discomfort.Currently,integrative methods like MFI-TEAS are gaining traction,supported by recent meta-analyses that affirm TEAS’s efficacy in accelerating GI recovery across surgical contexts,including shortened times to first exhaust and defecation.This reflects a growing recognition of TCM’s role in perioperative care amidst rising global endoscopy demands.Looking forward,future research should prioritize multicenter,doubleblinded trials to enhance generalizability,adhere to standardized reporting frameworks such as CONSORT and STRICTA,and employ advanced tools like multiomics and functional magnetic resonance imaging to elucidate mechanistic pathways,including gut-brain axis modulation and microbiota-immune interactions.Such developments promise to refine these interventions,fostering a seamless integration of TCM with Western medicine and delivering tailored,patientcentered solutions to improve postoperative outcomes worldwide.