The Industry 4.0 revolution is characterized by distributed infrastructures where data must be continuously communicated between hardware nodes and cloud servers.Specific lightweight cryptosystems are needed to protec...The Industry 4.0 revolution is characterized by distributed infrastructures where data must be continuously communicated between hardware nodes and cloud servers.Specific lightweight cryptosystems are needed to protect those links,as the hardware node tends to be resource-constrained.Then Pseudo Random Number Generators are employed to produce random keys,whose final behavior depends on the initial seed.To guarantee good mathematical behavior,most key generators need an unpredictable voltage signal as input.However,physical signals evolve slowly and have a significant autocorrelation,so they do not have enough entropy to support highrandomness seeds.Then,electronic mechanisms to generate those high-entropy signals artificially are required.This paper proposes a robust hyperchaotic circuit to obtain such unpredictable electric signals.The circuit is based on a hyperchaotic dynamic system,showing a large catalog of structures,four different secret parameters,and producing four high entropy voltage signals.Synchronization schemes for the correct secret key calculation and distribution among all remote communicating modules are also analyzed and discussed.Security risks and intruder and attacker models for the proposed solution are explored,too.An experimental validation based on circuit simulations and a real hardware implementation is provided.The results show that the random properties of PRNG improved by up to 11%when seeds were calculated through the proposed circuit.展开更多
To realize delegation between different users in a mixed cryptosystem,a proxy signature scheme for ID-based original signers and certificated-based proxy signers(PSS-ID-CER)is defined.Using the bilinear properties o...To realize delegation between different users in a mixed cryptosystem,a proxy signature scheme for ID-based original signers and certificated-based proxy signers(PSS-ID-CER)is defined.Using the bilinear properties of the pairings and the characters of key generations of certificate-based cryptosystems and ID-based cryptosystems,a construction for such a scheme is also presented.To prove the security of the proposed scheme,a general security model for this scheme under adaptive chosen-PKG,chosen-ID,chosen-delegation,chosen-ProxySigner-public-key,chosen-proxy-key and chosen-message attack is defined.The proposed scheme is provably secure under the random oracle model and the hardness assumption of computational Diffie-Hellman problem.展开更多
The basic idea behind an ID-based cryptosystem is that end user's public key can be determined by his identity information.Comparing with the traditional certificate-based cryptography,identity-based cryptography ...The basic idea behind an ID-based cryptosystem is that end user's public key can be determined by his identity information.Comparing with the traditional certificate-based cryptography,identity-based cryptography can eliminate much of the overhead associated with the deployment and management of certificate.However,exposure of private keys can be the most devastating attack on a public key based cryptosystem since such that all security guarantees are lost.In this paper,an ID-based authenticated key agreement protocol was presented.For solving the problem of key exposure of the basic scheme,the technique of key insulation was applied and a key insulated version is developed.展开更多
ID-based public key cryptosystem can be a good alternative for certifieate-based public key setting. This paper provides an efficient ID-based proxy multi signature scheme from pairings. In the random oracle model, we...ID-based public key cryptosystem can be a good alternative for certifieate-based public key setting. This paper provides an efficient ID-based proxy multi signature scheme from pairings. In the random oracle model, we prove that our new scheme is secure against existential delegation forgery with the assumption that Hess's scheme-1 is existential unforgeable, and that our new scheme is secure against existential proxy multi-signature forgery under the hardness assumption of the computational Diffie-Hellman problem.展开更多
Cloud storage service reduces the burden of data users by storing users' data files in the cloud. But, the files might be modified in the cloud. So, data users hope to check data files integrity periodically. In a pu...Cloud storage service reduces the burden of data users by storing users' data files in the cloud. But, the files might be modified in the cloud. So, data users hope to check data files integrity periodically. In a public auditing protocol, there is a trusted auditor who has certain ability to help users to check the integrity of data files. With the advantages of no public key management and verification, researchers focus on public auditing protocol in ID-based cryptography recently. However, some existing protocols are vulnerable to forgery attack. In this paper, based on ID-based signature technology, by strengthening information authentication and the computing power of the auditor, we propose an ID-based public auditing protocol for cloud data integrity checking. We also prove that the proposed protocol is secure in the random oracle model under the assumption that the Diffie-Hellman problem is hard. Furthermore, we compare the proposed protocol with other two ID-based auditing protocols in security features, communication efficiency and computation cost. The comparisons show that the proposed protocol satisfies more security features with lower computation cost.展开更多
Identity-based proxy signature enables an entity to delegate its signing rights to another entity in identity-based cryptosystem settings. However, few existing scheme has been proved secure in a formalized model, or ...Identity-based proxy signature enables an entity to delegate its signing rights to another entity in identity-based cryptosystem settings. However, few existing scheme has been proved secure in a formalized model, or acquired optimized performance. To achieve the goals of both proven security and high efficiency, this paper proposed an efficient identity-based proxy signature scheme. The scheme is constructed from bilinear pairing and proved secure in the random oracle model, using the oracle replay attack technique introduced by Pointehval and Stern. The analysis shows that the scheme needs less computation costs and has a shorter signature than the other schemes.展开更多
In existing software registration schemes, the privacy of users is not taken into account and may be in the risks of abuses. In this paper, we proposed a novel software registration system which can greatly reduce una...In existing software registration schemes, the privacy of users is not taken into account and may be in the risks of abuses. In this paper, we proposed a novel software registration system which can greatly reduce unauthorized use of software while keeping the privacy of users. To the best of our knowledge, this is the first system that the privacy of users is guaranteed in software registration. Our system enjoys a modular design and can be implemented by any secure ID-based partially blind signature scheme. Furthermore, the proposal allows flexible registration information definition. This feature makes our scheme flexible and practical for more software registration applications.展开更多
We study security of some homomorphic cryptosysterns with similar algebraic structure. It is found out that those cryptosystems have special common properties. Based on these properties, we pose two cycling attacks an...We study security of some homomorphic cryptosysterns with similar algebraic structure. It is found out that those cryptosystems have special common properties. Based on these properties, we pose two cycling attacks and point out some parameters under which the attacks are efficient. It is verified that randomly selected parameters almost impossibly submit to such attacks. Anyhow, two effective methods are given to construct weak parameters for certain homomorphic cryptosystems, and two moduli over 1 024 bits computed by them are shown to be vulnerable to our cycling attacks. It is concluded that strong primes should be used to avert weak parameters.展开更多
The real polynomial type public-key cryptosystems are broken up by computing the equivalent secure keys, then some computational problems related to securities of cryptosystems are discussed.
In the last couple of years, D-based cryptography has got fruitful achievements. Proxy multi-signature allows a designated person, called a proxy signer, to sign on behalf of two or more original signers. In this pape...In the last couple of years, D-based cryptography has got fruitful achievements. Proxy multi-signature allows a designated person, called a proxy signer, to sign on behalf of two or more original signers. In this paper, we present a general security model for ID-based proxy multi-signature (ID-PMS) schemes. Then, we show how to construct a secure ID-PMS scheme from a secure ID-based signature scheme, and prove that the security of the construction can be reduced to the security of the original ID-based signature scheme.展开更多
External direct product of some low layer groups such as braid groups and general Artin groups, with a kind of special group action on it, provides a secure cryptographic computation platform, which can keep secure in...External direct product of some low layer groups such as braid groups and general Artin groups, with a kind of special group action on it, provides a secure cryptographic computation platform, which can keep secure in the quantum computing epoch. Three hard problems on this new platform, Subgroup Root Problem, Multi-variant Subgroup Root Problem and Subgroup Action Problem are presented and well analyzed, which all have no relations with conjugacy. New secure public key encryption system and key agreement protocol are designed based on these hard problems. The new cryptosystems can be implemented in a general group environment other than in braid or Artin groups.展开更多
Based on the characteristic of key-insulated public-key cryptosystem, wepropose a distributed landora session keys distribution protocol without a key distribution center.The session key is generated by different user...Based on the characteristic of key-insulated public-key cryptosystem, wepropose a distributed landora session keys distribution protocol without a key distribution center.The session key is generated by different user and only used one time. So thekey is one-time key. Inaddition, the user who generates the next one-time key, is random selected by the current sessionkey. In the protocol of this paper, the characteristic of time in the key-insulated public-key, adistributed protocol, translates into the characteristic of spaee which every point has differentsecret key in the different period. At the same time, the system is fit for key management in AdHoe, and is a new scheme of key management in Ad Hoc.展开更多
Two ID-based authenticated group key agreement schemes, proposed by Choi et al and Du et al, are insecure against an impersonation attack and th ey only discussed the static group. This paper proposed a variant of BD ...Two ID-based authenticated group key agreement schemes, proposed by Choi et al and Du et al, are insecure against an impersonation attack and th ey only discussed the static group. This paper proposed a variant of BD protocol , which is fully authenticated by a proven-secure ID-based signature scheme. T he protocol can res ist the impersonation attack, and other security attributes are also satisfied. Compared with Choi et al and Du et al schemes, the proposed one is mor e efficient and applicable for dynamic groups.展开更多
This paper describes and compares a variety of algorithms for secure transmission of information via open communication channels based on the discrete logarithm problem that do not require search for a generator (prim...This paper describes and compares a variety of algorithms for secure transmission of information via open communication channels based on the discrete logarithm problem that do not require search for a generator (primitive element). Modifications that simplify the cryptosystem are proposed, and, as a result, accelerate its performance. It is shown that hiding information via exponentiation is more efficient than other seemingly simpler protocols. Some of these protocols also provide digital signature/sender identification. Numeric illustrations are provided.展开更多
Peer-to-peer computing has recently started to gain significant acceptance, since it can greatly increase the performance and reliability of overall system. However, the security issue is still a major gating factor f...Peer-to-peer computing has recently started to gain significant acceptance, since it can greatly increase the performance and reliability of overall system. However, the security issue is still a major gating factor for its full adoption. In order to guarantee the security of data exchanged between two peers in Peer-to-Peer system, this paper comes up with an ID-based authenticated key agreement from bilinear pairings and uses BAN logic to prove the protocol’s security. Compared with other existing protocols, the proposed protocol seems more secure and efficient, since it adopts the static shared Diffie-Hellman key.展开更多
Key escrow is an inherent disadvantage for traditional ID-based cryptosystem, i.e., the dishonest private key generator (PKG) can forge the signature of any user, meanwhile, the user can deny the signature actually si...Key escrow is an inherent disadvantage for traditional ID-based cryptosystem, i.e., the dishonest private key generator (PKG) can forge the signature of any user, meanwhile, the user can deny the signature actually signed by him/herself. To avoid the keyescrow problem, an ID-based signature scheme was presented without trusted PKG. The exact proof of security was presented to demonstrate that our scheme is secure against existential forgery on adaptively chosen message and ID attacks assuming the complexity of computational Diffie-Hellman (CDH) problem. Compared with other signature schemes, the proposed scheme is more efficient.展开更多
Efficient computation of Tate pairing is a crucial factor for practical applications of pairing-based cryptosystems(PBC).Recently,there have been many improvements for the computation of Tate pairing,which focuses on ...Efficient computation of Tate pairing is a crucial factor for practical applications of pairing-based cryptosystems(PBC).Recently,there have been many improvements for the computation of Tate pairing,which focuses on the arithmetical operations above the finite field.In this paper,we analyze the structure of Miller’s algorithm firstly,which is used to implement Tate pairing.Based on the characteristics that Miller’s algorithm will be improved tremendous if the order of the subgroup of elliptic curve group is low hamming prime,a new method for generating parameters for PBC is put forward,which enable it feasible that there is certain some subgroup of low hamming prime order in the elliptic curve group generated.Finally,we analyze the computation efficiency of Tate pairing using the new parameters for PBC and give the test result.It is clear that the computation of Tate pairing above the elliptic curve group generating by our method can be improved tremendously.展开更多
The two types of nonlinear optical cryptosystems(NOCs)that are respectively based on amplitude-phase retrieval algorithm(APRA)and phase retrieval algorithm(PRA)have attracted a lot of attention due to their unique mec...The two types of nonlinear optical cryptosystems(NOCs)that are respectively based on amplitude-phase retrieval algorithm(APRA)and phase retrieval algorithm(PRA)have attracted a lot of attention due to their unique mechanism of encryption process and remarkable ability to resist common attacks.In this paper,the securities of the two types of NOCs are evaluated by using a deep-learning(DL)method,where an end-to-end densely connected convolutional network(DenseNet)model for cryptanalysis is developed.The proposed DL-based method is able to retrieve unknown plaintexts from the given ciphertexts by using the trained DenseNet model without prior knowledge of any public or private key.The results of numerical experiments with the DenseNet model clearly demonstrate the validity and good performance of the proposed the DL-based attack on NOCs.展开更多
In the digital age, the data exchanged within a company is a wealth of knowledge. The survival, growth and influence of a company in the short, medium and long term depend on it. Indeed, it is the lifeblood of any mod...In the digital age, the data exchanged within a company is a wealth of knowledge. The survival, growth and influence of a company in the short, medium and long term depend on it. Indeed, it is the lifeblood of any modern company. A companys operational and historical data contains strategic and operational knowledge of ever-increasing added value. The emergence of a new paradigm: big data. Today, the value of the data scattered throughout this mother of knowledge is calculated in billions of dollars, depending on its size, scope and area of intervention. With the rise of computer networks and distributed systems, the threats to these sensitive resources have steadily increased, jeopardizing the existence of the company itself by drying up production and losing the interest of customers and suppliers. These threats range from sabotage to bankruptcy. For several decades now, most companies have been using encryption algorithms to protect and secure their information systems against the threats and dangers posed by the inherent vulnerabilities of their infrastructure and the current economic climate. This vulnerability requires companies to make the right choice of algorithms to implement in their management systems. For this reason, the present work aims to carry out a comparative study of the reliability and effectiveness of symmetrical and asymmetrical cryptosystems, in order to identify one or more suitable for securing academic data in the DRC. The analysis of the robustness of commonly used symmetric and asymmetric cryptosystems will be the subject of simulations in this article.展开更多
This paper presents a high-security medical image encryption method that leverages a novel and robust sine-cosine map.The map demonstrates remarkable chaotic dynamics over a wide range of parameters.We employ nonlinea...This paper presents a high-security medical image encryption method that leverages a novel and robust sine-cosine map.The map demonstrates remarkable chaotic dynamics over a wide range of parameters.We employ nonlinear analytical tools to thoroughly investigate the dynamics of the chaotic map,which allows us to select optimal parameter configurations for the encryption process.Our findings indicate that the proposed sine-cosine map is capable of generating a rich variety of chaotic attractors,an essential characteristic for effective encryption.The encryption technique is based on bit-plane decomposition,wherein a plain image is divided into distinct bit planes.These planes are organized into two matrices:one containing the most significant bit planes and the other housing the least significant ones.The subsequent phases of chaotic confusion and diffusion utilize these matrices to enhance security.An auxiliary matrix is then generated,comprising the combined bit planes that yield the final encrypted image.Experimental results demonstrate that our proposed technique achieves a commendable level of security for safeguarding sensitive patient information in medical images.As a result,image quality is evaluated using the Structural Similarity Index(SSIM),yielding values close to zero for encrypted images and approaching one for decrypted images.Additionally,the entropy values of the encrypted images are near 8,with a Number of Pixel Change Rate(NPCR)and Unified Average Change Intensity(UACI)exceeding 99.50%and 33%,respectively.Furthermore,quantitative assessments of occlusion attacks,along with comparisons to leading algorithms,validate the integrity and efficacy of our medical image encryption approach.展开更多
基金supported by Comunidad de Madrid within the framework of the Multiannual Agreement with Universidad Politecnica de Madrid to encourage research by young doctors(PRINCE).
文摘The Industry 4.0 revolution is characterized by distributed infrastructures where data must be continuously communicated between hardware nodes and cloud servers.Specific lightweight cryptosystems are needed to protect those links,as the hardware node tends to be resource-constrained.Then Pseudo Random Number Generators are employed to produce random keys,whose final behavior depends on the initial seed.To guarantee good mathematical behavior,most key generators need an unpredictable voltage signal as input.However,physical signals evolve slowly and have a significant autocorrelation,so they do not have enough entropy to support highrandomness seeds.Then,electronic mechanisms to generate those high-entropy signals artificially are required.This paper proposes a robust hyperchaotic circuit to obtain such unpredictable electric signals.The circuit is based on a hyperchaotic dynamic system,showing a large catalog of structures,four different secret parameters,and producing four high entropy voltage signals.Synchronization schemes for the correct secret key calculation and distribution among all remote communicating modules are also analyzed and discussed.Security risks and intruder and attacker models for the proposed solution are explored,too.An experimental validation based on circuit simulations and a real hardware implementation is provided.The results show that the random properties of PRNG improved by up to 11%when seeds were calculated through the proposed circuit.
基金The National Natural Science Foundation of China(No.60473028)the Natural Science Foundation of Zhengzhou University of Light Industry(No.2006XXJ18)the Doctor Foundation of Zhengzhou University of Light Industry(No.20080014)
文摘To realize delegation between different users in a mixed cryptosystem,a proxy signature scheme for ID-based original signers and certificated-based proxy signers(PSS-ID-CER)is defined.Using the bilinear properties of the pairings and the characters of key generations of certificate-based cryptosystems and ID-based cryptosystems,a construction for such a scheme is also presented.To prove the security of the proposed scheme,a general security model for this scheme under adaptive chosen-PKG,chosen-ID,chosen-delegation,chosen-ProxySigner-public-key,chosen-proxy-key and chosen-message attack is defined.The proposed scheme is provably secure under the random oracle model and the hardness assumption of computational Diffie-Hellman problem.
文摘The basic idea behind an ID-based cryptosystem is that end user's public key can be determined by his identity information.Comparing with the traditional certificate-based cryptography,identity-based cryptography can eliminate much of the overhead associated with the deployment and management of certificate.However,exposure of private keys can be the most devastating attack on a public key based cryptosystem since such that all security guarantees are lost.In this paper,an ID-based authenticated key agreement protocol was presented.For solving the problem of key exposure of the basic scheme,the technique of key insulation was applied and a key insulated version is developed.
基金Supported bythe National Key Basic Research andDevelopment Program (973 Program G1999035804),the NationalNatural Science Foundation of China (90204015 ,60473021) and theElitist Youth Foundation of Henan Province (021201400)
文摘ID-based public key cryptosystem can be a good alternative for certifieate-based public key setting. This paper provides an efficient ID-based proxy multi signature scheme from pairings. In the random oracle model, we prove that our new scheme is secure against existential delegation forgery with the assumption that Hess's scheme-1 is existential unforgeable, and that our new scheme is secure against existential proxy multi-signature forgery under the hardness assumption of the computational Diffie-Hellman problem.
基金Supported by the Applied Basic and Advanced Technology Research Programs of Tianjin(15JCYBJC15900)the National Natural Science Foundation of China(51378350)
文摘Cloud storage service reduces the burden of data users by storing users' data files in the cloud. But, the files might be modified in the cloud. So, data users hope to check data files integrity periodically. In a public auditing protocol, there is a trusted auditor who has certain ability to help users to check the integrity of data files. With the advantages of no public key management and verification, researchers focus on public auditing protocol in ID-based cryptography recently. However, some existing protocols are vulnerable to forgery attack. In this paper, based on ID-based signature technology, by strengthening information authentication and the computing power of the auditor, we propose an ID-based public auditing protocol for cloud data integrity checking. We also prove that the proposed protocol is secure in the random oracle model under the assumption that the Diffie-Hellman problem is hard. Furthermore, we compare the proposed protocol with other two ID-based auditing protocols in security features, communication efficiency and computation cost. The comparisons show that the proposed protocol satisfies more security features with lower computation cost.
基金National Natural Science Foundation of Chi-na for Distinguished Young Scholars (No.60225007)National Research Fund for theDoctoral Program of Higher Education ofChina (No.20020248024)Grant-in-Aid forScientific Research(C) (No.14540100)
文摘Identity-based proxy signature enables an entity to delegate its signing rights to another entity in identity-based cryptosystem settings. However, few existing scheme has been proved secure in a formalized model, or acquired optimized performance. To achieve the goals of both proven security and high efficiency, this paper proposed an efficient identity-based proxy signature scheme. The scheme is constructed from bilinear pairing and proved secure in the random oracle model, using the oracle replay attack technique introduced by Pointehval and Stern. The analysis shows that the scheme needs less computation costs and has a shorter signature than the other schemes.
基金Supported by the National High Technology Research and Development Program of China (863 Program) (2006AA01Z442)the Spanish Government through Projects (E-AEGIS) (TSI2007- 65406-C03-01)+1 种基金(ARES) CONSOLIDER INGENIO 2010 (CSD2007- 00004)the Government of Catalonia (2005 SGR 00446)
文摘In existing software registration schemes, the privacy of users is not taken into account and may be in the risks of abuses. In this paper, we proposed a novel software registration system which can greatly reduce unauthorized use of software while keeping the privacy of users. To the best of our knowledge, this is the first system that the privacy of users is guaranteed in software registration. Our system enjoys a modular design and can be implemented by any secure ID-based partially blind signature scheme. Furthermore, the proposal allows flexible registration information definition. This feature makes our scheme flexible and practical for more software registration applications.
基金Supported by the High-Technology Research and Development Progrom of China (863 Program) (2007AA701315)the National Natural Science Foundation of China (60763009)
文摘We study security of some homomorphic cryptosysterns with similar algebraic structure. It is found out that those cryptosystems have special common properties. Based on these properties, we pose two cycling attacks and point out some parameters under which the attacks are efficient. It is verified that randomly selected parameters almost impossibly submit to such attacks. Anyhow, two effective methods are given to construct weak parameters for certain homomorphic cryptosystems, and two moduli over 1 024 bits computed by them are shown to be vulnerable to our cycling attacks. It is concluded that strong primes should be used to avert weak parameters.
基金Supported by the National Natural Science Foundation of Chinathe Fund of the State Education Commission of China
文摘The real polynomial type public-key cryptosystems are broken up by computing the equivalent secure keys, then some computational problems related to securities of cryptosystems are discussed.
基金Supported by the National Natural Science Foundation of China (60473021) and the Science Foundation of Henan Province (0511010900)
文摘In the last couple of years, D-based cryptography has got fruitful achievements. Proxy multi-signature allows a designated person, called a proxy signer, to sign on behalf of two or more original signers. In this paper, we present a general security model for ID-based proxy multi-signature (ID-PMS) schemes. Then, we show how to construct a secure ID-PMS scheme from a secure ID-based signature scheme, and prove that the security of the construction can be reduced to the security of the original ID-based signature scheme.
基金Supported by the National Natural Science Funda-tion of China (60403027)
文摘External direct product of some low layer groups such as braid groups and general Artin groups, with a kind of special group action on it, provides a secure cryptographic computation platform, which can keep secure in the quantum computing epoch. Three hard problems on this new platform, Subgroup Root Problem, Multi-variant Subgroup Root Problem and Subgroup Action Problem are presented and well analyzed, which all have no relations with conjugacy. New secure public key encryption system and key agreement protocol are designed based on these hard problems. The new cryptosystems can be implemented in a general group environment other than in braid or Artin groups.
文摘Based on the characteristic of key-insulated public-key cryptosystem, wepropose a distributed landora session keys distribution protocol without a key distribution center.The session key is generated by different user and only used one time. So thekey is one-time key. Inaddition, the user who generates the next one-time key, is random selected by the current sessionkey. In the protocol of this paper, the characteristic of time in the key-insulated public-key, adistributed protocol, translates into the characteristic of spaee which every point has differentsecret key in the different period. At the same time, the system is fit for key management in AdHoe, and is a new scheme of key management in Ad Hoc.
文摘Two ID-based authenticated group key agreement schemes, proposed by Choi et al and Du et al, are insecure against an impersonation attack and th ey only discussed the static group. This paper proposed a variant of BD protocol , which is fully authenticated by a proven-secure ID-based signature scheme. T he protocol can res ist the impersonation attack, and other security attributes are also satisfied. Compared with Choi et al and Du et al schemes, the proposed one is mor e efficient and applicable for dynamic groups.
文摘This paper describes and compares a variety of algorithms for secure transmission of information via open communication channels based on the discrete logarithm problem that do not require search for a generator (primitive element). Modifications that simplify the cryptosystem are proposed, and, as a result, accelerate its performance. It is shown that hiding information via exponentiation is more efficient than other seemingly simpler protocols. Some of these protocols also provide digital signature/sender identification. Numeric illustrations are provided.
文摘Peer-to-peer computing has recently started to gain significant acceptance, since it can greatly increase the performance and reliability of overall system. However, the security issue is still a major gating factor for its full adoption. In order to guarantee the security of data exchanged between two peers in Peer-to-Peer system, this paper comes up with an ID-based authenticated key agreement from bilinear pairings and uses BAN logic to prove the protocol’s security. Compared with other existing protocols, the proposed protocol seems more secure and efficient, since it adopts the static shared Diffie-Hellman key.
文摘Key escrow is an inherent disadvantage for traditional ID-based cryptosystem, i.e., the dishonest private key generator (PKG) can forge the signature of any user, meanwhile, the user can deny the signature actually signed by him/herself. To avoid the keyescrow problem, an ID-based signature scheme was presented without trusted PKG. The exact proof of security was presented to demonstrate that our scheme is secure against existential forgery on adaptively chosen message and ID attacks assuming the complexity of computational Diffie-Hellman (CDH) problem. Compared with other signature schemes, the proposed scheme is more efficient.
基金Acknowledgments This research is supported by National Nature Science Foundation of China under Grant No. 60873107 to G.M. Dai, Nature Science Foundation CD2008438B to G.M. Dai and in Hubei under Grant No. Special Funds to Finance Operating Expenses for Basic Scientific Research of Central Colleges in China under Grant No. CUGL090241 to M.C. Wang.
文摘Efficient computation of Tate pairing is a crucial factor for practical applications of pairing-based cryptosystems(PBC).Recently,there have been many improvements for the computation of Tate pairing,which focuses on the arithmetical operations above the finite field.In this paper,we analyze the structure of Miller’s algorithm firstly,which is used to implement Tate pairing.Based on the characteristics that Miller’s algorithm will be improved tremendous if the order of the subgroup of elliptic curve group is low hamming prime,a new method for generating parameters for PBC is put forward,which enable it feasible that there is certain some subgroup of low hamming prime order in the elliptic curve group generated.Finally,we analyze the computation efficiency of Tate pairing using the new parameters for PBC and give the test result.It is clear that the computation of Tate pairing above the elliptic curve group generating by our method can be improved tremendously.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61975185 and 61575178)the Natural Science Foundation of Zhejiang Province,China(Grant No.LY19F030004)the Scientific Research and Development Fund of Zhejiang University of Science and Technology,China(Grant No.F701108L03).
文摘The two types of nonlinear optical cryptosystems(NOCs)that are respectively based on amplitude-phase retrieval algorithm(APRA)and phase retrieval algorithm(PRA)have attracted a lot of attention due to their unique mechanism of encryption process and remarkable ability to resist common attacks.In this paper,the securities of the two types of NOCs are evaluated by using a deep-learning(DL)method,where an end-to-end densely connected convolutional network(DenseNet)model for cryptanalysis is developed.The proposed DL-based method is able to retrieve unknown plaintexts from the given ciphertexts by using the trained DenseNet model without prior knowledge of any public or private key.The results of numerical experiments with the DenseNet model clearly demonstrate the validity and good performance of the proposed the DL-based attack on NOCs.
文摘In the digital age, the data exchanged within a company is a wealth of knowledge. The survival, growth and influence of a company in the short, medium and long term depend on it. Indeed, it is the lifeblood of any modern company. A companys operational and historical data contains strategic and operational knowledge of ever-increasing added value. The emergence of a new paradigm: big data. Today, the value of the data scattered throughout this mother of knowledge is calculated in billions of dollars, depending on its size, scope and area of intervention. With the rise of computer networks and distributed systems, the threats to these sensitive resources have steadily increased, jeopardizing the existence of the company itself by drying up production and losing the interest of customers and suppliers. These threats range from sabotage to bankruptcy. For several decades now, most companies have been using encryption algorithms to protect and secure their information systems against the threats and dangers posed by the inherent vulnerabilities of their infrastructure and the current economic climate. This vulnerability requires companies to make the right choice of algorithms to implement in their management systems. For this reason, the present work aims to carry out a comparative study of the reliability and effectiveness of symmetrical and asymmetrical cryptosystems, in order to identify one or more suitable for securing academic data in the DRC. The analysis of the robustness of commonly used symmetric and asymmetric cryptosystems will be the subject of simulations in this article.
文摘This paper presents a high-security medical image encryption method that leverages a novel and robust sine-cosine map.The map demonstrates remarkable chaotic dynamics over a wide range of parameters.We employ nonlinear analytical tools to thoroughly investigate the dynamics of the chaotic map,which allows us to select optimal parameter configurations for the encryption process.Our findings indicate that the proposed sine-cosine map is capable of generating a rich variety of chaotic attractors,an essential characteristic for effective encryption.The encryption technique is based on bit-plane decomposition,wherein a plain image is divided into distinct bit planes.These planes are organized into two matrices:one containing the most significant bit planes and the other housing the least significant ones.The subsequent phases of chaotic confusion and diffusion utilize these matrices to enhance security.An auxiliary matrix is then generated,comprising the combined bit planes that yield the final encrypted image.Experimental results demonstrate that our proposed technique achieves a commendable level of security for safeguarding sensitive patient information in medical images.As a result,image quality is evaluated using the Structural Similarity Index(SSIM),yielding values close to zero for encrypted images and approaching one for decrypted images.Additionally,the entropy values of the encrypted images are near 8,with a Number of Pixel Change Rate(NPCR)and Unified Average Change Intensity(UACI)exceeding 99.50%and 33%,respectively.Furthermore,quantitative assessments of occlusion attacks,along with comparisons to leading algorithms,validate the integrity and efficacy of our medical image encryption approach.